
Denise M. Scholtens,1 James R. Bain,2–4 Anna C. Reisetter,1

Michael J. Muehlbauer,2–4 Michael Nodzenski,1 Robert D. Stevens,2–4

Olga Ilkayeva,2–4 Lynn P. Lowe,1 Boyd E. Metzger,1 Christopher B. Newgard,2–4

and William L. Lowe Jr.,1 for the HAPO Study Cooperative Research Group

Metabolic Networks and Metabolites
Underlie Associations Between
Maternal Glucose During Pregnancy
and Newborn Size at Birth
Diabetes 2016;65:2039–2050 | DOI: 10.2337/db15-1748

Maternal metabolites and metabolic networks underly-
ing associations between maternal glucose during preg-
nancy and newborn birth weight and adiposity demand
fuller characterization. We performed targeted and non-
targeted gas chromatography/mass spectrometrymeta-
bolomics on maternal serum collected at fasting and 1 h
following glucose beverage consumption during an oral
glucose tolerance test (OGTT) for 400 northern European
mothers at ∼28 weeks’ gestation in the Hyperglycemia and
Adverse Pregnancy Outcome Study. Amino acids, fatty
acids, acylcarnitines, and products of lipid metabolism de-
creased and triglycerides increased during the OGTT. Anal-
yses of individual metabolites indicated limited maternal
glucose associations at fasting, but broader associations,
including amino acids, fatty acids, carbohydrates, and lip-
ids, were found at 1 h. Network analyses modeling metab-
olite correlations provided context for individual metabolite
associations and elucidated collective associations of mul-
tiple classes of metabolic fuels with newborn size and ad-
iposity, including acylcarnitines, fatty acids, carbohydrates,
and organic acids. Random forest analyses indicated an
improved ability to predict newborn size outcomes by using
maternal metabolomics data beyond traditional risk factors,
including maternal glucose. Broad-scale association of fuel
metabolites with maternal glucose is evident during preg-
nancy, with uniquematernal metabolites potentially contrib-
uting specifically to newborn birth weight and adiposity.

Offspring of mothers with preexisting or gestational
diabetes mellitus (GDM) are at risk for higher birth

weight (BW) and adiposity as well as childhood meta-
bolic disorders, including obesity, impaired glucose to-
lerance, and dyslipidemia (1–3). Mechanisms underlying
these risks are not well defined but likely relate to fetal
overnutrition in the setting of available maternal fuels
(2,3).

One fuel present in increased supply in GDM is glucose.
The Hyperglycemia and Adverse Pregnancy Outcome
(HAPO) Study, a population-based study of .23,000
women conducted from 2000 to 2006, and others dem-
onstrated a linear relationship between maternal glucose
and offspring BW and fatness (2,4). This is likely medi-
ated through glucose-stimulated insulin secretion in the
fetus. Additional fuels also likely contribute (5). For ex-
ample, pregnant women with GDM have increased cir-
culating triglycerides in the third trimester. Maternal
free fatty acids, which are derived from triglycerides,
cross the placenta, serve as substrates for triglyceride
synthesis, and contribute to fetal growth (2,3,6). Amino
acids in maternal fasting plasma have been correlated
with BW among women with diet-controlled GDM (7).
The role of these and other fuels in risks associated with
maternal hyperglycemia is unknown. To address possible
metabolic linkages between maternal hyperglycemia and
offspring phenotypes, we performed targeted and non-
targeted metabolomics together with pathway, network,
and random forest analyses in 400 European ancestry
HAPO mothers.
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RESEARCH DESIGN AND METHODS

Participants
We studied 400 HAPO Caucasian mother-offspring dyads
of northern European ancestry from Belfast, U.K., and
Brisbane and Newcastle, Australia, field centers (Table 1).
Dyads were sampled so that maternal glucose and BMI,
newborn BW, and sum of skinfolds (SS) spanned the
range observed in HAPO (4).

Data and Sample Collection
HAPO (conducted 2000–2006) methods have been de-
scribed previously (4). Eligible women underwent a 75-g
oral glucose tolerance test (OGTT) at 24–32 weeks’ gesta-
tion. Fasting plasma glucose (FPG) and 1-h plasma glucose
were measured. Serum samples collected during the HAPO
OGTT were stored at280°C until the present metabolomics
assays. Maternal height and weight and newborn BW and
SS were measured by standard procedures with calibrated
equipment. Gestational age was determined as previously
described (4). Demographic and lifestyle characteristics
were collected through questionnaire. Participants, care-
givers, and HAPO staff remained blinded to glucose values
unless glucose exceeded predefined levels. Unblinded par-
ticipants were excluded.

Conventional Metabolite and Targeted Amino Acid and
Acylcarnitine Analyses
Conventional metabolites (lactate, triglycerides, b-hydroxy-
butyrate, glycerol) were measured as previously described (8)
with the addition of nonesterified fatty acids (NEFAs), using
reagents from Wako (Mountain View, CA). Targeted assays
of amino acids and acylcarnitines (ACs) were performed

by using stable isotope–labeled internal standards on an
Acquity TQD system (Waters Corporation, Milford, MA) (8).
In total, 63 conventional and targeted metabolites were an-
alyzed to complement nontargeted gas chromatography/
mass spectrometry (GC/MS) analyses to the fullest extent
possible.

Nontargeted GC/MS Analyses
Nontargeted assays designed to analyze the full range of
metabolites present in serum were performed by GC/MS.
Methanol, the extraction solvent, was spiked with a
retention time locking internal standard of perdeuterated
myristic acid. Extracts were dried, prepared by methox-
imation and trimethylsilylation (8,9), and run on a 6890N
GC/5975 Inert MS (Agilent Technologies, Santa Clara,
CA). Programmed temperature vaporization in the inlet
and postrun, midcolumn, hot back-flushing of the GC col-
umn minimized analyte decomposition, carryover, and foul-
ing of GC and MS. Peaks were deconvoluted with AMDIS
freeware (10) and parsed against the Fiehn GC/MS Metab-
olimics RTL library (9) with additions from our laboratory.
Detected peak areas were log2 transformed for analysis.
Manual curation included identification of coeluting groups
of isomeric metabolites and selection of reliable peaks (8).
Some fatty acids are methylated during sample preparation,
and the methylated fatty acid was used in analyses. a-
and b-Monopalmitin likely represented both endogenous
metabolite and contaminant from sample preparation. In
total, 84 GC/MS metabolites not assayed through targeted
approaches were used for data analysis.

