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Abstract

Microbial cell factories are the workhorses of industrial biotechnology and improving

their performances can significantly optimize industrial bioprocesses. Microbial strain

engineering is often employed for increasing the competitiveness of bio‐based product

synthesis over more classical petroleum‐based synthesis. Recently, efforts for strain

optimization have been standardized within the iterative concept of “design‐build‐test‐
learn” (DBTL). This approach has been successfully employed for the improvement of

traditional cell factories like Escherichia coli and Saccharomyces cerevisiae. Within the

past decade, several new‐to‐industry microorganisms have been investigated as novel

cell factories, including the versatile α‐proteobacterium Rhodobacter sphaeroides.

Despite its history as a laboratory strain for fundamental studies, there is a growing

interest in this bacterium for its ability to synthesize relevant compounds for the

bioeconomy, such as isoprenoids, poly‐β‐hydroxybutyrate, and hydrogen. In this study,

we reflect on the reasons for establishing R. sphaeroides as a cell factory from the

perspective of the DBTL concept. Moreover, we discuss current and future opportu-

nities for extending the use of this microorganism for the bio‐based economy. We

believe that applying the DBTL pipeline for R. sphaeroides will further strengthen its

relevance as a microbial cell factory. Moreover, the proposed use of strain engineering

via the DBTL approach may be extended to other microorganisms that have not been

critically investigated yet for industrial applications.
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1 | INTRODUCTION

Bioeconomy aims to reform economic systems via sustainable use of

renewable resources (Aguilar et al., 2019). Implementation of such

an economy requires the transition from fossil‐based to bio‐based

products (Bugge et al., 2016; Carlson, 2007). These compounds can

be allocated within diverse market sectors, which differ in their

scopes, volumes, and prices (Figure 1a). Their production can be

obtained through biotechnological processes (Lopes, 2015). In in-

dustrial biotechnology, large improvements have been obtained by
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the optimization of microbial cell factories (S. Y. Lee et al., 2012; Park

et al., 2018; Xu, Ban, et al., 2013). Historically, the bacterium

Escherichia coli and the yeast Saccharomyces cerevisiae were the first

organisms used as platforms for industrial bioproduction (Adams,

2016; Chen et al., 2013; Hong & Nielsen, 2012; Xu, Gu, et al., 2013).

Efforts for improving cell factories have been standardized

within the “design‐build‐test‐learn” (DBTL) concept (Nielsen &

Keasling, 2016). The four DBTL modules are highly interdependent

(Figure 1b), and each of them has a specific goal. In the “design”

phase, the modification to implement is rationally planned. Then, in

the “build” phase, the output from the previous step is translated into

DNA host's manipulation. Subsequently, within the “test” phase, in-

tegrative approaches are used for assessing the effects of such

modification on the cellular phenotype. Finally, in the “learn” phase,

the generated experimental data are compared with the available

literature. Then, two scenarios are possible. In the first one, the

engineered strain reaches the expected levels of titers, rates, and

yields (TRY) for the target product, therefore concluding the strain

improvement process. In the second one, the TRY values generated

are still below the expected threshold. In this case, the data obtained

can be implemented for a new “design” step of a novel DBTL round.

Usually, iterative DBTL cycles successfully concur with the im-

provement of TRY values for a compound of interest (Nielsen &

Keasling, 2016).

Within this decade, the booming of genome editing technol-

ogies allowed to investigate nontraditional microorganisms as

novel platforms for bioprocesses (Calero & Nikel, 2019; Moses

et al., 2017). Microbial candidates are generally selected due to

favorable phenotypic properties for a proposed bioprocess. In this

regard, the α‐proteobacterium Rhodobacter sphaeroides is an

example of a nontraditional platform with high potential for in-

dustrial applications due to its metabolic versatility. Hitherto, the

genetic toolkit for improving R. sphaeroides is limited compared

with traditional industrial platforms. Nevertheless, recent ad-

vancements expanded the available technologies for studying

and engineering this species, resulting in an improvement of its

DBTL modules.

In this study, we propose that insights from all fields of in-

vestigation involving R. sphaeroides contributed to the foundation of

its DBTL approach. Moreover, we reason that recent improvements

in the DBTL pipeline can be employed for further optimizing this cell

factory for industrial applications.

