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Abstract

Background

The RNA binding proteins (RBPs) human antigen R (HuR) and Tristetraprolin (TTP) are

known to exhibit competitive binding but have opposing effects on the bound messenger

RNA (mRNA). How cells discriminate between the two proteins is an interesting problem.

Machine learning approaches, such as support vector machines (SVMs), may be useful in

the identification of discriminative features. However, this method has yet to be applied to

studies of RNA binding protein motifs.

Results

Applying the k-spectrum kernel to a support vector machine (SVM), we first verified the pub-

lished binding sites of both HuR and TTP. Additional feature engineering highlighted the U-

rich binding preference of HuR and AU-rich binding preference for TTP. Domain adaptation

along with multi-task learning was used to predict the common binding sites.

Conclusion

The distinction between HuR and TTP binding appears to be subtle content features. HuR

prefers strongly U-rich sequences whereas TTP prefers AU-rich as with increasing A con-

tent, the sequences are more likely to be bound only by TTP. Our model is consistent with

competitive binding of the two proteins, particularly at intermediate AU-balanced

sequences. This suggests that fine changes in the A/U balance within a untranslated region

(UTR) can alter the binding and subsequent stability of the message. Both feature engineer-

ing and domain adaptation emphasized the extent to which these proteins recognize similar

general sequence features. This work suggests that the k-spectrum kernel method could be

useful when studying RNA binding proteins and domain adaptation techniques such as fea-

ture augmentation could be employed particularly when examining RBPs with similar bind-

ing preferences.
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Introduction

RNA binding proteins (RBPs) are crucial regulators of numerous post-transcriptional pro-

cesses [1, 2]. RBPs identify their RNA targets in a highly specific fashion, through recognition

of specific primary sequence and/or secondary structure. Many RNA binding proteins recog-

nize AU-rich sequence elements, including human antigen R (HuR) and tristetraprolin (TTP).

The association between AU-rich elements and particular proteins alters the stability of the

RNA. For example, binding by HuR protects messenger RNA (mRNA) from degradation

whereas binding of TTP promotes degradation. Recent high throughput photoactivatable-

ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) [3] data is avail-

able for these two key regulatory RNA binding proteins. This data suggests that both HuR and

TTP bind to similar AU-rich elements which are typically 50–150 nucleotides long and gener-

ally located within the 30 UTR. The extent to which sequence features discriminate between

the two binding proteins remains an interesting question.

Previous efforts on understanding the AU-rich binding proteins HuR and TTP were

focused primarily on identifying k-mer motifs. Mukherjee et al. [4] demonstrated that over

80% of the TTP sites in 30UTRs overlap with HuR target binding sites. The motif recognized

by HuR is more U-rich whereas the motif recognized by TTP is predominantly AU-rich [4].

However, it remains unclear to what extent these features discriminate between HuR and TTP

binding in vivo. Position specific scoring matrix (PSSM)-based approaches are commonly uti-

lized to describe protein binding [5–8]. These methods assume positional independence

within the motif, which is sometimes also represented as a position frequency matrix (PFM).

Another representation of motifs is k-mer based or consensus strings. This representation can

capture intra-motif dependencies that are missed with the PSSM-based approach. Machine

learning approaches that utilize k-mer searches factor in these dependencies [9–12], and in

doing so can provide more discriminative power.

The k-spectrum kernel method has been used successfully in a number of bioinformatics

applications. In protein sequence classification [13] it out-performed both BLAST [14] and

Smith-Waterman [15] at super-family homology and fold recognition tasks. Beer et al. [16]

demonstrated that the use of k-mer based (using DNA sequence elements as features)

approach can be used to distinguish enhancers from random genomic regions as well as short

transcription factor-binding sites for tissue specificity. Schultheiss et al. [17] successfully devel-

oped a Python pipeline called KIRMES using the spectrum kernel to identify degenerate motifs

from micro-array data in Arabidopsis thaliana. Here we extend these applications to identify

and characterize the distinct binding motifs of RNA binding proteins HuR and TTP.