Batches of fasting and 1-h maternal serum sample pairs
were constructed to balance field center, maternal glucose,
and BMI and newborn outcomes across batches. Quality
control pools were prepared with equal volumes from all
maternal samples and prepared for analysis as described
above. These pools were injected as first, middle, and last
samples of each GC/MS run. Batches of equal size were run
over 50 consecutive days.

Data Analysis
GC/MS data were normalized to control technical variabil-
ity attributable to batch and run order by using a mixture
model approach in the R package metabomxtr (11). The
mixture model can be viewed as a combination of a linear
and logistic regression model, with the linear portion mod-
eling quantifiable metabolite abundance and the logistic
portion modeling detectability or lack thereof for a metab-
olite in a given sample. Given batch-specific detection
thresholds, this approach is uniquely suited to GC/MS
data. We specified separate mixture models for each me-
tabolite by using quality control data, with metabolite level
as the outcome, categorical batch variables in the logistic
and linear model components, and log-transformed run
order in the linear component. Variations in metabolite
levels due to batch and run order were identified through
the quality control data and then subtracted from ana-
lytical sample data to control technical noise for each
metabolite.

Table 1—Demographics of mothers and their offspring

Field center, N (%)
Belfast, U.K. 188 (47.0)
Brisbane, Australia 136 (34.0)
Newcastle, Australia 76 (19.0)

Maternal parity, N (%)
First child 203 (50.7)
Second or third child 197 (49.2)

Newborn sex, N (%)
Male 209 (52.2)
Female 191 (47.8)

Maternal characteristics
Age at OGTT (years) 29.4 (5.12)
BMI at OGTT (kg/m2) 29.0 (4.89)
Mean arterial pressure (mmHg) 83.1 (6.89)
FPG (mg/dL) 82.1 (6.14)
One-hour plasma glucose (mg/dL) 131.7 (27.24)
Two-hour plasma glucose (mg/dL) 111.0 (20.34)
Sample storage time (years) 9.9 (1.25)

Newborn characteristics
Gestational age at OGTT (weeks) 28.6 (1.37)
Gestational age at delivery (weeks) 40.2 (1.15)
Cord C-peptide (mg/L) 1.1 (0.51)
BW (g) 3,667.6 (485.28)
SS (mm) 12.8 (2.74)

Data are means (SD) unless otherwise indicated.
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Differences between maternal fasting and 1-h metab-
olite levels were evaluated with paired t tests for metab-
olites with $90% observed data. Associations between
maternal fasting and 1-h glucose with metabolites at cor-
responding time points were evaluated using separate lin-
ear models, with metabolites as outcomes and glucose as
predictors. For GC/MS metabolites undetectable in .10%
of samples, mixture models were used (11) similar to
normalization. Linear models were also used to investi-
gate associations between maternal metabolite predictors
and newborn SS and BW outcomes. GC/MS metabolites
undetectable in .10% of samples were treated as four
categories: one for undetected values and three for tertiles
of normalized log2 peak areas. To model longitudinal as-
sociations for glucose and metabolites with detected
values at both time points in $90% of mothers, we com-
puted percent changes by dividing the difference between
1-h and fasting levels by the fasting level and repeated
linear model analyses. Models were also examined for
absolute differences between 1 h and fasting. All models
included adjustment for field center, gestational age,
maternal age, BMI, and mean arterial pressure at OGTT,
newborn sex, and sample storage time. Adaptive Benjamini-
Hochberg false discovery rate (FDR) correction was applied
separately for targeted and nontargeted data (12).

Pathway analyses were conducted with MetaboAnalyst
3.0 (13) and its included set of human Kyoto Encyclopedia
of Genes and Genomes pathways (14). Quantitative enrich-
ment globaltest analysis (15) was used to identify maternal
metabolites that are members of the same pathways and
demonstrate collective associations with maternal fasting
or 1-h glucose.

Because metabolites are not independent of one another
but, rather, act in coordinated fashion, we conducted network
analyses to complement individual metabolite analyses
by simultaneously modeling metabolite correlations and
phenotype associations. First, we constructed separate
correlation networks for metabolites at fasting and 1 h.
Nodes represented metabolites, and edges represented
partial correlation of metabolite pairs at each time point
with magnitude .0.25 after adjustment for all covariates
used in the aforementioned regression analyses. After
correlation networks were constructed from all metabo-
lites, we identified subnetworks comprising metabolites
that demonstrated joint association with our phenotypes.
To do this, we applied a subnetwork identification algo-
rithm that incorporated node scores and edge weights
based on phenotype associations to find the optimal scor-
ing subnetwork for that phenotype (16).

We first identified subnetworks of maternal metabo-
lites associated with maternal glucose at fasting and 1 h.
Given the P value (p) for association between the metabolite
and glucose, the node score was defined as S = 2log(p) +
log(0.10). This assigns high positive scores for P , 0.10,
modest positive scores for P close to but ,0.10, and
increasingly negative scores for P . 0.10. Edge weights
were assigned by using algorithm defaults, giving higher

weight to edges whose adjacent nodes had negative scores
and low degree. Subnetworks associated with phenotype
were determined by identifying connected sets of posi-
tively scoring nodes and evaluating whether uniting pos-
itive sets through negatively scoring nodes resulted in a
positive sum of node scores. If so, the lowest weight edge
path was used to connect nodes. To characterize local
connectivity in networks, we applied spinglass community
detection using the R package igraph (17,18). Maternal
glucose networks can be interpreted as sets of correlated
metabolites that are all associated with fasting or 1-h
glucose, with the highest correlation evident within spin-
glass communities.