2 | R. SPHAEROIDES A LABORATORY
ORGANISM WITH POTENTIAL AS CELL
FACTORY FOR INDUSTRIAL
BIOTECHNOLOGY

There are several reasons justifying the interest in R. sphaeroides as

chassis for biotechnological productions.

1. This mesophilic prokaryote has been serving for long time as

model organism for studying anoxygenic photosynthesis, but also

chemotaxis and quorum sensing (Mackenzie et al., 2007). For this

reason, a lot of fundamental metabolic knowledge is available.

(a)

(b)

F IGURE 1 (a) Overview of the
bioeconomy pyramid. This is divided into
different sectors based in the market volume
and price per kilo of the compounds
produced. In the green boxes, compounds
produced by Rhodobacter sphaeroides are
shown. They are allocated to the respective
target market sector. (b) Schematic
representation of the Design‐Build‐Test‐
Learn (DBTL) cycle for rational strain
engineering. Within each module are listed
the key aspects discussed in this manuscript.
PHB, poly‐β‐hydroxybutyrate [Color figure
can be viewed at wileyonlinelibrary.com]
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2. It displays high metabolic versatility (Madigan & Gest, 1978),

which can be exploited for different process conditions. It can

thrive by aerobic or anaerobic respiration and anoxygenic pho-

tosynthesis (Mackenzie et al., 2007). This allows its use in photo‐,
chemo‐, auto‐, and heterotrophic bioprocesses. As a facultative

anaerobe, it can grow without oxygen if an alternative electron

acceptor is provided, such as dimethyl sulfoxide. Moreover, it

accepts a wide range of organic substrates (Figure 2), ranging

from C1 compounds to fatty acids (Tabita, 1995). Therefore, a

variety of feedstocks, including waste streams, can support

microbial growth within a bioreactor.

3. Furthermore, R. sphaeroides is a natural producer of relevant bio‐
based compounds, such as (Figures 1a and 2): isoprenoids (Qiang

et al., 2019; Zhang et al., 2018), poly‐β‐hydroxybutyrate (PHB;

Kobayashi & Kondo, 2019), and hydrogen (H2; Akroum‐Amrouche

et al., 2019; Shimizu et al., 2019a). These molecules range

through different market sectors, thereby allowing different ap-

plications of this microorganism within the biotechnological

industry.

Altogether, these characteristics render R. sphaeroides an at-

tractive and versatile chassis to explore for applications within the

bio‐based economy. For efficiently improving this microorganism as

cell factory, a DBTL approach is needed.

3 | DIFFERENT RESEARCH FIELDS
CONTRIBUTED TO THE DBTL METHOD IN
R. SPHAEROIDES

Establishment of a DBTL pipeline in a chassis requires contribution

from different research fields, including ‐omics techniques, genome

engineering, and phenotypic screening methods (Gill et al., 2016; Y.

Liu & Nielsen, 2019). These are all integrated in the DBTL method,

allowing the further improvement of a microorganism into a cell

factory.