Materials and methods

PAR-CLIP HuR and TTP clusters

Two papers have explored the binding targets of HuR and TTP. Lebedeva et al. [18] used

PAR-CLIP [3] on unstressed HeLa cells to identify the binding targets of HuR. Reads were

aligned and clusters of continuous read coverage were identified. Clusters were then filtered

based on detectable nucleotide conversion events (a side effect of the crosslinking) and a qual-

ity score metric. The authors classified hits as consensus if detected in two out of three PAR--

CLIP [3] experiments and conservative if detected in all three experiments. We utilized the

conservative data-set for computational analysis such as identifying motifs. We obtained the

data set as a BED file mapped to the hg19 genome from doRiNA [19]. Mukherjee et al. [4] car-

ried out PAR-CLIP [3] experiments to identify the genome-wide binding sites for TTP. Reads

were mapped to the genome and binding sites identified [20]. It is worth noting that
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Mukherjee directly compared their binding sites for TTP to previously published HuR data

[21] using an consistent analysis pipeline. The final target list includes 4,626 peaks of

mRNA-TTP interactions, downloaded from GEO (Gene Expression Omnibus) accession

number GSE53185. For both data sets (positive set), peak statistics (minimum, average, and

maximum length) are provided in Table 1. Additional information on the datasets for both

RBPs is summarized in the Section HuR and TTP experimental methods of the S1 Appendix.

Control sequences

For both the HuR and the TTP data-sets, a negative set of control sequences were generated

using random 30UTR transcripts from the human genome. For each binding sequence in the

positive set, a size matched negative sequence was selected at a random location from a ran-

dom transcript (not in the positive set). One control set was generated for each RNA binding

protein.

Computational tools for motif validation

To verify the motifs identified by Lebedeva et al. [18] and Mukherjee et al. [4], two primary

sequence motif discovery tools were utilized. Discriminative regular expression motif elicita-

tion (DREME) [22] is part of the MEME (multiple EM for motif elicitation) [23] tool suite (v

4.10.2) that uses a discriminative approach to motif discovery. DREME [22] was utilized with a

motif length range of 7–13 nucleotides. DREME outputs the discriminatory k-mers along with

E-value, p-value, and the position frequency matrix (PFM). The top five k-mers based on E-

value were short-listed for comparison to the string kernel results [22]. The results list the

over-represented k-mers (based on number of occurrences) associated with identified motifs.

A second approach is the use of a string kernel function [24], a method that groups sequences

with similar k-mers. This method has been used effectively to determine homology of protein

sequences that share a remote evolutionary relationship [25]. A brief primer on SVMs and the

k-spectrum kernel are provided in the Section k-spectrum Kernel Method of S1 Appendix.

The k-spectrum kernel method was implemented using the PyML library (version PyML-

0.7.13.3, Python version 2.7 [9] http://pyml.sourceforge.net).

For the k-spectrum kernel, the HuR, and TTP target sequences were each used indepen-

dently to build k-spectrum kernel predictive models using a SVM. For each RNA binding pro-

tein (HuR and TTP), the model was built using the 80% of the sequences by iterating over three

parameters; the SVM parameter C (cost of a mislabeling) and k-spectrum parameters K1 and

K2 (k-mer length). The remaining 20% was held out as a validation set. The parameters K1 and

K2 ranged between values 7 and 13 whereas the SVM parameter C ranged from 1e-10 to 10000

in powers of 10 increments. At each iteration (for a given set of parameters), the training set

was run through a 10-fold stratified cross-validation. The receiver operating characteristic

(ROC) score is used for optimization. By iterating through the parameters, the model optimized

for ROC score is obtained, and is subsequently used to test unseen (validation set) data. The

output of the model includes a list of feature k-mers and weights associated with each feature k-

mer that was used to build the model. The feature k-mers are the support vectors that were used

by the SVM to distinguish between the two classes. The value of the feature weight depicts the

Table 1. Summary of sequence length of HuR and TTP PAR-CLIP [3] clusters.

Number of Sequences Max length Min Length Average Length

HuR 3642 243 19 56

TTP 4626 172 21 26

https://doi.org/10.1371/journal.pone.0174052.t001
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significance of the feature k-mer in the classification. The algorithm used to build the model is

described in the Section Algorithm to build k-spectrum kernel models of S1 Appendix.