Networks for maternal metabolites associated with both
maternal glucose and newborn outcomes were identified by
the same approach with a modified node score. Given P
values pm and pn for a metabolite’s association with mater-
nal glucose and newborn outcome, respectively, we calcu-
lated an aggregate P value pa for the maximum of pm and
pn based on two random draws from a uniform distribution
(16). We then set S = 2log(pa) + log(0.10).

Random forest analyses were conducted using the R
package party to identify maternal metabolites that
improved prediction of newborn BW and SS beyond
known risk factors maternal glucose and BMI. Random
forests are data-driven learning methods designed for
prediction (19), in this case applied to continuous new-
born BW and SS outcomes. Overall model accuracy is
measured as percent variation explained, and contribu-
tions of individual predictors are measured by variable
importance. Given known high correlations among me-
tabolites, we used conditional permutations to evaluate
variable importance (20). This approach evaluates predictor
contributions independent of other correlated predictors.
Variable importance scores .0 indicate higher percent var-
iation explained when a predictor is included in the model.
Variables with importance scores ,0 may decrease predic-
tion accuracy. We examined random forest models as fol-
lows: M0 = maternal BMI at OGTT, gestational age at
delivery, field center, and sample storage time; M1 = M0 +
maternal glucose; M2 = M1 + highest scoring metabolite
within N spinglass communities for the network; M3 =
M1 + N metabolites with lowest pa values; and M4 = M1 +
metabolites with variable importance scores .0 after run-
ning a model that included all metabolites with pa , 0.10.

RESULTS

Study Population
Study population characteristics are shown in Table 1.
Mothers spanned the range of maternal BMI and glucose
observed in the HAPO Study. Roughly equal numbers of
males and females were represented among offspring.

Maternal Metabolites During the OGTT
Changes in multiple metabolites between fasting and 1 h
were observed (Fig. 1 and Supplementary Table 1). All
targeted amino acids, several long- and medium-chain
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fatty acids, and multiple products of lipid metabolism,
including ACs, glycerol, and b-hydroxybutyrate, decreased
after glucose ingestion. In contrast, triglycerides, carbohy-
drates, and metabolic intermediates, including pyruvate
and citrate/isocitrate, increased.

Maternal Metabolites Associated With Maternal
Glucose
A limited number of fasting metabolites were positively
associated with FPG after FDR adjustment, including
gluconeogenic substrates alanine and lactate as well as
hexitols and fructose. Lauric acid, a medium-chain fatty
acid, and palmitoleic acid and its AC were negatively
associated with FPG (Fig. 2 and Supplementary Table 2).

At 1 h, more associations between metabolites and glu-
cose were significant (Fig. 2 and Supplementary Table 2).
Similar to fasting, positive associations were observed for
1-h alanine, lactate, and fructose. Positive associations were
also observed for NEFA, b-hydroxybutyrate, triglycerides,
glycerol, asparagine/aspartate, glutamine/glutamate, leucine/
isoleucine, ornithine, phenylalanine, proline and serine, and
multiple ACs and fatty acids. Also distinct were positive as-
sociations of gluconic acid, a marker of oxidative stress,
and 2-hydroxybutyrate, a previously reported biomarker
for insulin resistance (21), and a negative association of
1-h 1,5-anhydroglucitol.

Longitudinal analyses identified similar associations
observed at individual time points with a few additions
(Fig. 2 and Supplementary Table 2). Percent changes in

citrulline and threonine exhibited significant associations
with percent change in glucose. Analyses of absolute dif-
ferences from fasting to 1 h were consistent with percent
change associations (data not shown).

Pathway Analyses
Pathway analyses identified multiple pathways related to
amino acid, triglyceride, and sugar and carbohydrate me-
tabolism whose metabolite members were jointly associated
with FPG or 1-h glucose at corresponding time points (Table
2). There was substantial overlap in the pathways associated
with glucose at the two time points, with a greater number
of pathways demonstrating association at 1 h, including
the tricarboxylic acid cycle (TCA) and metabolism of
ketone bodies.

Maternal Metabolite Associations With Newborn
Outcomes
Although P values were not significant after FDR adjust-
ment, several association trends between maternal metab-
olites and both newborn SS and BW were evident (Fig. 3
and Supplementary Table 3). Maternal fasting and 1-h
triglycerides, fasting AC C4-OH, 1-h fructose, gluconic
acid, and hexitols were positively associated. Maternal
fasting 1,5-anhydroglucitol, lysine, and pentonic acids
were negatively associated.

Other metabolites demonstrated unique association trends
with either outcome. Fasting maternal tyrosine, glycerol
1-phosphate, and linoleic and stearic acids; 1-h hypoxanthine

Figure 1—Volcano plot of maternal metabolites demonstrating differences from fasting to 1 h with FDR-adjusted P < 0.05. The y-axis
represents the negative log10 transformation of the nominal P value from paired t tests. The x-axis represents mean within-individual
percent changes from fasting to 1 h. Points are colored according to metabolite class.
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andmalonic acid; and both fasting and 1-h AC C8, AC C8:1-OH/
C6:1-DC, and glucuronic acid were negatively associated with
newborn SS. Fasting b-hydroxybutyrate was positively asso-
ciated with SS. Other ACs demonstrated several associations
in both directions with SS at either time point or longitudi-
nally. For newborn BW, positive associations included 1-h
dihydroxybutanoic acid, threonine, and citric acid. Fasting
palmitic acid was negatively associated with BW. Percent
changes in AC C16:2, glycerol 1-phosphate, threonine, urea,
aminomalonic acid, fructose, and several fatty acids were pos-
itively associated with BW.