As mentioned above, R. sphaeroides has been studied in a wide

range of fundamental and applied research areas, which mutually

contributed to developing its DBTL method. In addition,

F IGURE 2 Lumped network of the carbon metabolism of Rhodobacter sphaeroides, including pathways for substrate uptake and product
formation. Substrates are highlighted in different colors, each describing a different growth mode (light blue: chemoheterotrophic; light orange:
photoheterotrophic; light yellow: photo‐ or chemolitho‐autotrophic). The three carbon products described in this review are highlighted:
5‐aminolevulinic acid (5‐ALA, yellow); isoprenoids (red) and poly‐β‐hydroxybutyrate (PHB, green). Some pathways with parallel flux are
highlighted, for example, glycolysis: Emden–Meyerhof–Parnas (red); Entner–Doudoroff (gray); isoprenoid synthesis: 2‐C‐methyl‐D‐erythritol
4‐phosphate (MEP) pathway (blue); mevalonate pathway (orange). AcAc‐CoA, acetoacetyl‐CoA; Ac‐CoA, acetyl‐CoA; ACE, acetate; BUT,
butyrate; CBB, Calvin–Benson–Bassham cycle; CO, carbon monoxide; F6P, fructose‐6 phosphate; FOR, formate; FRU, fructose; G6P, glucose‐6
phosphate; GAP, glyceraldehyde‐3 phosphate; GL6P, 6‐phosphoglucanolactone; GLU, glucose; GLY, glycerol; IPP, isopentenyl pyrophosphate;
LAC, lactate; MAL, malate; MET, methanol; PPP, pentose phosphate pathway; PRO, propionate; PYR, pyruvate; RIB, ribose; SUC, succinate;
TCA, Krebs cycle; XYL, xylose. The figure has been adapted from (Imam et al., 2013; Orsi, Mougiakos, et al., 2020; Tabita, 1995) [Color figure
can be viewed at wileyonlinelibrary.com]
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investigations in genetic engineering and synthetic biology expanded

the toolboxes available for genomic modifications in this organism

(Huo, 2011; Ind et al., 2009; Inui et al., 2003; Jaschke et al., 2011;

Luo et al., 2020; Mougiakos et al., 2019; Tikh et al., 2014).

All findings and advancements generated in these research fields

can be integrated into a DBTL pipeline for R. sphaeroides (Table 1). In

the following sections, key technologies and advancements for each

DBTL module are presented.

3.1 | Design

This phase focuses on the genome design of the cell factory. It is

worth mentioning that optimal design of a cell factory should be

tailored to the process conditions. Because R. sphaeroides is a

metabolically versatile microorganism, different substrates can in

principle support product formation (Figure 2). Therefore, this spe-

cies holds potential for investigating bioproduction using relevant

substrates for the bioeconomy, such as C1 compounds (Dürre &

Eikmanns, 2015). Design for optimizing substrate uptake and further

conversion into product should be introduced at this step.

For rationally modifying a cell factory, genetic targets need to be

identified. This is possible when the host's genome is sequenced and

annotated. The first sequenced genome of R. sphaeroides was ob-

tained two decades ago (Mackenzie et al., 2001), and was followed

by several revisions (Kontur et al., 2012; Ribeiro et al., 2012).

Because of the high GC content of this microorganism (69%; Porter

et al., 2011), heterologous gene expression often requires adaptation

of the DNA sequence to meet the codon usage of R. sphaeroides.

Knowledge of essential genes and the effect of single‐gene in-

activations can provide a useful starting point for predicting the ef-

fect of their deletions. To our knowledge, two mutant collections are

available for this microorganism (Hwang & Lee, 2008; Lang et al.,

1995), and were used for investigating the carotenoid synthesis and

quorum sensing, respectively.

In addition, use of genome‐scale metabolic models allows pre-

dicting the effect of gene manipulations on metabolic pathways. A

genome‐scale model exists for R. sphaeroides (Imam et al., 2011), and

was followed by a more recent expansion (Imam et al., 2013). These

are stoichiometric models. Despite being descriptive of the overall

metabolic network of the microorganism, they do not provide global

information on the kinetic parameters of its metabolism.

On the other hand, use of kinetic models would increase the

comprehension of the physiology of the microorganism, aiding the

design phase of the DBTL pipeline. This type of model was already

implemented in this species for describing H2 synthesis in respect to

NH4
+ ions concentration in the medium (Waligórska et al., 2009). For

other industrially relevant compounds, kinetic models were devel-

oped in E. coli, in particular for studying the biosynthesis isoprenoids

(Weaver et al., 2015) and PHB (Van Wegen et al., 2001). Therefore,

the collection of different kinetic parameters and their organization

in genome‐scale kinetic models is desirable for improving the design

phase of the DBTL pipeline.

Ultimately, important knowledge has been obtained from fun-

damental studies on photosynthetic gene regulation and physiology

(Gomelsky et al., 2008; Moskvin et al., 2005; Pappas et al., 2004;

Zeilstra‐Ryalls & Kaplan, 2004). This was further combined in a

model for describing the effect of oxygen availability on the ex-

pression of photosynthetic genes (Pandey et al., 2017). All this

knowledge can be applied for, for example, improving isoprenoid or

H2 production under different growth modes. Although these pieces

of information were generated for different research purposes, their

integration can aid in predicting the effect of genetic and environ-

mental manipulations on R. sphaeroides.