Results from the k-spectrum kernel method were evaluated based on multiple metrics: suc-

cess rate (balanced success rate when the positive and negative classes are distinctly different

sizes), sensitivity, positive predictive value (PPV) and area under the curve. To compute per-

formance metrics from DREME, the PFM was utilized. In the positive set, scores greater than

0.6 � maximum score (threshold), were classified as true positive. Otherwise, the sequence is a

false negative. For negative sequences, if the predicted motif score is greater than the threshold

value, the sequence is classified as a false positive, and otherwise, it is a true negative. The score

for every sequence is computed using TAMO [26], particularly the MotifTools python class.

Discriminating between HuR and TTP binding sites using a common

model

To dissect the features both common and specific to the motifs, the datasets (Section PAR-

CLIP HuR and TTP clusters) were partitioned, using bedtools [27], into three subsets: Data-

set A contained sequence clusters that bound HuR but not TTP (“HuR only”), Data-set B con-

tained sequence clusters that bound TTP but not HuR (“TTP only”), and Data-set C contained

clusters that were common to both HuR and TTP.

Discriminating between HuR and TTP binding sites: Using multi-task

learning and domain adaptation

To identify the shared motifs between HuR and TTP, we utilized Multi-task Learning (MTL)

as this approach leverages both the commonality and differences between the RBPs. To iden-

tify features specific and shared by domains, Daume III [28] proposed feature augmentation

approach (a domain adaptation technique) wherein the feature space is tripled (when the

number of domains = 2). For each feature in the original feature space, there is a “shared” ver-

sion and two domain specific versions, which in our case are “HuR-specific” and “TTP-spe-

cific”. This is illustrated in Fig 1. The underlying algorithm is then expected to learn which

features transfer across domains (hence shared features) and which do not (domain specific

features). Domain adaptation selects features that are either domain specific (HuR or TTP spe-

cific) or shared in order to best explain the data. When a domain (HuR or TTP) specific feature

Fig 1. Feature Augmentation Technique. Original features and augmented features for HuR and TTP

domains.

https://doi.org/10.1371/journal.pone.0174052.g001
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is chosen, it implies that the sequence can be discriminated based on the domain specific

knowledge, whereas when a shared feature is selected, the feature is shared between the

domains. Each RBP constitutes a domain.

In order to run the k-spectrum kernel using domain adaptation, we constructed HuR (MH)

and TTP (MT) models independently using 80% of the sequences for HuR and TTP. It is

important to note that for this experiment, each model was generated from the original data-

set; MH was generated using all the HuR clusters, and similarly MT from all the TTP clusters

described in Section PAR-CLIP HuR and TTP clusters. The features identified by each model

independently serve both as potential combined features and domain-specific features in the

combined model. The domain specific features are prefixed with the RBP label (“HuR_” for

features obtained from the HuR model, and “TTP_” for features obtained from the TTP

model). The resulting combined model (MB) then identifies the most discriminative set of fea-

tures that explain each domain from the combined features and domain specific sets.

Results

Predict RBP binding sites using the k-spectrum kernel

We first sought to determine whether the k-spectrum kernel could accurately and indepen-

dently capture the known motifs without utilizing the cross-linking information. Prior work

on identifying HuR motifs [4, 18, 29] utilized exclusively on the identification of 7-mers

around the cross-linking site, identified by the alteration induced in the sequence. We utilized

the k-spectrum kernel method on each RBP (HuR and TTP) independently leveraging only

the cluster data which ignores the sequence change induced by the cross-linking. For both

RBPs, we calculated the success rate of our k-spectrum model on held-out test data.

We first note that the k-mers used by the model to discriminate HuR clusters from the con-

trol data were consistent with the published HuR motifs (see Table 2). The HuR model classi-

fied the test data with a 77.3% success rate (see Table 2). Additionally, after U-rich k-mers the

second highest scoring feature was AU-rich k-mers that correspond to the motifs identified by

the miReduce [30] algorithm used by Lebedeva et al. [18]. Interestingly, the k-mers were gen-

erally longer (9 to 12 nucleotides) than the published 7-mers. Our results suggest that the pub-

lished motif was flanked by U’s, consistent with the U-rich nature of HuR binding sites.