Maternal Glucose Networks
Network analyses were conducted to contextualize in-
dividual metabolite associations and describe joint as-
sociations on behalf of correlated metabolites. Several
metabolites demonstrating associations in separate mod-
els were part of identified networks, whereas others
were excluded because they do not correlate with other
metabolites. Some metabolites were included that did

not reach individual statistical significance. The net-
work associated with glucose at fasting includes three
spinglass communities of carbohydrates and organic acids,
amino acids, and ACs and fatty acids. The 1-h network is
substantially larger and, again, sorted primarily into com-
munities of carbohydrates and organic acids, amino acids,
and ACs (Fig. 4).

Maternal Glucose and Newborn Outcome Networks
Networks for metabolites associated with maternal glu-
cose and newborn outcomes were smaller with more
granular spinglass communities at both fasting and 1 h
(Fig. 5). Unlike the networks associated with maternal
glucose alone, amino acids were largely absent from net-
works incorporating associations with newborn outcomes.
Also striking was the transition of ACs from primarily
negative associations with fasting glucose to largely pos-
itive associations with 1-h glucose and the larger size and
stronger associations of this community with newborn SS
compared with BW (Fig. 5).

Figure 2—Heat map showing positive (red) and negative (blue) associations of maternal glucose and metabolites at fasting (lane A) and 1 h
(lane B) during the OGTT as well as percent change associations from fasting to 1 h for maternal glucose and metabolites (lane C). All
metabolites with FDR-adjusted P < 0.05 for at least one time point or for percent change analyses are shown.
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Random Forest Analyses
To determine whether metabolites associated with ma-
ternal glucose contribute to the prediction of newborn
BW and SS beyond traditional risk factors, including
glucose, random forest analyses were performed (Table 3
and Supplementary Fig. 1). Model M1, which includes
maternal glucose at either fasting or 1 h, explained higher
overall percent variation for both newborn outcomes
compared with model M0, which includes maternal
BMI and other baseline covariates. This reflects the
well-substantiated role of maternal glucose in newborn size
outcomes. As seen in Supplementary Fig. 1, the relative

contribution of glucose as a predictor of newborn out-
comes (measured by conditional variable importance) de-
creased in models M2, M3, and M4 compared with M1 as
additional metabolites were included. This decrease sug-
gests that maternal metabolites that correlate with
glucose account in part for the effect of glucose on
these newborn outcomes. Importantly, in models M2,
M3, and M4 where metabolites associated with both
glucose and newborn outcomes are included as predic-
tors, the percent variation explained is consistently higher
than in M1 for both BW and SS. Taken together, the
decrease in variable importance for glucose in M2, M3,

Table 2—MetaboAnalyst pathway analysis results with FDR-adjusted P < 0.05 for fasting and/or 1-h maternal metabolites

Pathway name
No. of metabolites

annotated to pathway
No. of measured

metabolites
FDR-adjusted

P value at fasting
FDR-adjusted
P value at 1 h

Amino acid metabolism
Selenoamino acid metabolism 22 1 3.6e-05 0.00084
Taurine and hypotaurine metabolism 20 3 4.7e-05 0.0031
Alanine, aspartate, glutamate metabolism 24 5 4.7e-05 6.2e-08
Cysteine and methionine metabolism 56 6 0.0013 0.00012
Arginine and proline metabolism 77 9 0.0027 1.6e-06
Aminoacyl-tRNA biosynthesis 75 15 0.0044 0.00013
D-Glutamine and D-glutamate metabolism 11 1 0.015 1.2e-07
Nitrogen metabolism 39 6 0.016 3.7e-05
Histidine metabolism 44 3 0.016 7.3e-07
Phenylalanine metabolism 45 4 0.016 0.011
Lysine biosynthesis 32 3 0.036 0.00026
Phenylalanine, tyrosine, tryptophan biosynthesis 27 2 0.036 0.026
Glycine, serine, and threonine metabolism 48 7 0.058 0.0041
D-Arginine and D-ornithine metabolism 8 2 0.079 0.015
b-Alanine metabolism 28 4 0.12 0.00053
Cyanoamino acid metabolism 16 3 0.12 0.0018

Sugar and carbohydrate metabolism
Galactose metabolism 41 4 4.5e-07 1.6e-57
Glycolysis or gluconeogenesis 31 3 4.5e-07 9.8e-51
Fructose and mannose metabolism 48 1 4.5e-07 1.6e-20
Pyruvate metabolism 32 2 3.1e-05 7.3e-07
Pentose phosphate pathway 32 4 9.2e-05 2.2e-62
Starch and sucrose metabolism 50 3 0.0031 5.4e-45
Amino sugar, nucleotide sugar metabolism 88 3 0.0098 6.6e-42
Citrate cycle (TCA) 20 3 0.12 0.00027

Lipid metabolism
Fatty acid biosynthesis 49 2 0.00015 0.0018
Propanoate metabolism 35 5 0.0017 5.9e-08
Butanoate metabolism 40 5 0.015 1.2e-12
Glycerolipid metabolism 32 3 0.112 9.0e-05
Fatty acid metabolism 50 2 0.22 0.00064
Synthesis and degradation of ketone bodies 6 2 0.33 7.2e-09
Sphingolipid metabolism 25 1 0.50 0.012

Vitamin metabolism
Nicotinate and nicotinamide metabolism 44 2 0.0050 9.0e-05
Pantothenate and CoA biosynthesis 27 3 0.0098 0.00081
Vitamin B6 metabolism 32 1 0.025 0.086
Biotin metabolism 11 1 0.073 0.033
Ascorbate and aldarate metabolism 45 5 0.12 0.024

Other
Terpenoid backbone biosynthesis 33 1 0.025 0.086
Glutathione metabolism 38 4 0.050 2.8e-06
Porphyrin and chlorophyll metabolism 104 3 0.05 2.7e-05
Glyoxylate and dicarboxylate metabolism 50 4 0.11 0.00076
Sulfur metabolism 18 2 0.74 0.027
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and M4 and the increase in percent overall variation
explained by these models indicate that metabolites
that are part of the broad-scale changes associated with
maternal glycemia are independent contributors to new-
born size outcomes.