3.2 | Build

In this phase, the designed genome modifications are implemented.

The main system for delivering genetic information within

R. sphaeroides is conjugation, although evidence of direct DNA

transition via electroporation has been reported (Jun et al., 2014;

Luo et al., 2020; Serdyuk et al., 2013). While the latter is more rapid

in its execution, the presence of active restriction endonucleases that

cleave exogenous DNA can hinder its realization. Therefore, the

implementation of an efficient electroporation protocol might re-

quire prior inactivation of such restriction endonuclease systems.

Conjugation, which is not affected by endonucleases, is the most

used transformation technique for R. sphaeroides. Despite being less

easy to operate (it involves the presence of a donor E. coli strain), this

technique allows to reach high numbers of colony‐forming units

(CFUs) on a plate (Mougiakos et al., 2019). It is worth noting that

high CFU values are beneficial when looking for rare mutations,

which occur at low frequencies.

Traditionally, a suicide plasmid system was the preferred

method for homologous recombination (HR) based chromosomal

deletions or insertions, alongside with traditional mutagenesis

(Jaschke et al., 2011). A CRISPR/Cas9 system was recently devel-

oped for the same purpose (Mougiakos et al., 2019), improving

the efficiency of HR‐based genome editing. An expansion of the

Cas9‐toolkit promptly followed, proving the capability of performing

base‐editing in this species (Luo et al., 2020). Moreover, integration

of a large DNA fragment (>8 kb) was realized via transposon inser-

tion (Orsi, Beekwlider, van Gelder, et al., 2020). Heterologous gene

expression is possible via an inducible plasmid (Ind et al., 2009). Also,

BioBrick™ systems have been developed (Huo, 2011; Tikh

et al., 2014).

This building phase largely benefited from recent advancements,

rendering genome editing in R. sphaeroides easier to implement. In

particular, they allowed successful genomic manipulations ranging

from single nucleotide substitutions (Luo et al., 2020; Mougiakos

et al., 2019) to entire pathway integration (Orsi, Beekwilder, Peek,

et al., 2020). Nevertheless, while implementation of cas9‐mediated

gene deletion resulted in efficient mutation rates, its use for gene

integration is still rather inefficient (Luo et al., 2020; Mougiakos

et al., 2019). Recently, template‐independent genome editing was

534 | ORSI ET AL.
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described as an emerging technique for prokaryotic strain en-

gineering (Finger‐Bou et al., 2020). Although genes encoding for the

nonhomologous end‐joining repair proteins Ku and LigD are present

in this microorganism, no evidence of their activity has been re-

ported yet in R. sphaeroides (Luo et al., 2020). Meanwhile, a BioBrick™

system composed of seven promoters, seven ribosome‐binding‐sites
(RBSs), and five terminators have been characterized in this species

(Huo, 2011; Tikh et al., 2014). These numbers are considerably lower

than those of the BioBrick™ parts available for E. coli (e.g., >300

promoters), and might limit the potential for fine‐tuning of gene

expression. Nonetheless, BioBrick™ components for R. sphaeroides

were developed, which permitted modulation of gene expression, as

already reported for, for example, isoprenoid and membrane‐protein
synthesis (Lu et al., 2014; Tikh et al., 2014).

Rapid exploration of this microorganism for industrial applica-

tions would benefit from a high‐throughput and automated build

phase, where a combination of genetic parts can be efficiently as-

sembled and transferred within the microbial host. Such an auto-

mated pipeline can in principle be obtained using integrated

microfluidic technologies (Shih & Moraes, 2016). These could sup-

port automated steps from DNA synthesis and assembly to transfer

and selection within the microbial host.

3.3 | Test

Here, the effects of genomic manipulations are tested in respect to

product formation. Because such experimentation should be re-

producible through different DBTL cycles, standard experimental

conditions are required.

Defined media have been designed for standardizing physiolo-

gical studies under both photoheterotrophic (Imam et al., 2011; E. J.

