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Abstract

In this paper, a robust sliding mode control (SMC) based on backstepping technique is stud-

ied for a microgyroscope in the presence of unknown model uncertainties and external dis-

turbances using adaptive fuzzy compensator and fractional calculus. At first, the dynamic of

microgyroscope is transformed into analogically cascade system to guarantee the applica-

tion of backstepping design. Then a novel fractional differential sliding surface is proposed

which integrates the capacities of the fractional calculus and SMC. In order to reduce the

chattering in SMC, a fuzzy logical system is utilized to approximate the external distur-

bances. In addition, fractional order adaptive laws are derived to estimate the damping and

stiffness coefficients and angular velocity online based on Lyapunov stability theory which

also guarantees the stability of the closed loop system. Finally, simulation results signify the

robustness and effectiveness of the proposed control schemes and the comparison of root

mean square error under different fractional orders and integer order are given to demon-

strate the better performance of proposed controller.

Introduction

Microgyroscope has many applications in military and civil fields such as navigation, automo-

bile and traffic etc. due to their superior features in angular velocity measurement. However,

constrained by manufacturing process and design principle, it is difficult to meet desired

requirements and its performance is sensitive to time varying system parameters, external dis-

turbances, ambient conditions including temperature and pressure and so on. In order to

obtain better dynamic performance, lots of robust control methods have been applied to

microgyroscope for many years. Park[1] proposed an adaptive control scheme with velocity

estimation to compensate fabrication imperfects so as to operate insusceptibly in varying envi-

ronments for a z-axis microgyroscope. In [2], two adaptive controllers were developed to tune

the natural frequency of the drive axis for a vibrational microgyroscope. Adaptive neural slid-

ing mode control algorithms were proposed for the unknown system dynamics and nonlinear-

ities in the microgyroscope in [3–4]. A direct model reference adaptive control scheme with an

estimating observer to modify disturbance was investigated which ensured the resonant
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oscillations of the microgyroscope in [5]. The tuning algorithm for systems parameters is

derived based on Lyapunov stability theorem which guarantees the stability of the closed–loop

system. By constructing suitable Lyapunov functions and combing with matrix inequality

technique, new simple sufficient conditions are presented for stochastic delayed cellular neural

networks in [6–7] and global asymptotic stability of the cohen-grossberg neural network mod-

els in [8–9] respectively.

Fractional calculus which expends the order of differential and integral from integer to frac-

tion has been studied for three centuries. In recent years, more and more attention has been

paid on its application in controller design instead of a pure theoretical mathematical subject

owing to its higher modeling accuracy and degree of freedom compared to integer order con-

trollers. Some researches about fractional calculus have been studied in [10–13]. Fractional

order controllers were employed for microgrid in [14]. A fractional model was established to

solve some physical problem in [15–16]. A model reference adaptive control strategy with frac-

tional operators was demonstrated to improve the plant dynamics in [17]. A local fractional

differential equation of fractal dimensional order is applied to a non-differentiable model of

the LC-electric circuit in [18]. Some researches about the solvability for nonlinear fractional

differential equations have been studied in [19–21].

The sliding mode control (SMC) technique is considered to be an effective control scheme

for robust control which has been applied to both linear and nonlinear systems. The main idea

of SMC is to choose a linear manifold of the state variables such as deviations and their deriva-

tives as sliding surface and then design a control law for driving and constraining the system

state into the previous designed sliding surface. SMC has shown great superiorities in dealing

with nonlinear systems with uncertainties which is benefit from its robustness and insensitivity

to parameters variation and external disturbances. Sling mode control and observations were

focused on in [22] for complex industrial systems because of the advantages above. An adap-

tive novel SMC using neural network and fuzzy system are designed for the uncertain nonlin-

ear system in [23] [24]. An adaptive SMC with a new adaptive law, whose adaptive gains was

inversely proportional to the sliding variables, offered the fast dynamic and reduced chattering

for robot manipulators in [25]. Neural network and fuzzy system are also utilized to deal with

uncertainties and suppress the harmonics for active power filter in [26] [27] [28] [29].

