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Using sequence data to infer population dynamics is playing an increasing role in the analysis of
outbreaks. The most common methods in use, based on coalescent inference, have been widely
used but not extensively tested against simulated epidemics. Here, we use simulated data to
test the ability of both parametric and non-parametric methods for inference of effective popu-
lation size (coded in the popular BEAST package) to reconstruct epidemic dynamics. We
consider a range of simulations centred on scenarios considered plausible for pandemic influ-
enza, but our conclusions are generic for any exponentially growing epidemic. We highlight
systematic biases in non-parametric effective population size estimation. The most prominent
such bias leads to the false inference of slowing of epidemic spread in the recent past even when
the real epidemic is growing exponentially. We suggest some sampling strategies that could
reduce (but not eliminate) some of the biases. Parametric methods can correct for these
biases if the infected population size is large. We also explore how some poor sampling strat-
egies (e.g. that over-represent epidemiologically linked clusters of cases) could dramatically
exacerbate bias in an uncontrolled manner. Finally, we present a simple diagnostic indicator,
based on coalescent density and which can easily be applied to reconstructed phylogenies, that
identifies time-periods for which effective population size estimates are less likely to be biased.
We illustrate this with an application to the 2009 H1N1 pandemic.
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1. INTRODUCTION

With the growth of faster and more reliable sequencing
technologies (and consequently the availability of gen-
etic data), there have been a number of statistical and
computational innovations to analyse this proliferation
of sequence data. One successful application has been
the analysis of epidemic trends using the so-called phy-
lodynamic methods that use pathogen sequences to
infer pathogen diversity, and the changing number of
infected individuals as well as more subtle effects on
pathogen selection and population structure [1,2]. For
a recent review of methods used in such analyses, see
Ho & Shapiro [3] and references therein.

These methods typically use coalescent approaches
[4]. The coalescent is a framework that predicts distri-
butional aspects of branch lengths in temporal
phylogenetic trees in terms of a demographic parameter
called the effective population size. A temporal tree is
one where emergence times for internal nodes are esti-
mated (assuming tips have known isolation dates). If
the mutation rate is known (or can be estimated),
then a temporal scale can be superposed on to the phy-
logenetic tree. As one goes back in time through the
tree, lineages coalesce at points called coalescent
orrespondence (c.fraser@imperial.ac.uk).
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events and there comes a time when all the lineages
coalesce into a single lineage: this is the most recent
common ancestor and the time to it from the present
is known as the time to the most recent common ances-
tor (TMRCA). If the evolving organisms are not under
strong selection during the time up to their TMRCA
and there is no population structure, then the effective
population size is expected to be approximately equal to
the actual population size (in practice, it is almost
always less than the actual population size).

More specifically, coalescent analysis starts from the
straightforward observation that for the Wright–Fisher
model, the probability that two randomly selected indi-
viduals from one generation share a parent is equal to
1/N, where N is the population size. Taking the defi-
nition of the effective population size, Ne, to be the
size of a Wright–Fisher model population that would
give an observed level of diversity, we can then observe
for an arbitrary panmictic population, the probability
that two lineages in one generation have a common
ancestor lineage in the previous generation is equal to
1/Ne. Applying this observation to a phylogenetic
tree, which encodes the ancestral probability distri-
bution of all coalescent event times in the population,
provides estimates of the changing effective popula-
tion size throughout the history of the population up
to the TMRCA.

The classical skyline plot [5] (see also the electronic sup-
plementary material) allows a non-parametric estimation
This journal is q 2012 The Royal Society
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Figure 1. Bayesian skyline plot (BSP) for H1N1 (2009) for
United States sequences collected between 20 April 2009 and
24 May 2009 (downloaded from GenBank NCBI on 10 Septem-
ber 2010). Owing to large variation in the numbers of viral
samples sequenced over time, we sampled 22 sequences each
week over this five week period (no attempt was made to
account for possible clusters), giving 110 in total (for accession
numbers, see the electronic supplementary material). Solid line
shows median Ne estimates; dashed lines show the 95% credible
intervals (CI). The BSP shows an increase in Ne throughout
April followed by a slowdown towards the end of April. The
TMRCA is 85 (CI: 48–161) days (i.e. 28 February 2009; CI:
6 April 2009–14 December 2008) and the substitution rate is
estimated to be 1.97 � 10-5 (CI: 7.78 � 1026 to 3.23 � 1025)
sub per site per day.
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of the past effective population size to be made. The gener-
alized skyline plot [6] reduces the noise and stochasticity
found in classical skyline plots by grouping coalescent
events over which changes in effective population size are
estimated. Each interval will therefore have a number of
coalescent events as well as sampling events (points in
time at which sequences are collected).

Bayesian evolutionary analysis by sampling trees
(BEAST) is a popular software package that integrates
many phylogenetic and coalescent-based tools [7]. It
can be used to estimate phylogenetic trees and apply
the coalescent model to infer demographic changes
from sequence data. A Bayesian approach is used:
given the data (aligned sequences), a specified model
structure (coalescent, substitution model, rate hetero-
geneity model) and specified prior distributions of
parameters, the posterior distribution of trees and par-
ameters is estimated. BEAST uses an efficient Markov
chain Monte Carlo (MCMC) algorithm to sample the
posterior distribution of phylogenetic trees and par-
ameters. As a result of this approach, the time-varying
effective population size estimated by the coalescent is
averaged over many phylogenetic trees. If a non-para-
metric estimate based on the generalized skyline plot is
implemented, then the resulting estimate is called the
Bayesian skyline plot (BSP). Both piecewise constant
and piecewise linear skyline models can be implemented,
the latter appropriate if one knows a priori that the
inferred population is growing. It is also possible to
specify specific parametric models for the effective popu-
lation size, such as exponential growth, which may be
appropriate when analysing an emerging epidemic. We
will explore both approaches here.