We next sought to compare the k-spectrum kernel [24] results on HuR to the discriminative

motif finder DREME [22]. The top motifs identified by DREME [22] were of length 7 (best E-

value from motifs of length 7 to 13). The top DREME [22] motif, HUUUUHW, was found in

2,871 out of 3,642 sequences and had an E-value of 6.6e-143 (See Fig 2 for associated sequence

logo.) The over-represented k-mers associated with this motif are listed in the Table 2. Both

discriminative methods, the k-spectrum kernel method and DREME, discovered HuR motifs

that were consistent with the published motifs, though the k-spectrum kernel method returned

a longer motif.

We utilized a similar approach to validate the k-spectrum kernel on the prediction of TTP

binding motifs. The k-spectrum kernel method was reasonably accurate, classifying the test

data with a 88.8% accuracy rate. The top scoring features were AU-rich 9-mers, including the

well known nonamer AUUUAUUUA (type 2 RRE) [31] that is specific to TTP binding targets

[32]. DREME also identified AU-rich motifs, but shorter in length (7 nt) with the top DREME

motif, ATANWTW scoring an E-value of 8.7e-743. This motif was found in 2,871 out of the

4,626 sequences. See Fig 3 for associated sequence logo. Table 3 compares the k-mers found by

the k-spectrum kernel [24], DREME [22], and the published TTP motifs.

We next sought to determine whether we could improve on these models using feature

engineering. Feature engineering is the process of transforming raw data into features that

Discriminating between HuR and TTP binding sites using the k-spectrum kernel method
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better represent the underlying problem to the predictive models, resulting in improved

model accuracy on unseen data. As a great deal is already known about both HuR and TTP,

we wondered if the addition of known features, namely that HuR binds U-rich and TTP binds

to AU-rich regions, would improve the performance of our k-spectrum kernel models. The

engineered features, normalized by sequence length, were:

Table 2. Discriminative methods recover known K-mers for HuR. Top feature k-mers from the k-spectrum kernel and over-represented k-mers from

DREME are compared to the published k-mers [18]. For the k-spectrum kernel, determined feature weights are provided.

Method Success Rate Sensitivity PPV ROC

k-spectrum 77.3 96.8 69.7 89.4

DREME 78.6 92.5 64.1 87.3

Published Motifs [18] k-spectrum Features and Weights DREME over-represented k-mers

U-rich

UUUUUUU UUUUUUUUU, 63.5 UUUUUUU

UUUAUUU UUUUAUUUU, 23.9 UUUUUUA

UUUGUUU UUUUUGUUU, 11.3 AUUUUUU

AU-rich

UAUUUAU UUUAUUUUU, 19.9 UUUUUUA

AUUUUUA AUUUUUUUU, 18.4 UUUUUAA

AUUUAUU UUUUUUUAA, 12.9 AUUUUUA

AAUUUUUA UUUUUAUUU, 10.5 AUUUAU

AAUUUUA AUUUUUAUUU, 7.49 AUUUAA

AAUAUUU AAUUUUUUU, 11.2

Polypyrimidine Tract/Intronic

CUUUUUUUU CUUUUUUUU, 15.19 CUUUUUU

UCUCUUUU UUUCUUUUU, 13.04 UCUCUUUU

UUUCUUU UUUUCUUUU, 20.8 CUUUUUA

UUUCCUU UUUUUCUUU, 18.6 AUUUUCU

UUUUUUUUC UUUUUUUUC, 15.9 CUUUUAU

https://doi.org/10.1371/journal.pone.0174052.t002

Fig 2. Position Frequency Matrix for the top motif identified by DREME for HuR.

https://doi.org/10.1371/journal.pone.0174052.g002
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• 4 features: Number of As, Us, Gs or Cs found in each sequence (aCount, uCount, gCount,

cCount).

• 2 features: Number of contiguous As or Us found in each sequence (aRepeatedCount,

uRepeatedCount).

• Total number of AU-rich dimers (AA, AU, UA, UU) found in each sequences (auCount).

The k-spectrum kernel method [24] was run using these additional features on both the

HuR and TTP datasets and evaluated against the same parameters as the models developed

without feature engineering. Table 4 lists the results of incorporating feature engineering into

the k-spectrum kernel method.