Kim, Kim, et al., 2008) and chemoheterotrophic cultivation condi-

tions (Orsi, Folch, et al., 2019).

Different growth modes (E. J. Kim, Kim, et al., 2008; I. H. Lee

et al., 2002; Yen & Chiu, 2007) and media compositions (M. Kim

et al., 2012; Orsi, Folch, et al., 2019; Shimizu et al., 2019a) were

tested to assess their effect on bioproduction. Often, an adaptation

of the bacterium to different conditions was analyzed by tran-

scriptomic studies (Arai et al., 2008; Imam et al., 2014; Pappas et al.,

2004; Zhang et al., 2019).

Metabolic studies such as flux balance analysis (Golomysova

et al., 2010) and 13C‐metabolic flux analysis (Fuhrer & Sauer, 2009;

Fuhrer et al., 2005) have been used to study flux distributions in this

microorganism. Moreover, 13C‐cultivations have been applied for

determining flux partitioning during the synthesis of H2 (Tao et al.,

2012) and isoprenoids (Orsi, Beekwilder, Peek, et al., 2020).

In summary, this microorganism can be cultivated using defined

media in both photo‐ and chemotrophic modes. The regulation of

gene expressions for such growth conditions is largely known. This

has been obtained via transcriptome analyses and has been exploited

for improving bioproduction. Moreover, the intracellular fluxes

controlling product formation have been characterized, also via the

use of labeled isotopes. Therefore, a set of research techniques can

be employed to thoroughly study R. sphaeroides phenotypes during

synthesis of economically relevant compounds.

3.4 | Learn

3.4.1 | Improving TRY values and expanding the
bioproduction portfolio

In the last step of the cycle, the effects of the modifications im-

plemented in the microbial host are critically evaluated in terms of

TRY values. Many studies improved such values for all the en-

dogenous compounds synthesized by R. sphaeroides (E. J. Kim, Kim,

et al., 2006; Kobayashi & Kondo, 2019; Lu et al., 2013, 2014, 2015;

Ryu et al., 2014; Shimizu et al., 2019a; Zhang et al., 2018).

Moreover, R. sphaeroides revealed to be a versatile platform for

producing heterologous isoprenoids like flavors and fragrances

(Beekwilder et al., 2014; Chen et al., 2019; Schempp et al., 2018), as

well as carotenoids like lycopene (Su et al., 2018) or β‐carotene
(Qiang et al., 2019). All these studies drive the improvement of

R. sphaeroides towards a cell factory capable of producing an in-

creasing range of different products.

3.4.2 | Examples of “learn” phase as input for a
new DTBL cycle

As described above, the final “learn” step can be used as input for a

new DBTL cycle. Fundamental studies provided knowledge that

could be used for designing strain optimization strategies. An ex-

ample comes from studies on transcriptional regulation of photo-

synthetic genes, whose knowledge was exploited for overexpressing

the ppsR regulator for increasing coenzyme Q10 production while

decreasing competition from carotenoid synthesis (Zhu, Lu, et al.,

2017). Similarly, insights from fundamental research on the function

of the transcriptional activator NifA was combined with the effect of

adapting the cultivation conditions for investigating the competition

between light‐harvesting complex synthesis, nitrogenase activity,

and H2 production (E. J. Kim, Kim, et al., 2006; Ryu et al., 2014;

Shimizu et al., 2019b).

Other application‐oriented studies improved R. sphaeroides via

iterative DBTL cycles. By thoroughly controlling rate‐limiting en-

zymes expression via a library of RBSs, isoprenoid flux was in-

creased via the endogenous 2‐C‐methyl‐D‐erythritol 4‐phosphate
(MEP) pathway (Lu et al., 2014). Research on R. sphaeroides phy-

siology demonstrated that the endogenous MEP pathway ex-

clusively supports growth‐coupled production, while expression of

the heterologous mevalonate pathway allows synthesis also during

nongrowth conditions (Orsi, Folch, et al., 2019). A strain was de-

veloped, in which the MEP pathway was functionally replaced by

the mevalonate pathway (Orsi, Beekwlider, van Gelder, et al.,

2020). Use of such a strain allowed to design a 13C labeling‐based
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flux ratio analysis to study MEP and mevalonate split ratios

(Orsi, Beekwilder, Peek, et al., 2020). Based on this knowledge, a

strategy for the growth of uncoupled isoprenoid production was

implemented, which consisted in exclusive exploitation of the

mevalonate pathway in combination with inactivation of PHB

synthesis (Orsi, Mougiakos, et al., 2020).