During the recent pandemic of H1N1 influenza in
2009, such techniques were used fruitfully in the early
phase of the epidemic to estimate the rate of spread
and the likely date of first emergence of this virus in
the human population [8,9]. In common with all RNA
viruses, H1N1 influenza has a high mutation rate and
short generation time such that genetic changes
encode epidemiological information. The combination
of these properties allow use of both sequence data
and temporal information obtained early on in the pan-
demic to compute infection dynamics while the
pandemic is still progressing.

As an example, figure 1 shows a retrospective BSP
generated using BEAST (for temporal frequency, see
the electronic supplementary material, figure S1) of
the effective population size of 2009 H1N1 derived
from the 110 publically available complete haemag-
glutinin (HA) viral sequences (excluding duplicates)
listed in the NCBI influenza virus resource [10] as
arising from specimens collected in the USA over
the period 7 April 2009 to 24 May 2009. This analysis
covers a seven week period at the start of the pan-
demic, and thus extends the initial analyses
presented in Fraser et al. [8]. Figure 1 shows a slow-
down in the growth rate of the effective population
size around late April/early May. If this reflects slow-
ing growth in the number of infected individuals, then
this would be of epidemiological interest—perhaps
suggesting some impact of public health measures
enacted in the USA at that time.
J. R. Soc. Interface (2012)
Indeed, this flattening in the latter portion of the
growth curve of the effective population size is visible
in BSPs looking at HIV [11–13], dengue [14] and hepa-
titis C [15], and is often interpreted as being evidence
for a slowing of spread. However, the implication that
H1N1 transmission may have temporarily been reduced
around late April 2009 should be treated with caution.
Samples obtained in the USA during spring 2009 will
be beset with sampling biases: spatially (more samples
from some areas than others, given that US states
varied in the level of testing undertaken), temporally
(more intensive testing was often undertaken for the
first few weeks of cases in a locality, and less thereafter,
and there were national changes in testing protocols)
and epidemiologically linked (samples taken from
individuals in the same local outbreak, and which there-
fore are not random independent samples from the H1N1
infected population overall). In some analyses, a few of
these biases were controlled for by removing sequences
collected from patients in known local epidemiological
clusters [8] but in general it is not clear the extent to
which such biases in sampling affect estimates.

To further understand the impact of these biases,
and more generally to validate methods for imputing
epidemic growth rates from sequence data, we simu-
lated epidemics broadly similar to the H1N1
pandemic, subjected simulated datasets to many of
the same biases as real data, and applied coalescent-
based approaches to estimate the effective population
size over time.

Recently, Stack et al. [16] have performed a similar
exercise for seasonally fluctuating influenza epidemics,
and showed how different sampling protocols can influ-
ence inferred transmission dynamics in BSPs. In the
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case of seasonal epidemics, they point out the importance
of temporal sampling, especially where populations
undergo bottlenecks and the number of lineages are
substantially reduced from one season to the next. BSPs
inferred from samples taken after a bottleneck are
unable to recover transmission dynamics prior to the
bottleneck. Their analysis indicates that single-generation
sampling or sampling randomly about a target generation
as the epidemic begins to slow down is the most effective
strategy. Also of interest is their observation that joining
together successive BSPs inferred over shorter time-
scales was more representative of changes in population
size than a single BSP over a longer time period, which
they suggest may be owing to poorly specified prior prob-
abilities in BEAST. Certainly for longer-term population
dynamics strongly influenced by selection from the
immune system or vaccination, the use of coalescent
methods becomes questionable.

For the work presented here, we adopted a branching
process model to simulate the early stages of an epidemic.
The model is parametrized by the basic reproduction
number, R, which determines the rate of (exponential)
growth of the epidemic, a dispersion parameter, k,
which quantifies heterogeneity in infectiousness between
individuals, and the generation time. We incorporate a
realistic mutational model so that starting from a
sequence of one of the early isolates, we simulate
sequences collected over a specified number of generations
of spread in the epidemic. We then compare these to
assess how well coalescent methods are able to reliably
estimate the true dynamics of the simulated epidemic.
2. MATERIAL AND METHODS

2.1. Simulation model

The model is seeded with a starting sequence of arbitrary
length—in this case, the full-length HA gene of one of the
first US H1N1 influenza virus isolates A/California/04/
09. The seed sequence is generation 0 at time t ¼ 0 and its
offspring comprise generation 1 and time, t ¼ Tg and
their offspring generation 2 and time t ¼ 2Tg and so
on, where Tg is the generation time. Rambaut et al.
[17] find the HA gene to have mean rate of evolutionary
change to be 5.72e23 nucleotide substitutions (sub) per
site per year (the highest of all the proteins, unsurpris-
ingly, given its function in avoiding the immune
system). This equals 1.57e25 sub per site per day,
which for a generation time of 2.6 days is 4.1e25 sub
per site per generation. In our simulation, we choose a
mutation rate of 1.83e24 sub per site per generation,
faster than the estimate of Rambaut et al., as the substi-
tution rate for many pathogens is expected to be faster at
short time scales owing to the long-term effects of purify-
ing selection [18]. Our findings were not very sensitive to
the mutation rate (analysis not shown).