The engineered features topped the list for both proteins, suggesting that the generalized

binding preferences are high quality descriptions of the binding site preferences of these RBPs.

Interestingly, the top two features (uCount and auCount) were identical for both HuR and

TTP, only in different orders, suggesting that both proteins indeed have similar binding pref-

erences. The relative similarity of scores for these features on TTP further suggests that TTP

binds to both AU-rich and U-rich sites somewhat equivalently. Table 5 enumerates the high

scoring features for both HuR and TTP after the addition of engineered features. It is interest-

ing to note, however, that inclusion of these engineered features did not consistently improve

Fig 3. Position Frequency Matrix for the top motif identified by DREME for TTP.

https://doi.org/10.1371/journal.pone.0174052.g003

Table 3. Discriminative methods recover known K-mers for TTP. Top feature k-mers from the k-spectrum kernel and over-represented k-mers from

DREME are compared to the published k-mers [4]. For the k-spectrum kernel, determined feature weights are provided.

Method Success Rate Sensitivity PPV ROC

k-spectrum 88.8 95.5 84.1 95.6

DREME 91.4 91.57 77.09 93.4

Published Motifs [4] k-spectrum Features and Weights DREME over-represented k-mers

UUAUUUAUU UUAUUUAUU, 6.44 AUAAAUA

UUAUUUA AUUUAUUUAUU, 5.4

UAUUUAUU UAUUUAUUU, 5.34 AUAUUUA

UUUA UUUAUUUAU, 5.17 AUAUUUU

AUUUA AUUUAUUUA, 4.72 AUAUUUA

https://doi.org/10.1371/journal.pone.0174052.t003

Discriminating between HuR and TTP binding sites using the k-spectrum kernel method

PLOS ONE | https://doi.org/10.1371/journal.pone.0174052 March 23, 2017 7 / 14

https://doi.org/10.1371/journal.pone.0174052.g003
https://doi.org/10.1371/journal.pone.0174052.t003
https://doi.org/10.1371/journal.pone.0174052


the performance of the model(See Table 4), indicating that the k-mers identified adequately

recover the generalized feature descriptors.

Discrimination between HuR and TTP using k-spectrum models

Since both the proteins had similar high-scoring features we next sought to determine whether

the models could discriminate between the binding sites of HuR and TTP. Hence, we sought

to determine whether it could identify k-mers that distinguish between HuR and TTP binding.

To this end, we utilized the three categories of peaks (HuR only, both HuR and TTP, and TTP

only) in different scenario combinations (see Table 6) as both positive and negative sets. We

reasoned that peaks bound only by HuR may harbor features distinct to its binding relative to

TTP, and vice versa. For each case, we utilized both the k-spectrum kernel and DREME for

analysis.

First, we sought to identify the features key to the HuR only dataset (the positive) distinct

from TTP and common clusters (scenario 1 of Table 6). The resulting k-spectrum model iden-

tified U-rich features as the most discriminative. As shown in Table 7, it was able to discern

between the two sets with a 79% balanced success rate. DREME identified over-represented k-

mers were similar to those identified by the k-spectrum kernel, but typically shorter in length

Table 4. Feature engineering does not consistently improve model performance. Performance (success

rate, sensitivity, PPV and ROC) for models for HuR and TTP incorporating engineered features.

RBP Success Rate Sensitivity PPV ROC

HuR 82.4 86.4 79.7 89.7

TTP 85.2 91.2 81.5 92.6

https://doi.org/10.1371/journal.pone.0174052.t004

Table 5. Engineered features obtain the top weights in the model. Top ten features along with their

weights discovered by the k-spectrum kernel method when feature engineering is incorporated.

HuR (Feature, Weight) TTP (Feature, Weight)

uCount, 1142.8 auCount, 1488.15

auCount, 956.9 uCount, 1462.98

uRepeated, 671.43 uRepeated, 894.11

UUUUUUUU, 46.69 aCount, 337.70

UUUAUUUU, 30.21 UUAUUUAUU, 38.17

AUUUUUUU, 19.88 UAUUUAUUU, 32.69

UUUUAUUU, 19.64 AAUAUUUAU, 26.33

UUUUUUUC, 17.99 AUAUUUAUU, 25.83

UUUUCUUU, 16.68 UUUAUUUAU, 20.89

UUAUUUUU, 15.63 AUUUAUUUA, 20.22

https://doi.org/10.1371/journal.pone.0174052.t005

Table 6. Four different test scenarios to identify motifs shared and specific to each RBP.