SMC applies not only to integer order systems, but also to fractional order systems. Thus frac-

tional order calculus can also be incorporated in sliding mode control [30–31]. Chen et al. [30]

proposed an adaptive sliding mode control scheme for a fractional order nonlinear system with

uncertainties. A fractional order fuzzy sliding mode controller was designed for robotic manipula-

tors which retained the advantages of SMC and reduced the chattering simultaneously in [31].

Backstepping method has been well known for its recursive and systematic design in non-

linear feedback systems [32] [33] [34]. The concept of backstepping control is to choose appro-

priate functions of the state variables as virtual controls for subsystems and then design

control laws based on Lyapunov functions. A simplified adaptive backstepping scheme was

proposed for a full-car active suspension system with external disturbances in [35]. An adap-

tive backstepping controller was proposed for vehicle active suspensions in [36] to guarantee

the stability of the attitude of vehicle and the improvement of ride comfort. Unfortunately,

backstepping control scheme does not work well for systems with discontinuous disturbance

and parameter variations. So it is usually combined with other intelligent control methods

such as sliding mode control, fuzzy control and so on. An adaptive sliding mode controller

based on backstepping technique was proposed for robotic manipulator in [37] which esti-

mates the system uncertainties and external disturbances by the adaptive laws. Park et al. [38]

designed a backstepping integral sliding mode controller based on T-S fuzzy model for an

Interior Permanent Magnet Synchronous Motor. A backstepping fractional order sliding

Adaptive fractional fuzzy sliding mode control
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mode control was developed for power systems and microgyroscope system respectively

which showed good dynamic performances and great robustness compared to traditional

methods in [39–40]. Feng et. al [41] proposed a novel adaptive Super-Twisting sliding mode

control for a microgyroscope.

In this paper, in order to incorporate the advantages of fractional control, sliding mode

control, fuzzy control and backstepping control, an adaptive fractional fuzzy sliding mode con-

troller based on backstepping design is proposed for a microgyroscope. The output trajectory

of microgyroscope track the reference trajectory accurately and effectively and the estimation

of system parameters have been verified to converge to their true values asymptotically. The

main contributions of this paper are emphasized as follows:

1. The superior characteristic of this designed controller is that a fractional order term is

adopted in the sliding manifold which generates an extra degree of freedom and makes the

design of control law more flexible, consequently the performance of the closed loop system

has been improved a lot compared to the traditional SMC whose sliding surface is based on

integer order calculus of the state variables.

2. Based on backstepping fractional sliding mode control scheme, a fuzzy logical system is

designed to deal with the unknown uncertainties and external disturbances which weak-

ened the chattering phenomenon. Furthermore, adaptive algorithm for parameters of

microgyroscope is derived based on Lyapunov stability theory, which guarantees the stabil-

ity of the closed-loop system and the unknown parameters of microgyroscope system can

be identified on line simultaneously. In general, the method proposed in this paper both

improves the system performance and enhancing system robustness against model uncer-

tainties and external disturbances as well.

This paper is organized as follows: In section 2, the dynamics of microgyroscope is

described. The structure of backstepping fractional sliding mode control and adaptive frac-

tional fuzzy sliding mode control based on backstepping technique are proposed in section 3

and section 4 respectively. Simulation results are shown in section 5 and finally for the

conclusions.

Materials and methods

In this section, the mathematical model of z-axis microgyroscope is described, and the prelimi-

nary of fractional calculus is introduced, then for solving the trajectory tracking problem of

microgyroscope system with unknown model uncertainties and external disturbances, an

adaptive fractional fuzzy sliding mode controller based on backstepping design is proposed

based on Lyapunov theory.