Generations of the simulated epidemic are discrete.
In each generation, the number of offspring generated
by each sequence of the current generation is evaluated
by sampling a negative binomial distribution with mean
R (which can potentially change over time) and dis-
persion parameter k (which is held fixed over time).
Each nucleotide of each sequence of the next generation
J. R. Soc. Interface (2012)
is either inherited directly from its ancestor or mutates
from its parent with some probability. If a nucleotide
does mutate, which type of substitution occurs is
drawn from a substitution matrix derived from the
Kimura two-parameter model.

To keep our simulation simple, we did not consider
epidemics evolving in continuous time. However, we
did find that our findings were robust to halving the
generation time and taking the square root of the repro-
duction number (analysis not shown), and as a result
we hypothesise that simulations carried out in
real-time would lead to very similar results.

We discuss the assumptions made in this algorithm
below.
2.2. The offspring distribution

Following on from Lloyd-Smith et al. [19] and Grassly &
Fraser [20], we introduce the individual reproductive
number, n, which is the expected number of secondary
cases caused by a specific infected individual. If n is
gamma-distributed having a mean R and dispersion par-
ameter k, then the number of secondary infections
caused by each infected individual is Poisson distributed
with mean n, and thus overall the number of secondary
infections generated by a single infection is given by a
negative binomial offspring distribution. The prob-
ability p(m) of obtaining m from a negative binomial
distribution with parameters p and k is given by:

pðmÞ ¼ Gðk þmÞ
GðkÞGðm þ 1Þ p

mð1� pÞk ;

where p ¼ R
Rþ k

:

In general, lower values of k correspond to more
heterogeneity in infectiousness, and thus epidemics are
increasingly characterized by superspreaders. For k ¼ 1,
the distribution is geometric, while it becomes Poisson
as k!1. We assume that the number of offspring
each sequence generates is independent of and distribu-
ted identically to the offspring generated by any other
sequence. Implicitly this is equivalent to assuming
random (although not homogeneous) mixing and an
effectively infinite susceptible population. For many
parameter combinations (especially low k and/or low
R), there is a high probability of early extinction of a
simulated outbreak. Because we are interested in
emerging epidemics, not self-limited outbreaks, we
select our simulated datasets from outbreaks which do
not go extinct.
2.3. The substitution model

While the branching process model assumes a fixed gen-
eration time, Tg of 2.6 days [21], in calculating nucleotide
substitutions, we use a more realistic generation time
distribution with gamma form [20,22]:

wðtÞ ¼ bðbtÞa�1e�bt

G ðaÞ :

Here, a is the shape parameter, b the inverse scale
parameter. We assume a mean generation time of 2.6
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days and standard deviation 1.3 days [21], giving a ¼ 4
and b ¼ 1.

For simplicity, we assume a Kimura two-parameter
substitution model [23] with transition mutation rate
parameter a ¼ 0.4 and transversion mutation rate par-
ameter b ¼ 0.2 [24]. The nucleotide transition
probability matrix over time interval, t is:

PðtÞ ¼

p0ðtÞ p1ðtÞ p2ðtÞ p2ðtÞ
p1ðtÞ p0ðtÞ p2ðtÞ p2ðtÞ
p2ðtÞ p2ðtÞ p0ðtÞ p1ðtÞ
p2ðtÞ p2ðtÞ p1ðtÞ p0ðtÞ

2
664

3
775;

where

p0ðtÞ ¼
1
4
þ 1

4
e�4bt þ 1

2
e�2ðaþbÞt ;

p1ðtÞ ¼
1
4
þ 1

4
e�4bt � 1

2
e�2ðaþbÞt

and p2ðtÞ ¼
1
4
þ 1

4
e�4bt :

We wish to average this transition matrix over the
generation time distribution. The resulting matrix has
the Kimura form with elements defined by:

Pi ¼
ð1

0
wðzÞpiðzÞ dz;

namely

P0 ¼
1
4
þ 1

4
b

bþ 4b

� �a

þ 1
2

b

bþ 2ða þ bÞ

� �a

;

P1 ¼
1
4
þ 1

4
b

bþ 4b

� �a

� 1
2

b

bþ 2ða þ bÞ

� �a

and P2 ¼
1
4
� 1

4
b

bþ 4b

� �a

:

2.4. Sampling strategies

In order to assess how inferred BSPs are affected by the
way in which viral sequences are collected from infected
individuals, we examine two sampling schemes: uniform
and log-proportional. Under uniform sampling, we ran-
domly pick one sample per generation of simulated
sequences and use these selected sequences to infer pos-
teriors and BSPs. This would be analogous to choosing
to sequence a virus from a randomly selected infec-
ted person at regular temporal intervals, perhaps set
by laboratory capacity.

Under log-proportional sampling, we randomly
extract samples in proportion to the logarithm of the
number of samples available per generation. This is
closer to how viral samples are collected during an epi-
demic where more samples are collected if more
individuals are infected, but sampling proportional to
the actual number of cases is not possible for logistical
reasons.

We simulate viral spread under a reasonable range of
values for the R and k parameters. We examine R ¼ 1.5
(a typical estimate for the 2009 pandemic [8]) and in
addition the higher values of 2.0 and 2.5 which may
be more realistic for ‘typical’ previous influenza
J. R. Soc. Interface (2012)
pandemics [25]. Because the dispersion parameter k is
unknown, we consider a wide range, from extreme
superspreading (such as thought to apply to the
severe acute respiratory syndrome epidemic [19]) (k ¼
0.1) to more homogenous infectiousness (k ¼ 1 and 10).