DISCUSSION

Maternal metabolism during pregnancy differs from the
pregravid state due to metabolic adaptations to meet the
mother’s and growing fetus’s energy needs (22–24). Preg-
nancy has been described as accelerated starvation during
fasting to meet fetal demands for glucose, amino acids,
and other nutrients and facilitated anabolism following
nutrient ingestion to allow repletion of maternal reserves
(22). For example, women in the third trimester of preg-
nancy exhibit a larger decrease in total free fatty acids and
an increase in triglycerides compared with the nongravid
state following glucose ingestion (5,22). The current study
characterized the maternal metabolome in women with
glucose levels across the range observed in a population-
based study of women who underwent an OGTT at ;28

weeks’ gestation (4). To date, studies characterizing the
metabolome of pregnant women have largely been limited
in size and have focused on fasting women with GDM
compared with healthy pregnant women (25). To our
knowledge, the current study is the largest and first in
pregnant women that examined two OGTT time points to
identify maternal metabolites associated with glucose as a
quantitative trait.

Prior studies examining the effect of glucose ingestion
on the metabolome have been limited to nonpregnant
populations (26–32). Similar to those studies, we demon-
strated a glucose-induced decrease in multiple metabolites,
including glycerol, b-hydroxybutyrate, NEFA, medium-
and long-chain fatty acids, ACs, and amino acids. Pyruvate
increased as did lactate after glucose ingestion; the latter
has been previously reported (26). Previous findings with
Krebs cycle intermediates have varied (26,32). We ob-
served an increase in circulating citrate/isocitrate but
no change in lactate, fumarate, and malate. Thus, de-
spite pregnancy-induced insulin resistance and atten-
dant changes in maternal metabolism, glucose-stimulated

Figure 3—Heat map showing positive (red) and negative (blue) associations of maternal metabolites at fasting and 1 h and percent change
with newborn SS (lanes A–C, respectively) and BW (lanes D–F, respectively). Glucose in this figure refers to the original HAPO OGTT maternal
glucose measurements. All metabolites with a nominal P < 0.05 for at least one time point or in percent change analyses are shown.
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insulin secretion in pregnancy inhibits lipolysis, proteoly-
sis, and ketogenesis and stimulates glycolysis similar to
nonpregnant populations.

To date, metabolomic studies during pregnancy have
focused largely on women with GDM, a state of relative
insulin insufficiency due to inadequate maternal b-cell
compensation for pregnancy-induced insulin resistance
(33). Differences among the metabolomes between women
without and with GDM have been reported, but few metab-
olites have demonstrated consistent changes across studies,
likely due to small sample sizes and various technologies and
study designs (25). Total and individual free fatty acids have
been reported as either higher or both higher and lower
during the second or third trimester in women with GDM
and/or an impaired glucose challenge test (25,34–36).

Previous studies of amino acid levels in women with
GDM have been inconsistent (25). We identified many
metabolites and metabolic pathways associated with
maternal glucose at 28 weeks’ gestation independent
of maternal BMI. In the fasting state, a limited number
of metabolites were positively associated with maternal
glucose, most notably lactate and alanine. A potential
explanation for the higher levels of these gluconeogenic
substrates in the setting of maternal hyperglycemia is
inefficient glucose utilization and relative mitochondri-
al inefficiency with diversion of glucose to alanine and
lactate as opposed to entering the TCA. This finding is
consistent with the observation that alanine, lactate,
and organic acids are higher early in pregnancy (;16 weeks’
gestation) in women subsequently given a diagnosis of

Figure 4—Subnetworks of maternal metabolites associated with maternal fasting and 1-h glucose. Nodes represent metabolites, and
edges represent partial correlation >0.25 for metabolite pairs. Nodes are sized according to node score–based P values, with larger nodes
corresponding to higher scores. Nodes are colored according to metabolite class. Gray shading identifies spinglass communities within the
subnetworks. Direction of association is noted by color shading in the nodes. Positive associations are darker, and negative associations
are lighter. A: The subnetwork of maternal fasting metabolites associated with maternal FPG. B: The subnetwork of maternal 1-h metab-
olites associated with maternal 1-h plasma glucose (1PG). AA, amino acid; CHO, carbohydrate; FA, fatty acid; GC, glycolysis; Misc,
miscellaneous.
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GDM (37). After glucose ingestion, many more metabo-
lites were associated with maternal glucose, including a
positive association of many amino acids and ACs. This is
consistent with blunted insulin-induced inhibition of pro-
teolysis and lipolysis in women with higher glucose and
suggests that metabolic changes during pregnancy are not
limited to GDM.

A unique aspect of this study was the availability of
fetal phenotypes in addition to maternal phenotype and
metabolomic data. Association of maternal glucose and
triglyceride levels with BW and fetal adiposity has been
demonstrated (3,4,38–42). Maternal fatty acids increase
during pregnancy, are transported across the placenta,
and contribute to fetal growth (6), whereas levels of

amino acids, which are important for fetal protein accre-
tion and growth, fall (23,43). Maternal fatty acids and
glycerol have been shown to be associated with BW and
fat mass in mothers with GDM but not in control subjects
(39,44). Findings with amino acids have been inconsis-
tent; some found no association with BW of maternal
amino acids late in gestation, whereas others showed
positive associations of maternal serine, lysine, proline,
ornithine, and arginine and a negative association of
methionine (45,46). Others found positive associations
of aspartate, alanine, ornithine, and arginine levels at
25 weeks’ gestation with BW (47). In the current study,
individual maternal metabolites failed to demonstrate
FDR-adjusted associations with newborn BW or SS.