Dynamics of microgyroscope

The microgyroscope is composed of a proof mass, sensing mechanisms and electrostatic actu-

ation used to force an oscillatory motion and velocity of the proof mass and to sense the posi-

tion. In order to achieve the dynamics of the MEMS, some assumptions have been made: 1)

the motion of the proof mass is limited to x and y axis as shown in Fig 1; 2) the microgyroscope

rotates at a constant angular velocity; 3) the centrifugal forces is neglected. Under the above

assumptions, the dynamics of the microgyroscope can be simplified as follows:

mx__þ dx _x þ ½kx � mðOy
2 þ Oz

2Þ�x þmOxOyy ¼ ux þ 2mOz _y

my__þ dy _y þ ½ky � mðOx
2 þ Oz

2Þ�yþmOxOyx ¼ uy � 2mOz _x
ð1Þ
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where m is the mass of proof mass, dx,y and kx,y are damping and spring coefficients terms

along x- and y-axis respectively. Ox,y,z are the angular velocity along each axis, and ux,y are the

control forces in x and y directions.

Considering fabrication defects, which may cause extra coupling between x- and y- axis, the

dynamics for a z-axis microgyroscope is revised as:

mx__þ dxx _x þ dxy _y þ kxxxþ kxyy ¼ ux þ 2mOz _y

my__þ dxy _x þ dyy _y þ kxyxþ kyyy ¼ uy � 2mOz _x
ð2Þ

In the above equations, dxx and dyy are damping terms; kxx and kyy are spring coefficients

terms; dxy and kxy are coupled damping and spring terms, respectively.

Dividing both sides of Eq (2) by proof mass m, reference length q0 and natural resonance

frequency ω0 simultaneously results:

x__þ dxx _x þ dxy _y þ ox
2xþ oxyy ¼ ux þ 2Oz _y

y__þ dxy _x þ dyy _y þ oxyxþ oy
2y ¼ uy � 2Oz _x

ð3Þ

which is the nondimensional dynamics of microgyroscope.

Fig 1. Schematic diagram of a z-axis microgyroscope.

https://doi.org/10.1371/journal.pone.0218425.g001
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In (3),

dxx

mo0

! dxx;
dxy

mo0

! dxy;
dyy

mo0

! dyy

kxx

mo0
2
! o2

x;
kxy

mo0
2
! oxy;

kyy

mo0
2
! o2

y;
Oz

mo0

! Oz

ð4Þ

Through the equivalent transformation, the vector form of the model is described as:

q__þ D _q þ Kq ¼ u � 2O _q ð5Þ

where

q ¼
x

y

" #

;D ¼
dxx dxy

dxy dyy

" #

;K ¼
o2

x oxy

oxy o2
y

" #

; u ¼
ux

uy

" #

;O ¼
0 � Oz

Oz 0

" #

ð6Þ

Backstepping fractional sliding mode control

Preliminary introduction of fractional order. As the extended form of differentiation

and integration, Caputo(C), Riemann-Liouville(RL), and Grunwald-Letnikov(GL) definitions

are the three most commonly used definitions in engineering, science and economics fields,

especially the Caputo fractional order calculus which happens to be adopted in this paper.

The Caputo fractional derivative of order α of function f(x) is denoted as:

aDt
af ðtÞ ¼

1

Gðn � aÞ

Z t

a

f ðnÞðtÞ
ðt � tÞa� nþ1

dt; n � 1 < a < n ð7Þ

where t and a are the upper and lower bounds of the operator respectively and Γ is the

Gamma function which satisfies:

GðgÞ ¼

Z1

0

e� ttg� 1dt ð8Þ

For convenience, aDt
α is replaced by Dα in the following parts.

It is noted that if α = 0, then the operation D0f(x) satisfies D0f(x) = f(x).

Fractional differential sliding mode surface is proposed in this part since its higher control

precision compared to the integer order for the adjustable fractional order α. Backstepping

control is usually applied to a class of special nonlinear dynamical systems which can be built

from subsystems by choosing appropriate Lyapunov functions. Thanks to the recursive proce-

dure, good tracking performance and global stability are guaranteed.

Design of backstepping fractional sliding mode control. Considering the system param-

eter variations and external disturbances, the dynamic of the MEMS gyroscope is described as

follows:

q__þ ðDþ 2OÞ _q þ Kq ¼ uþ d ð9Þ

where d denotes the lumped bounded uncertainties and disturbances which satisfies kdk�ρ,

and ρ is a positive constant, referring to the upper bound of the uncertainties and

disturbances.