A feature of virological surveillance during an epi-
demic is that some geographically localized outbreaks
can be heavily sampled, whereas others are sampled
much less, if at all. This results in groups of sequences
that are closely related (genetically) and thus no
longer constitute a random sample of all sequences. In
order to assess the effects of such non-random
sampling—or samples that are epidemiologically
linked (e.g. from the same family where family members
have infected one another)—we sample along the
branches of a single lineage. In this way, we sample
the first offspring of the first offspring of the first off-
spring generation after generation all the way along
the tree.
2.5. Bayesian evolutionary analysis by sampling
tree input and output

Real and simulated HA sequences were first aligned
using CLUSTALX [26] and the multiple alignments visu-
ally confirmed. The aligned sequences were then
imported into BEAST together with the dates each
sample was collected. Given the small temporal extent
over which samples were collected, we used a nucleotide
substitution model of Hasegawa et al. [27] (which sub-
sumes the two-parameter Kimura model used to
generate simulated data) to avoid over-parametrization.
Mutation rate heterogeneity among aligned sites was
described by a gamma distribution.

BEAST then uses the sequence alignment to con-
struct a Jukes–Cantor distance matrix from which a
starting unweighted pair-group method with arithmetic
mean tree is made. A relaxed clock molecular model
[28,29] where branch rates are drawn from an underlying
lognormal distribution is assumed. For two parameter
combinations, we verified that BEAST converged to
the same equilibrium distribution of parameters for a
range of randomly starting trees (analysis not shown).

The tuning parameters that control the speed and
efficiency with which the MCMC chain used to
sample tree space in BEAST equilibriates are automati-
cally optimized. Required MCMC chain lengths are
determined via evaluation of the effective sample sizes
(ESSs) for the parameters of interest, and depend
strongly on the number of sampled sequences. The
ESS is the number of effectively independent draws
from a marginal posterior distribution of a parameter
that a particular length of MCMC chain is equivalent
to. A low ESS for a given parameter implies high corre-
lation between MCMC samples and that the posterior
distribution will be poor. The software package
‘TRACER’ (http://tree.bio.ed.ac.uk/software/tracer/) is
used to check ESSs and examine the trace for any
trends that may indicate lack of convergence, or any
long-range fluctuations indicative of poor mixing.

Each BEASTrun is repeated at least twice so as to inde-
pendently confirm convergence. The package TRACER is
also used to plot the BSP and lineages-through-time

http://tree.bio.ed.ac.uk/software/tracer/
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Figure 2. Bayesian skyline plots (BSPs) produced by sampling simulated data sparsely. Red curves show median Ne estimates
when just one sequence is randomly sampled per generation, and blue curves show the corresponding estimates for a more
dense sampling (number of sequences sampled per generation proportional to the log of the number of sequences in that gener-
ation—see text for details). Dashed lines show 95% credible intervals (CI). Results for nine parameter combinations for the
underlying branching process model used to generate the data are shown (R ¼ 1.5, 2, 2.5 and k ¼ 0.1, 1, 10). Black lines show
the true number of infected individuals per generation from the simulated data. Black dashed lines are the instantaneous effective
population size found by correcting the simulated number of individuals infected, N.

Table 1. Details of simulations used to simulate the
epidemics in figure 2.

R k
total
generations

simulation
length (day)

sequences in
final generation

Pandemic growth rates from sequences E. de Silva et al. 1801
(LTT) plots. The package ‘FIGTREE’ (http://tree.bio.
ed.ac.uk/software/figtree/) is used to plot the maxi-
mum clade credibility (MCC) tree, defined as the tree
with the highest sum of posterior probabilities of the
internal nodes.
1.5 0.1 24 62.4 81 591
1.5 1 33 85.8 97 258
1.5 10 28 72.8 74 607
2 0.1 16 41.6 121 802
2 1 18 46.8 119 088
2 10 17 44.2 109 924
2.5 0.1 12 31.2 87 917
2.5 1 15 39 102 563
2.5 10 14 36.4 105 127
3. RESULTS

The simulation generates full-length HA sequences for
each infected individual. We simulate the first 100 000
infections of an epidemic, which for most simulations
corresponds to 40 or more days in chronological time.
For comparison, the empirical BSP in figure 1 covers
the 40 days between 7 April and 17 May 2009.

3.1. Sampling density

The black curve in figure 2 shows the number of
infected individuals, and thus the number of sequences
generated, under a range of reproduction numbers and
dispersion parameters. In all the plots, stochastic vari-
ation is visible during the early part of the epidemic.
As expected, the growth rates become progressively
higher for higher R-values. Additionally, the number
of extinction events (runs in which the simulated
J. R. Soc. Interface (2012)
population dies out in the first few generations owing
to no more offspring) is greatest for the low R, low k
parameter combinations (R ¼ 1.5, k ¼ 0.1). Table 1
summarizes details of these simulations and table 2
results from the Bayesian analysis.