We predict that the application of DBTL cycles in R. sphaeroides

will result in rapid improvements of this microbial platform for the

existing bioprocesses. Moreover, it will allow exploring its versatile

metabolism for bioproduction under new growth modes, where

traditional cell factories cannot be used. Automated DBTL pipelines

can be performed in infrastructures called “biofoundries” (Chao et al.,

2017), where rapid prototyping and optimization of cell factories is

implemented (Carbonell et al., 2018). Such an accelerated and high‐
throughput strain engineering approach is desirable for developing

competitive cell factories for existing and future industrial applica-

tions of R. sphaeroides.

4 | AN OUTLOOK ON THE INDUSTRIAL
APPLICATIONS OF R. SPHAEROIDES :
CURRENT SITUATION AND FUTURE
PERSPECTIVES

In the previous sections, we highlighted how technical advancements

in the DBTL cycle can accelerate R. sphaeroides optimization for in-

dustrial applications. Here, we provide an outlook on the state of the

art of industrial processes involving this microorganism. Moreover, in

light of the recent developments, we propose to further extend its

applications within the bio‐based economy.

This microorganism is considered nonpathogenic and generally

regarded as safe (GRAS). Nevertheless, a recent correspondence

proved that the platform Pseudomonas putida (a consolidated cell

factory) was erroneously described as GRAS (Kampers et al., 2019).

Therefore, for supporting the wide use of R. sphaeroides for human

applications, an accurate assessment of its biological safety and se-

curity in a laboratory and industrial settings is desirable. It is im-

portant to note that built‐in safety mechanisms can also be

implemented at the genetic level by the designer (Asin‐Garcia
et al., 2020).

To our knowledge, R. sphaeroides is being employed in few

companies worldwide. The Dutch flavors and fragrances company

Isobionics BV (www.isobionics.com) produces sesquiterpenes as ar-

omas and ingredient compounds using this microorganism as a

platform. The Chinese company CN Lab Nutrition (www.

cnlabnutrition.com) focuses on nutraceuticals, and provides coen-

zyme Q10 with a rate of up to 30 tons per month. Moreover, a

portfolio of nonnative isoprenoids has been synthesized using this

bacterium in academic research (Beekwilder et al., 2014; Chen et al.,

2019; Orsi, Folch, et al., 2019; Qiang et al., 2019; Su et al., 2018).

Another application of this bacterium is within the feed industry

for livestock. The Chinese company Hebei Shixiang Biological

Technology Co., Ltd. (www.hbshixiang.en.china.cn) commercializes

R. sphaeroides biomass as poultry feed. Similarly, the Indian company

Prions Biotech (www.prionsbiotech.com) provides fish feed solutions

containing this bacterium. Although use of genetically modified

R. sphaeroides might be discouraged for this application, cultivation

parameters could be optimized thanks to available knowledge. This

could allow to enrich biomass composition with high‐value en-

dogenous products such as carotenoids, cobalamin, coenzyme Q10, or

5‐aminolevulinic acid (S. Liu et al., 2016).

Although R. sphaeroides‐derived products are commercialized in

the feed and isoprenoid markets, no industrial application exists yet

for PHB and H2 production. The main reason is due to the low

market price of these compounds (Figure 1a), which renders their

cost‐competitive production challenging. Because feedstocks con-

stitute approximatively 40% of the total operating cost for the

synthesis of such compounds (Choi & Lee, 1997; Khosravi‐Darani

et al., 2013), diverse range of substrates should be evaluated for

reducing production costs. Waste streams can be used as substrates

for microbial synthesis of PHB (Van Loosdrecht et al., 1997) or H2

(Chandrasekhar et al., 2020). Several studies were performed on

PHB and H2 production from waste streams in R. sphaeroides

(Ghimire et al., 2016; Gu et al., 1999; Luongo et al., 2017). Never-

theless, they did not result yet in the coupling of waste streams

treatment to industrial production of these compounds. A drawback

associated with this type of feedstocks is the variability of their

elemental composition, which makes scaling‐up of the processes

cumbersome (Rodriguez‐Perez et al., 2018).