Test Positive Negative

Scenario 1 Only HuR Only TTP + (HuR And TTP)

Scenario 2 Only TTP Only HuR + (HuR And TTP)

Scenario 3 (HuR And TTP) Only HuR + Only TTP

Scenario 4 Only HuR Only TTP

https://doi.org/10.1371/journal.pone.0174052.t006
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(Table 7), a pattern that was consistent across all four scenarios. Therefore, we focus our subse-

quent discussion on the k-spectrum results.

To identify features specific to the TTP dataset, we employed TTP only as the positive and

all of HuR and common clusters as the negative dataset (scenario 2 in Table 6). The discrimi-

nating features were AU-rich, with several containing one or more overlapping repeats of

AUUUA. Further analysis of this repeating pentamer revealed that it was found 206 times in

the TTP only sequences, only 25 times in the HuR only sequences, and 11 times in the com-

mon sequences suggesting that it is indeed a discriminating feature for TTP binding.

We next sought to identify the features that were typical of commonly bound regions (sce-

nario 3 in Table 6). The model identified AU-rich features, though they had appreciable fewer

A’s than those identified for TTP only. This suggests that k-mers intermediate between the U-

rich features of HuR and the AU-rich features of TTP can be recognized by either protein. The

success rate of the model, however, was discernibly lower (by 10–15 percentage points) than

the HuR only and TTP only models. In line with the drop in accuracy, we noted that most

instances of the top k-mers were found in the HuR only (1668 instances) and TTP only (1542

instances) datasets rather than the combined set (324 instances) (See Fig 4).

Finally, we wondered whether the inclusion of these common events was reducing the

accuracy of our HuR specific and TTP specific models. To test this, we ran one last scenario,

Table 7. Discriminative methods evaluate distinct subsets of the HuR and TTP dataset to identify both shared and specific sequence features. The

performance of the k-spectrum kernel on distinct subsets of the data. Top eight k-mers from k-spectrum kernel (by weight) and DREME (by E-value). The test

scenarios correspond to Table 6.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Only HuR vs (Only TTP and

Common)

Only TTP vs (Only HuR and

Common)

Common vs (HuR and TTP

specific)

HuR-specific vs TTP-

specific

Positive Sequences 3206 4161 467 3206

Negative

Sequences

5667 4712 7367 4161

Balanced Success

Rate

78.1 72.8 62.9 80.7

ROC 85.2 80.5 68.7 88.1

k-spectrum

Features

UUUUUU UAAUAUUUA UUUUAUUUAA UUUUGUUUU

UUUUUUU AAUAUUUAU UUUAUUUAA UUUUUUUUUUU

UUUUUUUU CUAUUUAUU UUUAUUUA UUUUUUUUUC

UUUUUUUUC UAUUUAUUA AUUUUUUAUU AUUUUUUUUU

UUUUGUUUU UAUUUAUUUA UUUUAUAUU UUUUUUUUUU

UUUUUUUU AUUUAUUUAU UAUUUUUUUUA UUUUUUUU

CUUUUUUUUU UUAUUUAAU AUUUAUUUU AUUUUUU

UUUUUUC AUAAAUAU UAUUAUUUU CUUUUUU

DREME Motifs

UUUUUUU UAUUUAU UUUUAUUU UUUUUUU

UUUUCUU AUUUAUU UAUUUAUAA UUUUUGU

UCUUUUU AUUUAUA UAUUUAUUC AUUUUUU

UCUUUUU AUAAAUU UAUUUAUUA CUUUUU

AUUUUUU AUAUAUA UAUUUAUAU UUCUUUU

AAUUUUU AUUAAUA UUUUUUUUUU UUGUUUU

CUCUUUU UUUAUAA CUUUUUUUUU CUCUUUU

AACUUUU AUUUUAUA UUUUUCUUUU AACUUUU

https://doi.org/10.1371/journal.pone.0174052.t007

Discriminating between HuR and TTP binding sites using the k-spectrum kernel method