For the application of backstepping technique, coordinate transformation of the dynamic is

necessary.

Adaptive fractional fuzzy sliding mode control
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Define two variables x1 and x2. Let

x1 ¼ q; x2 ¼ _q ð10Þ

Then a mathematical model of MEMS gyroscope can be expressed as follows:

_x1 ¼ x2

_x2 ¼ � ðDþ 2OÞx2 � Kx1 þ uþ d
0ð11Þ

(

Making the position vector q follow its desired trajectory strictly is the main object of the con-

troller design. The specific controller design is divided into two steps.

Step 1: Assume that qr is the ideal tracking value, then the tracking error vector can be

defined as:

e1 ¼ x1 � qr ð12Þ

Then its time derivative is

_e1 ¼ _x1 � _qr ¼ x2 � _qr ð13Þ

Define the virtual control variable as:

a1 ¼ � c1e1 þ _qr ð14Þ

where c1 is a constant and c1>0.

Define the new error variable as:

e2 ¼ x2 � a1 ð15Þ

Select a Lyapunov function as Eq (16):

V1 ¼
1

2
e1

Te1 ð16Þ

By deriving both sides of (16) one can obtain:

_V 1 ¼ e1
T _e1 ¼ e1

Tðx2 � _qrÞ

¼ e1
Tðe2 � c1e1Þ

¼ e1
Te2 � c1e1

Te1

ð17Þ

If e2 = 0, then

_V 1 ¼ � c1e1
Te1 � 0 ð18Þ

Step 2: The time derivative of (15) is

_e2 ¼ _x2 � _a1

¼ � ðDþ 2OÞx2 � Kx1 þ uþ d � _a1

ð19Þ

A fractional order sliding mode surface is defined as:

s ¼ l1e1 þ l2D
a� 1e1 þ l3e2 ð20Þ

where λ1,λ2,λ3 refer to the positive sliding surface parameters and α−1 is the fractional order of

fractional derivate operation.

Adaptive fractional fuzzy sliding mode control
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Taking the time derivative of s, we get:

_s ¼ l1 _e1 þ l2D
ae1 þ l3 _e2 ð21Þ

A new Lyapunov function is described as:

V2 ¼ V1 þ
1

2
sTs ð22Þ

By making derivative of (22), we have:

_V 2 ¼
_V 1 þ sT _s

¼ e1
Te2 � c1e1

Te1 þ sTðl1 _e1 þ l2Dae1 þ l3 _e2Þ
ð23Þ

where

e2 ¼
s � l1e1 � l2Da� 1e1

l3

ð24Þ

Then, Eq (24) is added into Eq (23), which yields

_V 2 ¼ e1
Te2 � c1e1

Te1 þ sTðl1 _e1 þ l2Dae1 þ l3 _e2Þ

¼ � c1e1
Te1 þ e1

T s � l1e1 � l2Da� 1e1

l3

þ sT½l1 _e1 þ l2D
ae1 þ l3ðf þ uþ d � _a1Þ�

ð25Þ

where f ¼ � ðDþ 2OÞ _q � Kq ¼ � ðDþ 2OÞx2 � Kx1.

In order to keep _V 2 � 0, the corresponding control law is designed as:

u ¼ � f � r
s
ksk
þ _a1 þ

1

l3

� l1 _e1 � l2D
ae1 �

e1

l3

þ
l2se1

T

ksk2
l3

Da� 1e1

 !

¼ ðDþ 2OÞðe2 þ a1Þ þ Kðe1 þ qrÞ � r
s
ksk
þ _a1

þ
1

l3

� l1 _e1 � l2D
ae1 �

e1

l3

þ
l2se1

T

ksk2
l3

Da� 1e1

 !