The black dashed line in figure 2 is the effective
population size estimated directly from the simulated
number of infected individuals, using the known
relationship between census population size, effective

http://tree.bio.ed.ac.uk/software/figtree/
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Table 2. Details of sampling simulated epidemics and properties inferred from non-parametric Bayesian coalescent used to
produce BSPs in figure 2.

sampling scheme R k number of sampled sequences TMRCA (day) final Ne

uniform 1.5 0.1 25 62.7 (62.4, 63.2) 323 (40, 2851)
proportional 1.5 0.1 81 62.6 (62.4, 63.1) 2374 (457, 20 936)
uniform 1.5 1 34 86.5 (85.8, 87.4) 232 (40, 1805)
proportional 1.5 1 94 86.6 (85.8, 87.4) 2813 (553, 17 503)
uniform 1.5 10 29 73.4 (72.8, 74.6) 213 (39, 1829)
proportional 1.5 10 85 73.4 (72.8, 74.6) 2129 (425, 11 071)
uniform 2 0.1 17 41.8 (41.6, 42.2) 177 (22, 1441)
proportional 2 0.1 52 41.7 (41.6, 42.2) 508 (102, 2883)
uniform 2 1 19 47 (46.8, 47.5) 144 (22, 1315)
proportional 2 1 56 47 (46.8, 47.4) 1658 (324, 14 059)
uniform 2 10 18 44.6 (44.2, 45.4) 444 (49, 3632)
proportional 2 10 55 44.5 (44.2, 45.4) 1403 (292, 10 095)
uniform 2.5 0.1 13 31.7 (31.2, 32.5) 250 (22, 2074)
proportional 2.5 0.1 41 31.8 (31.2, 32.7) 562 (97, 4158)
uniform 2.5 1 16 39.1 (39, 39.4) 117 (15, 1094)
proportional 2.5 1 45 39.1 (39, 39.5) 494 (97, 2827)
uniform 2.5 10 15 36.5 (36.4, 36.9) 104 (14, 985)
proportional 2.5 10 43 36.6 (36.4, 36.9) 1464 (270, 9593)
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population size and variance of offspring distribution
[4,30,31]. Using the formula for the negative binomial
distribution given earlier, the ratio of effective popu-
lation size (Ne) to census population size (N) is
equivalent to the reciprocal of the variance (s2),
which can be written in terms of the reproduction rate
(R) and offspring distribution (k):

Ne

N
¼ 1

s2 ¼
k

R0ðR0 þ kÞ :

Figure 2 indicates that estimates of the effective popu-
lation size obtained using BEAST tend to be biased
upwards in the early phase of the epidemic, before
they tend to level off.

The red curves in figure 2 are BSPs generated via
uniform sampling. While these estimates effectively
capture epidemic dynamics over the earlier generations,
by the halfway point of the epidemic, growth in the
BSP curves begin to slow down significantly. The
final effective population size is thus significantly less
(this discrepancy being more pronounced for higher
R-values) than the actual size of the simulated infected
population, leading to a false inference of a slowing
epidemic.

Similarly, the blue curves graph the BSPs generated
from the same simulated sequences via log-proportional
sampling. These estimates were therefore generated
with many more sequences (typically around three
times more; table 2). The Ne estimates obtained under
this sampling scheme capture the exponential growth
of the epidemic better than those obtained from uni-
form sampling, but there is still a slowdown in
estimated growth rates during the latter stages of the
epidemic. The gains in accuracy achieved by denser
sampling are modest, and the bias of apparent flatten-
ing towards the present, visible in all simulations, is
only modestly reduced.
J. R. Soc. Interface (2012)
3.2. Coalescent events

Given that the estimated changes in effective population
size are inferred from the reconstructed phylogeny, it is
worth taking a look at the corresponding phylogenetic
tree. Consider figure 3c which shows the BSP inferred
from 34 randomly sampled sequences (one per gener-
ation) taken from a simulated viral population with
R ¼ 1.5 and k ¼ 1 using a piecewise-linear skyline
model. The black line shows the true number of infec-
tions (and simulated sequences) through time. As
shown in figure 2, the BSP gives growth rates that slow
at later times. Figure 3a shows the corresponding MCC
tree similarly scaled (with time increasing to the right)
to the BSP. The red circles highlight the coalescent
events in this tree. Going backwards in time a coalescent
event marks the merging of lineages and going forwards
in time it represents the creation of new lineages. The
generalized skyline plot—of which the BSP is an
example—groups coalescent events into time intervals
which are bound by either a coalescent event or a
sampling event and within which changes in effective
population size are estimated. These changes are a func-
tion of the number of lineages present and the MCC tree
clearly shows that the final (most recent) coalescent
event coincides with the flattening of the BSP. This is
clearly illustrated by looking at the LTT plot, which
counts the cumulative number of LTT (figure 3b). This
flattens where there are no longer any new lineages (i.e.
at the time of the last coalescent event), coincident
with the flattening of the BSP. The lack of genealogical
information at later times is also visible in the increased
size of the highest posterior density confidence intervals
in the BSP over this period.