Figure 5—Subnetworks of maternal metabolites associated with maternal glucose and newborn outcomes. Nodes represent metabolites,
and edges represent partial correlation >0.25 for metabolite pairs. Nodes are sized according to node score based on aggregate P values,
with larger nodes corresponding to higher scores. Nodes are colored according to metabolite class. Gray shading identifies spinglass
communities within the subnetworks. Direction of association for maternal glucose and newborn outcome is noted by color shading in the
left and right sides of the nodes, respectively. Positive associations are darker, and negative associations are lighter. A: The subnetwork of
maternal fasting metabolites associated with maternal FPG and newborn SS. B: The subnetwork of maternal fasting metabolites associated
with maternal FPG and newborn BW. C: The subnetwork of maternal 1-h metabolites associated with maternal 1PG and newborn SS. D:
The subnetwork of maternal 1-h metabolites associated with maternal 1PG and newborn BW. 1PG, 1-h plasma glucose; AA, amino acid;
CHO, carbohydrate; FA, fatty acid; GC, glycolysis; Misc, miscellaneous.
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Fasting and 1-h triglycerides were nominally positively
associated with BW and SS, and fasting levels of tyrosine
and several fatty acids were nominally negatively associated
with SS or BW. The reasons for the difference between the
current results and earlier studies are not known, but the
earlier studies were small with different study designs.

Recognizing that metabolites likely act in concert
rather than individually, we performed network analyses
to identify correlated metabolites associated with both
maternal and fetal phenotypes. These network studies
identified interrelated groups of maternal metabolites that
collectively demonstrate consistent, often subtle, associa-
tions with both maternal glucose and newborn outcomes. At
fasting, clusters of fatty acids and the carnitine esters of
long- and medium-chain fatty acids were associated with
maternal fasting glucose and newborn SS and/or BW. At 1 h,
a cluster of ACs of long- and medium-chain fatty acids
together with the ketone body b-hydroxybutyrate demon-
strated an association with maternal 1-h glucose and both
SS and BW. Different from the fasting state, clusters of sugars
and metabolic intermediates at 1 h were also associated with
maternal and newborn phenotypes. These include potential
products of the polyol pathway, fructose and hexitols. The
polyol pathway increases susceptibility to oxidative stress and
contributes to diabetic complications (48). Of note, amino
acid clusters were associated with maternal fasting or 1-h
glucose alone but not with newborn phenotypes.

The Pedersen hypothesis states that higher trans-
placental transport of glucose and resulting fetal in-
sulin secretion in the setting of maternal hyperglycemia
contribute to macrosomia (5). The HAPO Study confirmed
this hypothesis (4). Freinkel (5) modified the hypothesis
to suggest that nutrients in addition to glucose also con-
tribute to fetal growth and fat accretion in the setting of
maternal hyperglycemia. We used random forest analysis

to confirm Freinkel’s modification of the Pedersen hy-
pothesis by identifying multiple metabolites associated
with maternal glucose that contribute to newborn BW
and SS independent of maternal glucose and BMI. As
seen in Supplementary Fig. 1, a broad array of maternal
metabolites makes some contribution to BW and/or SS.
In the fasting state, this includes a number of lipid-
related metabolites (fatty acids, triglycerides, glycerol
1-phosphate, ACs of medium-chain fatty acids), uric acid,
and sugars (hexitols, myoinositol). Of note, lysine is the
only amino acid in the fasting state that contributes
to newborn size in these analyses. Previously, lysine
levels helped to explain variability in the development
of GDM (49), and higher levels of lysine have been
demonstrated in some studies of women with GDM
(45,46,50). At 1 h, a similar pattern was evident with
lipid-related metabolites (b-hydroxybutyrate among others),
sugars (fructose, hexitols, disaccharides, maltose), products
of carbohydrate metabolism (citrate/isocitrate, lactate),
and amino acids (methionine, phenylalanine), which all con-
tributed to newborn outcomes. Together, these analyses
demonstrate that beyond glucose, additional metabolites
associated with glucose are independent contributors to
newborn size at birth and, in aggregate, may have the
potential to predict fetal size at birth.

The current study had several strengths. It is the
largest to date to examine the association of maternal
metabolic traits with maternal metabolites and the first
in pregnant women to examine associations across the
full range of glucose and associations of metabolites
with glucose at both fasting and 1 h following a glucose
load. Because pregnancy has been described as a state of
accelerated starvation and facilitated anabolism, the
examination of metabolites in both the fasting and the
postprandial state is important. This is also the first
metabolomic study to include mother-newborn dyads to
allow for the examination of associations between the
maternal metabolome and newborn outcomes and the
identification of metabolites associated with glucose impor-
tant for newborn size at birth. One limitation is the use of
nontargeted assays that are not strictly quantitative. These
assays allow unbiased examination of metabolite-phenotype
associations, but findings of interest will ultimately require
the development of targeted assays for confirmation. More-
over, the network and random forest analyses will require
replication in independent studies.

In conclusion, we demonstrate broad-scale association
of metabolites with either maternal fasting or 1-h glucose
by using population-based data and provide new insight
into metabolic changes characteristic of maternal hyper-
glycemia. We also found evidence for a role of maternal
triglycerides, fatty acids, and their metabolites together
with sugars and metabolic intermediates in newborn
outcomes, whereas random forest analyses suggest that
these and other metabolites are independent contrib-
utors to newborn BW and SS. Further studies relating
these findings to the fetal metabolome will provide

Table 3—Overall percent variation explained for random
forest models predicting newborn size outcomes

Percent variation explained

M0 M1 M2 M3 M4

Maternal FPG and fasting
metabolites—newborn
SS 3.99 6.03 7.59 8.13 10.08

Maternal FPG and fasting
metabolites—newborn
BW 3.02 4.35 8.01 7.47 7.16

Maternal 1-h PG and 1-h
metabolites—newborn
SS 3.99 5.35 7.08 6.98 8.52

Maternal 1-h PG and 1-h
metabolites—newborn
BW 3.02 7.07 8.49 7.89 9.22

M0, baseline model including maternal BMI, gestational age at
delivery, field center, and sample storage time; M1, M0 + maternal
glucose at fasting or 1 h; M2, M3, and M4, M1 + metabolites
selected according to strategies described in RESEARCH DESIGN AND

METHODS. Individual metabolites are listed in Supplementary Fig. 1.
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additional insight into mechanisms underlying fetal size
at birth.