PLOS ONE | https://doi.org/10.1371/journal.pone.0174052 March 23, 2017 9 / 14

https://doi.org/10.1371/journal.pone.0174052.t007
https://doi.org/10.1371/journal.pone.0174052


namely where the HuR only is used as a positive set and the TTP only as a negative (scenario 4

in Table 6). The resulting feature set qualitatively resembled those found for earlier HuR mod-

els, both the discriminative one (scenario 1 in Table 6) and the HuR independent model

(Table 2), but the success rate improved a little relative to both models. While the increase in

accuracy is small (2–3%), it does suggest that HuR binds a distinctly more U-rich motif than

TTP and that discrimination by sequence features is possible.

Fig 4. Analysis of Feature k-mers. (A) Number of occurrences of HuR specific feature k-mers in each dataset. (B) Number of occurrences of TTP specific

k-mers in each dataset. (C) Number of occurrences of common k-mers in each dataset.

https://doi.org/10.1371/journal.pone.0174052.g004

Table 8. Domain adaptation and multi-task learning identifies domain specific (prefaced with HuR or TTP) and shared (no prefix) k-mers. Perfor-

mance metrics and top twenty k-mers are compared for the HuR, TTP and combined model (see main text for description of models).

Test Data/Model HuR Model (MH) TTP Model (MT) Combined Model (MB)

HuR 89.4 87 89.4

TTP 91.2 95.6 94.5

Combined NA NA 92.5

Features

UUUUUUUUU UAUUUAUUU HuR

UUUUAUUUU UUAUUUAUU HuR_UUUUUUUUU

UUUUCUUUU UUUAUUUAU UUUUUUUUU

UUUAUUUUU AAUAUUUAU UUUUAUUUU

AUUUUUUUU AUUAUUAUU UAUUUAUUU

UUUUUCUUU AUAUUUAUU UUAUUUAUU

UUUUUAUUU CUAUUUAUU UUUAUUUUU

UUUUUUUUC AUUUAUUUA UUUUUAUUU

CUUUUUUUU AUUAUUUAU HuR_UUUUAUUUU

UUUCUUUUU UAUUUUUAU AUUUUUUUU

UUUUUUUCU UAAUAUUUA TTP_UUAUUUAUU

UUUUUUUUA UAUUAUUAU HuR_UUUAUUUUU

UUUUUUCUU AUUUUUAUU HuR_AUUUUUUUU

UUAUUUUUU UCUAUUUAU TTP_UAUUUAUUU

UUUUUUUAA UUAUUAUUA UUUUUUUUC

UAUUUUUUU UUAUUAUUU UUAUUUUUU

UUCUUUUUU UUUAUUAUU AUUUUAUUU

AUUUUUAUU UUUUAUUUA HuR_UUUUUUUUC

UUUUGUUUU UUUUUAUUU UUUUUUUUA

UCUUUUUUU AUUUAUUUU CUUUUUUUU

UUAUUUUUA AUUUUAUUU TTP_AUUUAUUUA

https://doi.org/10.1371/journal.pone.0174052.t008
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Discrimination between HuR and TTP using multi-task learning and

domain adaptation technique

Given the limitations of a pure k-spectrum kernel approach at identifying features typical of

commonly bound regions (results for scenario 3 in Table 6), we next employed the feature aug-

mentation technique [28] in domain adaptation along with multi-task learning to identify not

only the features specific to each domain but also those that are shared by the domains. We

combined features with domain information to construct a combined model MB. We then

compare this model to the domain specific models MH (HuR) and MT (TTP).

First, we conducted an out-of-domain test on MH and MT where the test data belonged to a

different domain than the model. As seen in Table 8, the results show that the HuR model was

able to discriminate TTP binding sites with a higher ROC score than the TTP model on HuR

data. However, given our feature engineering results, it is not possible from this data alone to

distinguish whether this indicates that the HuR dataset is simply more diverse (e.g. HuR binds

a broader range of targets) or whether the TTP protein is actually more discriminative.