This then provides an explanation for why the BSPs
flatten at later times: for an exponentially growing viral
population (as is the case early on in an epidemic and in
the simulated datasets we have been exploring) the phy-
logenetic tree is ‘star-like’. That is to say, it has long-
terminal branches as in the tree in figure 3. This
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Figure 3. (a) Maximum clade credibility (MCC) phylogenetic tree obtained from a Bayesian coalescent analysis of 34 randomly
sampled sequences (one per generation of the simulated epidemic), generated from a simulated population with R ¼ 1.5 and k ¼ 1.
Coalescent events are encircled in red (including the final coalescent event) and tip labels give the epidemic generation from which
the sequence was drawn. (b) Cumulative lineages through time (LTT) plot of same dataset with credibility intervals (CIs). (c) Corre-
sponding Bayesian skyline plot (BSP; blue lines) with 95% confidence intervals, and black line showing true number of infections over
time. (d) Cumulative LTT plot for the log-proportionally sampled R ¼ 1.5 and k ¼ 1 simulated dataset in figure 2 and (e) correspond-
ing BSP. ( f ) Cumulative LTT plot for regular and denser sampling of three (purple lines) and 10 (green lines) sequences per
generation; sampling random and from generations which have more than 100 sequences (figure 5b). (g) Corresponding BSP
(black line represents simulated sequences).
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means that the final coalescent event will occur quite
some time before the final sampling event (in figure
3a, there are 11 sampling events after the last coalescent
event: gen23–gen33). From this period onwards, there
are no new lineages (see LTT) and therefore no
change in the effective population size is imputed.
This issue (a form of left censoring in the ‘backwards
in time’ coalescent context) represents a limitation to
how far forwards in real-time the BSP can confidently
be used to estimate Ne. In light of this, we suggest
that the BSP could be truncated at the time of the
last coalescent event, rather than at the time of the
last sample collection event.

The sharpness of the transition in the flattening of
the LTT curve in figure 3b is striking and figure 3d
illustrates the effect of sampling density on the shape
of the LTT. Figure 3d,e are the LTT and BSP, respect-
ively, of the log-proportionally sampled R ¼ 1.5, k ¼ 1
simulated dataset in figure 2 using a piecewise-linear
skyline model. The greater sampling density still results
in a relatively sharp transition in the LTT, and the BSP
J. R. Soc. Interface (2012)
starts to flatten at the same time as the LTT slope flat-
tens and the period after which there are no new
lineages corresponding to little growth on the BSP.
Figure 3f,g shows the LTT and BSP that result from
randomly sampling respectively three and 10 sequences
per generation (for generations with more than 100
sequences—see later). As expected, increasing the
sampling density means the cumulative LTT slows
down at later times corresponding to the last coalescent
event and the time at which the BSP also slows down
and/or flattens.

The Bayesian skyline assumes that Ne is autocorre-
lated through time and so smooths the vector
representing the effective population size in each
grouped interval [32]. We also experimented with
varying the number of intervals (exploring group
sizes of 5, 10, 20 and 30) but found very little differ-
ence in the BSPs produced (results not shown).
While here we fixed the number of grouped intervals
a priori, other methods use the reversible jump
MCMC sampling [33].
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Finally, we comment on the issue of why the 95%
credibility intervals (CIs) do not overlap the actual or
effective samples sizes towards the end of the simu-
lation. Strictly, the skyline plot is an estimate of the
harmonic mean of the effective population size over an
inter-coalescent interval [5]. When the inter-coalescent
periods are large, as they are in the end of the simu-
lation, CIs on the estimate of the harmonic mean of
the effective population size need not overlap with the
actual value over the whole interval, and non-overlap
does not represent a technical problem with the
estimation.
3.3. Non-random sampling

Figure 4 shows the effects on the BSP of sampling
increasingly more epidemiologically linked sequences
from a simulated epidemic. Here, we simulate an epi-
demic with R ¼ 1.35 and k ¼ 1 over 36 generations,
with the resulting epidemic incidence curve shown in
black. The purple curve (0% randomly sampled) shows
the BSP inferred by sampling (one sequence per
generation) from just one lineage, that is one direct des-
cendent generation-to-generation. These closely related
samples then represent an epidemiologically linked clus-
ter and the resulting BSP is very poor at capturing the
changes in the effective population size. In comparison,
the green curve (100% randomly sampled) is the BSP
inferred by sampling the same simulated population
but this time completely randomly (once again one
sequence per generation). The intermediate curves rep-
resent intermediate degrees of randomly sampled
epidemiologically linked sequences. The final effective
J. R. Soc. Interface (2012)
population size is proportional to the percentage of
random sampling and only in the 100 per cent randomly
sampled BSP is there continued growth (although small)
beyond the last coalescent event (for corresponding LTT
plot, see the electronic supplementary material).
3.4. Parametric versus non-parametric
estimates of the growth rate

Because the problem we have described is that of censor-
ing, and because we are analysing exponentially growing
epidemics, we tested whether a parametric (exponential)
model improves estimates. We generated a large number
of simulated epidemics from three sets of branching pro-
cess parameters (R ¼ 1.15, k ¼ 10 for r ¼ 0.05; R ¼
1.35, k ¼ 1 for r ¼ 0.13; R ¼ 1.7, k ¼ 1 for r ¼ 0.2),
and then selected one representative simulation for
each set of parameters which gave a realized epidemic
growth rate r (measured using least-squares fit to log
incidence) which matched that expected analytically in
the infinite time (i.e. deterministic) limit. This selection
step aimed to limit the impact of demographic stochasti-
city on incidence curves at the start of the simulated
epidemic. The three resulting datasets had real-time
growth rates of r � 0.05, r � 0.13 and r � 0.2, respect-
ively. For each of these simulated datasets, sequences
were randomly sampled per generation log-proportion-
ally, and the BSPs were estimated from these
sequences. This random sampling was then repeated
four more times (on the same original simulated epi-
demics) so that five sampled sequence sets were
generated for each simulation (table 3; we are not inter-
ested here in exploring between-simulation variation).

We analysed these datasets with BEAST using the
same non-parametric model for the growth of Ne as ear-
lier, and then estimated the growth rate by fitting an
exponential curve to the portion of the BSP that
showed near exponential growth (truncating the curve
following the last coalescent event). The resulting
non-parametric estimates of the growth rates along
with CIs for the parametric estimates are shown in
table 3. The same samples were also analysed using
BEAST to estimate an exponential growth rate for a
parametric coalescent model with assumed exponen-
tially growing effective population size.