Acknowledgments. The authors thank Stephan Baumann and Steven
Fischer at Agilent Technologies, Inc., for assistance in developing the nontargeted
GC/MS platform and Raji Balasubramanian at University of Massachusetts
Amherst for helpful discussions on network analyses.
Funding. This study was funded by National Institute of Diabetes and Digestive
and Kidney Diseases (grant R01-DK-095963) by the National Institute of Child Health
and Human Development (grants R01-HD-34242 and R01-HD-34243).
Duality of Interest. No potential conflicts of interest relevant to this article
were reported.
Author Contributions. D.M.S. contributed to the study design, data
analysis, interpretation of findings, and primary drafting of the manuscript. J.R.B.
and M.J.M contributed to the conventional metabolite assays and nontargeted
metabolomics, interpretation of findings, and manuscript writing. A.C.R. and M.N.
contributed to the data analysis. R.D.S. and O.I. contributed to the development
and performance of targeted metabolomics assays. L.P.L. contributed to the
study design. B.E.M. and C.B.N. contributed to the study design and interpretation
of findings. W.L.L. conceived the hypothesis and contributed to the study design,
interpretation of findings, and primary drafting of the manuscript. D.M.S. and W.L.L.
are the guarantors of this work and, as such, had full access to all the data in the
study and take responsibility for the integrity of the data and the accuracy of the
analysis.
Prior Presentation. Parts of this study were presented in abstract form at
the 75th Scientific Sessions of the American Diabetes Association, Boston, MA,
5–9 June 2015.

References
1. Metzger BE. Long-term outcomes in mothers diagnosed with gestational
diabetes mellitus and their offspring. Clin Obstet Gynecol 2007;50:972–979
2. Dabelea D, Crume T. Maternal environment and the transgenerational cycle
of obesity and diabetes. Diabetes 2011;60:1849–1855
3. Catalano PM, Hauguel-De Mouzon S. Is it time to revisit the Pedersen
hypothesis in the face of the obesity epidemic? Am J Obstet Gynecol 2011;204:
479–487
4. Metzger BE, Lowe LP, Dyer AR, et al.; HAPO Study Cooperative Research
Group. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 2008;
358:1991–2002
5. Freinkel N. Banting Lecture 1980. Of pregnancy and progeny. Diabetes
1980;29:1023–1035
6. Haggarty P. Fatty acid supply to the human fetus. Annu Rev Nutr 2010;30:
237–255
7. Metzger BE. Biphasic effects of maternal metabolism on fetal growth.
Quintessential expression of fuel-mediated teratogenesis. Diabetes 1991;
40(Suppl. 2):99–105
8. Scholtens DM, Muehlbauer MJ, Daya NR, et al.; HAPO Study Cooperative
Research Group. Metabolomics reveals broad-scale metabolic perturbations in
hyperglycemic mothers during pregnancy. Diabetes Care 2014;37:158–166
9. Kind T, Wohlgemuth G, Lee Y, et al. FiehnLib: mass spectral and retention
index libraries for metabolomics based on quadrupole and time-of-flight gas
chromatography/mass spectrometry. Anal Chem 2009;81:10038–10048
10. Halket JM, Przyborowska A, Stein SE, Mallard WG, Down S, Chalmers RA.
Deconvolution gas chromatography/mass spectrometry of urinary organic acids—
potential for pattern recognition and automated identification of metabolic disorders.
Rapid Commun Mass Spectrom 1999;13:279–284
11. Nodzenski M, Muehlbauer MJ, Bain JR, Reisetter AC, Lowe WL Jr,
Scholtens DM. Metabomxtr: an R package for mixture-model analysis of non-
targeted metabolomics data. Bioinformatics 2014;30:3287–3288
12. Benjamini Y, Hochberg Y. On the adaptive control of the false discovery rate
in multiple testing with independent statistics. J Educ Behav Stat 2000;25:60–83

13. Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0—making me-
tabolimics more meaningful. Nucleic Acids Res 2015;43:W251–W257
14. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a
reference resource for gene and protein annotation. Nucleic Acids Res 2016;
44(D1):D457–D462
15. Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC. A global test
for groups of genes: testing association with a clinical outcome. Bioinformatics
2004;20:93–99
16. Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T. Identifying
functional modules in protein-protein interaction networks: an integrated exact
approach. Bioinformatics 2008;24:i223–i231
17. Reichardt J, Bornholdt S. Statistical mechanics of community detection.
Phys Rev E Stat Nonlin Soft Matter Phys 2006;74:016110
18. Csardi G, Nepusz T. The igraph software package for complex network
research [Internet]. InterJournal, Complex Systems 1695 2006. Available at
http://igraph.org. Accessed 27 October 2015
19. Breiman L. Random forests. Mach Learn 2001;45:5–32
20. Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A. Conditional variable
importance for random forests. BMC Bioinformatics 2008;9:307
21. Ferrannini E, Natali A, Camastra S, et al. Early metabolic markers of the
development of dysglycemia and type 2 diabetes and their physiological signif-
icance. Diabetes 2013;62:1730–1737
22. Freinkel N, Metzger BE, Nitzan M, Daniel R, Surmaczynska B, Nagel T.
Facilitated anabolism in late pregnancy: some novel maternal compensations for
accelerated starvation. In Diabetes: Proceedings of the Eighth Congress of the
International Diabetes Federation, Brussels, Belgium, 1973. Amsterdam, The
Netherlands, Excerpta Medica International Congress Series, p. 474–488
23. Hadden DR, McLaughlin C. Normal and abnormal maternal metabolism
during pregnancy. Semin Fetal Neonatal Med 2009;14:66–71
24. Butte NF. Carbohydrate and lipid metabolism in pregnancy: normal com-
pared with gestational diabetes mellitus. Am J Clin Nutr 2000;71(Suppl.):1256S–
1261S
25. Huynh J, Xiong G, Bentley-Lewis R. A systematic review of metabolite
profiling in gestational diabetes mellitus. Diabetologia 2014;57:2453–2464
26. Ho JE, Larson MG, Vasan RS, et al. Metabolite profiles during oral glucose
challenge. Diabetes 2013;62:2689–2698
27. Geidenstam N, Spégel P, Mulder H, Filipsson K, Ridderstråle M, Danielsson
AP. Metabolite profile deviations in an oral glucose tolerance test-a comparison
between lean and obese individuals. Obesity (Silver Spring) 2014;22:2388–2395
28. Spegel P, Danielsson AP, Bacos K, et al. Metabolomic analysis of a human
oral glucose tolerance test reveals fatty acids as reliable indicators of regulated
metabolism. Metabolomics 2010;6:56–66
29. Bentley-Lewis R, Xiong G, Lee H, Yang A, Huynh J, Kim C. Metabolomic
analysis reveals amino acid responses to an oral glucose tolerance test in women
with prior history of gestational diabetes mellitus. J Clin Transl Endocrinol 2014;
1:38–43
30. Krug S, Kastenmüller G, Stückler F, et al. The dynamic range of the human
metabolome revealed by challenges. FASEB J 2012;26:2607–2619
31. Zhao X, Peter A, Fritsche J, et al. Changes of the plasma metabolome
during an oral glucose tolerance test: is there more than glucose to look at? Am J
Physiol Endocrinol Metab 2009;296:E384–E393
32. Shaham O, Wei R, Wang TJ, et al. Metabolic profiling of the human re-
sponse to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst
Biol 2008;4:214
33. Buchanan TA, Xiang AH. Gestational diabetes mellitus. J Clin Invest 2005;
115:485–491
34. Chen X, Scholl TO, Leskiw M, Savaille J, Stein TP. Differences in maternal
circulating fatty acid composition and dietary fat intake in women with gestational
diabetes mellitus or mild gestational hyperglycemia. Diabetes Care 2010;33:
2049–2054
35. Prentice KJ, Luu L, Allister EM, et al. The furan fatty acid metabolite CMPF is
elevated in diabetes and induces b cell dysfunction. Cell Metab 2014;19:653–666

diabetes.diabetesjournals.org Scholtens and Associates 2049



36. Dudzik D, Zorawski M, Skotnicki M, et al. Metabolic fingerprint of gesta-
tional diabetes mellitus. J Proteomics 2014;103:57–71
37. Enquobahrie DA, Denis M, Tadesse MG, Gelaye B, Ressom HW, Williams
MA. Maternal early pregnancy serum metabolites and risk of gestational diabetes
mellitus. J Clin Endocrinol Metab 2015;100:4348–4356
38. Kulkarni SR, Kumaran K, Rao SR, et al. Maternal lipids are as important as
glucose for fetal growth: findings from the Pune Maternal Nutrition Study. Di-
abetes Care 2013;36:2706–2713
39. Schaefer-Graf UM, Graf K, Kulbacka I, et al. Maternal lipids as strong
determinants of fetal environment and growth in pregnancies with gestational
diabetes mellitus. Diabetes Care 2008;31:1858–1863
40. Di Cianni G, Miccoli R, Volpe L, et al. Maternal triglyceride levels and
newborn weight in pregnant women with normal glucose tolerance. Diabet Med
2005;22:21–25
41. Kushtagi P, Arvapally S. Maternal mid-pregnancy serum triglyceride levels
and neonatal birth weight. Int J Gynaecol Obstet 2009;106:258–259
42. Knopp RH, Magee MS, Walden CE, Bonet B, Benedetti TJ. Prediction of
infant birth weight by GDM screening tests. Importance of plasma triglyceride.
Diabetes Care 1992;15:1605–1613
43. Kalhan SC. Protein metabolism in pregnancy. Am J Clin Nutr 2000;
71(Suppl.):1249S–1255S

44. Schaefer-Graf UM, Meitzner K, Ortega-Senovilla H, et al. Differences in the
implications of maternal lipids on fetal metabolism and growth between gestational
diabetes mellitus and control pregnancies. Diabet Med 2011;28:1053–1059
45. Cetin I, de Santis MS, Taricco E, et al. Maternal and fetal amino acid
concentrations in normal pregnancies and in pregnancies with gestational di-
abetes mellitus. Am J Obstet Gynecol 2005;192:610–617
46. McClain PE, Metcoff J, Crosby WM, Costiloe JP. Relationship of maternal
amino acid profiles at 25 weeks of gestation to fetal growth. Am J Clin Nutr 1978;
31:401–407
47. Kalkhoff RK, Kandaraki E, Morrow PG, Mitchell TH, Kelber S, Borkowf HI.
Relationship between neonatal birth weight and maternal plasma amino acid
profiles in lean and obese nondiabetic women and in type I diabetic pregnant
women. Metabolism 1988;37:234–239
48. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res
2010;107:1058–1070
49. Park S, Park JY, Lee JH, Kim SH. Plasma levels of lysine, tyrosine, and
valine during pregnancy are independent risk factors of insulin resistance and
gestational diabetes. Metab Syndr Relat Disord 2015;13:64–70
50. Butte NF, Hsu HW, Thotathuchery M, Wong WW, Khoury J, Reeds P. Protein
metabolism in insulin-treated gestational diabetes. Diabetes Care 1999;22:806–
811

2050 Maternal Glucose, Metabolomics, and Newborn Size Diabetes Volume 65, July 2016