Then the combined model was run against each domain data as well as the combined data-

set. The intuition behind the combined model is that it should predict HuR, TTP, and com-

bined data with at least the same ROC score as the individual models since it contains the

original set of features of both domains. As seen in the Table 8, the combined model MB had

the same ROC score for HuR data-set, and a slightly lower (less than 1%) ROC score for TTP

data set. This suggests that the combined model may have a slight HuR bias, possibly stem-

ming from the fact that HuR targets are typically longer in length. Consistent with this possi-

bility, the combined model’s top features were HuR domain specific.

Interestingly, several of the domain specific features are also identified as shared. For exam-

ple, HuR_UUUUUUUUU and UUUUUUUUU are identified as the second and third top k-

mers. This indicates that poly-U tracks are recognized by both RBPs, hence it is a shared fea-

ture, but that it has higher significance in the HuR domain. In fact, all domain specific k-mers

were also identified as shared except the last one, e.g. TTP_AUUUAUUUA, which corre-

sponds to the known TTP specific nonamer. This is consistent with the feature identified by

the TTP model (See Table 3). Despite the fact that only one k-mer (in the top twenty k-mers) is

uniquely domains specific, the combined model ROC score was 92.5%, a slight improvement

over the out-domain capabilities of the HuR only model in predicting TTP. This suggests that

the combined model does identify distinguishing features for TTP that contribute to its suc-

cess, despite the fact that they are not in the top ten features.

Discussion

Two discriminative methods, the k-spectrum kernel method [24] and DREME [22], both dis-

covered HuR and TTP motifs that were consistent with the published motifs; the HuR k-mers

were predominantly U-rich, and AU-rich for TTP. While the success rate of these methods

was comparable, the k-spectrum kernel method had higher sensitivity and PPV values than

DREME. With discriminative methods, sensitivity and specificity are often trade-offs. This is

likely the case here, as DREME had a slightly better success rate. In some cases, a higher sensi-

tivity is preferred, particularly when subsequent experiments will validate the predicted sites

and there is a cost to missing potential targets.

Additionally, relative to DREME [22], the k-spectrum kernel method identified slightly lon-

ger k-mers that provide additional insight into the flanking regions around the core motif.

HuR is known to bind its targets using two RNA binding domains. Wang et. al. [33] found

that HuR binding to c-fos RNA involved an 11-base segment 50-AUUUUUAUUUU-30, in sup-

port of a longer recognition sequence. Given the success of the k-spectrum kernel method at
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identifying binding motifs that matched known published motif of HuR and TTP, this method

could be potentially used to identify de novo binding sites of other RBPs.

The case of HuR and TTP binding is particularly paradoxical, as both proteins recognize

similar sequence features. In fact, feature engineering did not consistently improve the accu-

racy with which the k-spectrum kernel discriminated between RBP set and the control set.

However, the engineered features did bubble up to be highly discriminative, suggesting that

the binding sites of HuR and TTP are indeed simply U/AU-rich. Likewise, the features identi-

fied as domain specific using multi-task learning were often also shared features (such as

HuR_UUUUUUUU and UUUUUUUU, HuR_UUUUAUUUU and UUUUAUUUU) sug-

gesting that both proteins are capable of recognizing these k-mers but with distinct affinities.

These results both confirm and provide further evidence for the hypothesis that these RBPs do

indeed share similar binding preferences and varying affinity shifts decide which RBP would

bind to a particular target.

Not all RNA binding proteins utilize primary sequence for recognition. Instead, some RNA

binding proteins may recognize secondary structure. The co-variation inherent in conserved

secondary structures is significantly more difficult to detect than primary sequence. It is

unclear how well a k-spectrum kernel approach would fare when the target motif is structural.

A careful examination of how well various discriminative methods perform when the target

contains structural elements is a field of future research.

Conclusion

To summarize, the discriminative methods were able to identify binding motifs of both RNA

binding proteins. The k-spectrum kernel method provided additional insight of nucleotides

around the binding sites. Neither feature engineering nor domain adaptation identified spe-

cific protein specific k-mers, further corroborating the extent to which these proteins recog-

nize similar sequence features. Despite this, the increased k-mer length and sensitivity of the k-

spectrum approach suggest this is an attractive approach for predicting unknown binding

motifs of other RBPs.
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TTP datasets.
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