Figure 5a and table 3 show the resulting estimates of
growth rates against the true values for the growth rate
for each of the sampled sets. Even after correcting for
the artificial flattening of the BSP, the exponential
parametric model appears to be more accurate at esti-
mating growth rates. The larger spread in estimated
growth rates for higher simulated growth rate is prob-
ably a result of the larger truncation of BSPs owing
to earlier flattening of LTT corresponding plots, and
the corresponding loss of information on coalescence
in the phylogeny.

Significantly, repeating all of the above, but this time
only sampling sequences (still randomly and log-propor-
tionally) from generations in which there are more than
100 sequences (figure 5b) results in much improved
parametric and non-parametric estimates of growth
rate than when sampling all generations. This is
because a key assumption of the coalescent is broken



0
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275
0.300

0

0.
02

5

0.
05

0

0.
07

5

0.
10

0

0.
12

5

0.
15

0

0.
17

5

0.
20

0

0.
22

5

0.
25

0

0.
27

5

0.
30

0 0

0.
02

5

0.
05

0

0.
07

5

0.
10

0

0.
12

5

0.
15

0

0.
17

5

0.
20

0

0.
22

5

0.
25

0

0.
27

5

0.
30

0

es
tim

at
ed

 g
ro

w
th

 r
at

e

simulated growth rate simulated growth rate

(a) (b)
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Table 3. Simulated and corresponding Bayesian coalescent non-parametric and exponential inferred growth rates for log
proportional sampling per generation and log-proportional sampling of generations with more than 100 sequences per
generation (delayed sampling).

simulated
growth rate

non-parametric
Bayesian MCMC
estimated growth rate

exponential coalescent
estimated growth rate

delayed sampling: non-
parametric Bayesian MCMC
estimated growth rate

delayed sampling: exponential
coalescent estimated growth rate

0.053 0.056 0.056 (0.048, 0.064) 0.051 0.054 (0.042, 0.065)
0.053 0.05 0.055 (0.046, 0.063) 0.046 0.048 (0.037, 0.059)
0.053 0.049 0.048 (0.04, 0.057) 0.046 0.046 (0.036, 0.059)
0.053 0.054 0.053 (0.044, 0.062) 0.052 0.052 (0.041, 0.064)
0.053 0.057 0.053 (0.048, 0.061) 0.052 0.05 (0.039, 0.061)
0.127 0.137 0.124 (0.106, 0.143) 0.13 0.118 (0.095, 0.141)
0.127 0.137 0.13 (0.112, 0.149) 0.127 0.121 (0.097, 0.145)
0.127 0.152 0.139 (0.119, 0.159) 0.137 0.126 (0.102, 0.15)
0.127 0.157 0.137 (0.117, 0.156) 0.132 0.126 (0.101, 0.15)
0.127 0.135 0.123 (0.105, 0.141) 0.128 0.117 (0.094, 0.139)
0.225 0.255 0.243 (0.194, 0.294) 0.228 0.22 (0.169, 0.277)
0.225 0.257 0.236 (0.186, 0.289) 0.225 0.209 (0.157, 0.262)
0.225 0.234 0.216 (0.169, 0.264) 0.204 0.226(0.149, 0.251)
0.225 0.273 0.23 (0.186, 0.281) 0.232 0.214 (0.162, 0.266)
0.225 0.269 0.268 (0.214, 0.324) 0.224 0.21 (0.154, 0.261)
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when the number of infected individuals is small. King-
man’s formulation of the coalescent assumes a
maximum of one coalescent event in the sample per
generation, meaning that the sample has to be a small
proportion of the total population. During the early
generations, a small number of infected individuals (or
sequences in the population) are simulated. Here, the
population is small, and therefore the sampling density
high, explaining the poorer estimates in figure 5a.
3.5. Application to real H1N1 data

Now that we have some understanding of why the BSPs
produced from sampling simulated data show a slow-
down in effective population size for exponentially
J. R. Soc. Interface (2012)
growing epidemics, we return to the case of the real
H1N1 epidemic. The MCC phylogenetic tree and LTT
plot can be examined to see whether the slowdown in
the effective population size seen in figure 1 is likely to
be an artefact of inference method (as seen in our analy-
sis of simulated data), or instead reflects a real slowing of
the epidemic. The dates on the LTT and BSP shown in
figure 6 are aligned and the pink-shaded region rep-
resents the time over which the BSP estimates of Ne

stops increasing to the point where there are no new
lineages in the LTT. There are many coalescent events
over this period in the MCC tree in agreement with
the cumulative LTT, which increases over this period.
This, therefore, validates the changes seen in the BSP
in figure 1, and suggests that there may well have been
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Figure 6. United States HA H1N1 data from April and May 2009 as detailed in figure 1. (a) The maximum clade credibility
(MCC) tree for the 110 sequences sampled. (b) Lineages-through-time (LTT) plot from BEAST. (c) Bayesian skyline plot
(BSP) plot, identical to figure 1 but shown here for comparison. The pink region on all plots shows the period between the
end of growth in Ne estimated from the BSP and the point at which no new lineages are added to the LTT.
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a slowing in epidemic spread in late April and early May
2009, during the period when public concern about the
new virus was most pronounced. Of course, other
biases in the sampling that could confound the analysis,
as described earlier, cannot be ruled out.
4. DISCUSSION

While sampling density and the sampling of epidemio-
logically linked sequences both bias estimates of
changes in effective population size, use of the Bayesian
coalescent methodology results in a more notable bias
in non-parametric estimates of changes in population
size associated with the fact that for an exponentially
growing genealogy, the density of coalescent events
thins some considerable time before the latest sequence
collection date.