Still, the use of cheap and renewable feedstocks could improve

both commercial‐ and experimental‐processes where R. sphaeroides is

involved. This microorganism could be exploited for evaluating al-

ternative feedstocks for the bio‐based economy because of (i) its

versatile metabolism, (ii) its wide substrate acceptance range, and (iii)

recent advancements in its DBTL method. A closely related species,

R. capsulatus, demonstrated efficient isoprenoid synthesis via

aerobic‐chemolithoautotrophic growth (Khan et al., 2015). This

growth mode is becoming of particular interest due to the rising

attention towards C1‐carbon sources as feedstocks (Choi et al.,

2020; Claassens et al., 2016; Cotton et al., 2020; Dürre & Eikmanns,

2015; Gleizer et al., 2019; Satanowski & Bar‐Even, 2020; Yishai et al.,
2016). In this perspective, state of the art technologies in the DBTL

pipeline could be used in R. sphaeroides to optimize this platform for

assimilation of C1 substrates, while coupling it to synthesis to a

range of bio‐based compounds.

5 | DISCUSSION

In this study, we summarized the state‐of‐the‐art technologies

composing the DBTL pipeline in R. sphaeroides. Moreover, we pro-

posed that the use of such a streamlined method for strain en-

gineering will consolidate this species as a valuable microbial cell

factory for the bio‐based economy. Ultimately, we presented an

outlook on the industrial applications of this platform, which can be

further expanded by means of DBTL cycles.
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The DBTL concept was firstly introduced for model organisms

like E. coli and S. cerevisiae (Nielsen & Keasling, 2016), which are

considered traditional cell factories for prokaryotes and eukaryotes,

respectively (Chen et al., 2013; Hong & Nielsen, 2012). In fact, these

organisms were already model species in biology when genetic en-

gineering developed in the 1970s (Chen et al., 2013; Hong & Nielsen,

2012). Ever since they have been investigated as cell factories (S. Y.

Lee et al., 2012), their DBTL pipelines included cutting edge tech-

nologies for strain engineering.

The revolution in genetic engineering techniques that occurred

within this decade allowed to investigate new‐to‐industry chassis for

bioproduction (Calero & Nikel, 2019). The α‐proteobacterium
R. sphaeroides is included among these novel industrial platforms.

Despite its original role as laboratory species for fundamental stu-

dies, this organism presents high versatility in its growth modes and

substrate acceptance ranges (Mackenzie et al., 2007; Tabita, 1995).

This metabolic flexibility reflected in employment of R. sphaeroides

for many research topics, including photosynthesis, quorum sensing,

chemotaxis, and production of H2, PHB, and isoprenoids.

We reasoned that, while providing useful insights on the biology

of the microorganism, these research areas developed critical tech-

nologies for establishing a DBTL pipeline in this species. Therefore,

different fundamental and applied studies in R. sphaeroides concurred

in developing this organism as a promising cell factory.

Moreover, recent advancements in the four modules of the

DBTL method allowed to further consolidate R. sphaeroides as ver-

satile platform for the bioeconomy. Of particular importance are the

availability of a genome‐scale metabolic model (Imam et al., 2011,

2013), a CRISPR/Cas9 toolkit (Luo et al., 2020; Mougiakos et al.,

2019), and tools for flux ratio analysis in the central carbon and

isoprenoid metabolisms (Orsi, Beekwilder, et al., 2020; Tao et al.,

2012). We envision that practising DBTL cycles in R. sphaeroides will

facilitate the study of this bacterium for industry‐oriented applica-

tions. Moreover, use of automated biofoundries might further ac-

celerate improvements in this species. Possibly, its versatile

metabolism can be optimized for the use of cheap and renewable

feedstocks, either consolidating existing bioprocesses or exploring

new ones.
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