Our results offer some support for the hypothesis
that the inferred slowing of growth in the effective
population size of H1N1 seen in the USA during late
April/early May 2009 revealed by the BSP shown in
figure 1 is not an artefact. However, given the very
real impact sampling epidemiologically linked sequences
has on inferred growth rates (as highlighted in our
J. R. Soc. Interface (2012)
non-random sampling of simulated sequences), increas-
ing epidemiological linkage in samples being collected
cannot be ruled out as a contributory cause of the
inferred slowing of epidemic growth. Future use of
these methods would therefore be considerably aided
by more detailed contextual epidemiological data on
individuals from whom virological samples are collected
and sequenced.

As with any Bayesian analysis where there are par-
ameters having little or no prior information, there
exists the possibility that the posterior estimate is
being unintentionally biased by the chosen priors. How-
ever, we have explored the use of different priors (as well
as other MCMC proposals within BEAST) and find
that all the main results reported here are robust to
such sensitivity analysis. We also note that the recently
developed Bayesian ‘skyride’ [29] method places less
emphasis on priors using Gaussian Markov random
fields to smooth the effective population size over time.

The branching process model that we used to simu-
late epidemic data is deliberately simple, and lacks a
number of important evolutionary and epidemiological
features—notably population structure and selection.
However, early in a pandemic when there is exponential
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growth of incidence (i.e. when numbers of infected are a
very small proportion of total population size), we
would not expect selection to play a major role. In
addition, molecular analysis of the substitutions seen
in the H1N1 virus in the first weeks of the epidemic
give little support to the hypothesis that there were sig-
nificant phenotypic changes that may have affected
fitness. This is our major justification for assuming neu-
trality in the work presented here– –but it should be
noted that such an assumption would be expected to
have more dubious validity later in a pandemic, when
immunity, vaccine and antiviral use influence viral evol-
ution. Of course, the presence of selection would also
limit the applicability of coalescent methods to infer
population dynamics.

Population structure would also not be expected to
have a major impact very early in an epidemic, even in
earliest affected communities, incidence by the end of
May would not have been expected to have grown to
the extent that epidemic growth rates would have
slowed in some geographical areas but not others. Micro-
structure (e.g. households and local contact networks) is
crudely represented in our model by allowing for highly
over-dispersed offspring distributions.

Strictly, the ordinate axis of BSPs produced by
BEAST is a compound value of Ne. t, where t is the aver-
age generation time. In reality, the generation time varies
from one infection to the next and so it is not straightfor-
ward to precisely evaluate Ne at a given time (some refer
to this compound value as the genetic diversity); this is
not the case for the simulations in this study where the
generation time was fixed to t ¼ 2.6 days (and we use
this value to show Ne in all plots). The interpretation
of the absolute value of the estimated effective popu-
lation size, Ne, and what relationship this quantity has
with the actual number of individuals infected is not
obvious. While the effective population size is signifi-
cantly less than the number of individuals infected
towards the end of the simulation (this is not the case
early on), this number increases with sampling density.
In most studies, Ne is assumed to be the ideal
(Wright–Fisher) population size that gives the same
coalescent rate seen in the imputed phylogeny. That Ne

is invariably less than the true population size is often
attributed to population structure or other heterogen-
eity, such as in infectiousness. In addition, in this
study, we quote the median posterior Ne estimates,
which tend to be significantly smaller than the mean.
Recent studies [34] conclude that the coalescence rate
is a function of the prevalence, through sampling effects,
as well as the incidence, although for a short generation
time disease such as influenza, the difference between
these is limited (effectively just a factor of the mean gen-
eration time). This study has focused more on the
relative rate of change of Ne estimates than the meaning
of the absolute values of such estimates, however.

Owing to the way in which BSPs are computed, a
slowing or even flattening off at later times will often
be present and can easily be misinterpreted as evidence
for a slowing of epidemic spread. While this may not be
a problem for computing the demographic history of
many populations, it will be most significant when
applied in real-time to an epidemic when the infected
J. R. Soc. Interface (2012)
host population is increasing exponentially. If one
knows a priori that the number infected is growing
exponentially, then coalescent estimation can be
improved by a parametric exponential model (as for
analysing H1N1 influenza in Fraser et al. [8]) or even
by using a more detailed epidemic model [35]. Another
interesting approach that has recently been proposed is
to replace Kingman’s coalescent by a birth–death
model, which perhaps better describes the process of
infectious disease transmission [36]. This method
would probably have the same advantage in accuracy
as the exponential growth model, and may also avoid
the problems observed when the infectious population
is small (or more precisely when the proportion sampled
is not small). This method should be included in future
simulations.

When using the more flexible and non-parametric
BSP approach, the times of coalescent events in the cor-
responding phylogenetic tree need to be examined
(especially the time of the most recent coalescent
event). Alternatively, the LTT graph should be
inspected to estimate the time after which there are
no new lineages. We suggest that any changes evident
in the BSP from this time period onwards should be dis-
regarded. This applies most strongly during the
exponential growth phase of disease spread when the
imprint of such growth will be reflected in long-
branch lengths at later time periods in the phylogeny.
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