ð26Þ

Since sTe1 = e1
Ts, substituting Eq (26) into Eq (25) results:

_V 2 ¼ � c1e1
Te1 �

l1

l3

e1
Te1 þ sTl3 d � r

s
ksk

� �

� � c1e1
Te1 �

l1

l3

e1
Te1 þ l3ðkskkdk � rkskÞ

� � c1e1
Te1 �

l1

l3

e1
Te1 � 0

ð27Þ

The derivative of V2 keeps negative semi- definite. According to Barbalart lemma, it can be

proved lim
t!1

e1ðtÞ ¼ 0, lim
t!1

sðtÞ ¼ 0, that is to say the proposed control strategy can ensure the

asymptotical stability of the closed loop system.

Adaptive fractional fuzzy sliding mode control based on backstepping technique. In

previous controller design, the control law (26) is derived under the condition of the available

parameter variations D,K,O and external disturbances ρ. On the contrary, these uncertainty

bounds are unknown in actual systems. So for the better conduction of the backstepping frac-

tional SMC system in practice, a good estimate of the unknown parameters with D̂; K̂ ; Ô is

Adaptive fractional fuzzy sliding mode control
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necessary. Adaptive schemes combined are used online to collect data and adjust the parame-

ters automatically. In addition, an adaptive fuzzy compensator ĥðsÞ is proposed to handle the

chattering caused by the sliding mode surface. The architecture of the proposed adaptive frac-

tional fuzzy sliding mode controller based on backstepping technique is shown in Fig 2.

Fig 2. The architecture of the adaptive backstepping fractional fuzzy sliding mode controller.

https://doi.org/10.1371/journal.pone.0218425.g002

Fig 3. Tracking trajectory using fractional order sliding surface.

https://doi.org/10.1371/journal.pone.0218425.g003
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Define the parameter estimation error as:

~D ¼ D̂ � D
~K ¼ K̂ � K
~O ¼ Ô � O

~yh ¼ yh
� � yh

ð28Þ

The adaptive control law u’ can be derived as:

u0 ¼ ðD̂ þ 2ÔÞðe2 þ a1Þ þ K̂ðe1 þ qrÞ þ _a1 � ĥðsÞ þ
1

l3

� l1
_e1 � l2D

ae1 �
e1

l3

þ
l2se1

T

ksk2
l3

Da� 1e1

 !

ð29Þ

where

ĥðsjyÞ ¼ ½ĥ1 ĥ2�
T
¼ ½yh1

TFðs1Þ yh2
TFðs2Þ�

T
ð30Þ

Fig 4. Tracking error using fractional order sliding surface.

https://doi.org/10.1371/journal.pone.0218425.g004
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Assuming that ĥðsjyh
�Þ ¼ r s

ksk, then the optimal parameters of fuzzy system is defined as:

yh
� ¼ arg min

yh2Oh
½supjĥðsjyhÞ � ĥðsjyh

�Þj�
x2Rn

ð31Þ

where Oh are the collections of parameter and θh.

Substituting the control law (29) into _s as in (21) results in:

_s ¼ l1
_e1 þ l2Dae1 þ l3ðf þ uþ d � _a1Þ

¼ l3 ð
~D þ 2~OÞðe2 þ a1Þ þ

~Kðe1 þ qrÞ þ d � ĥðsÞ þ
1

l3

�
e1

l3

þ
l2se1

T

l3ksk
2
Da� 1e1

 ! !
ð32Þ

Define the Lyapunov function candidate as:

V ¼
1

2
e1

Te1 þ
1

2
sTsþ

1

2
trf~DM� 1 ~DTg þ

1

2
trf~KN � 1 ~KTg þ

1

2
trf~OP� 1 ~OTg þ

1

2r

X2

i¼1

~yhi
T~yhi ð33Þ

Fig 5. Fractional sliding surface.

https://doi.org/10.1371/journal.pone.0218425.g005
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where M = MT>0, N = NT>0, P = PT>0 are positive definite matrices and tr{•} denotes the

matrix trace operator.

Taking the time derivation on both sides of V yields

_V ¼ � c1e1
Te1 þ e1

T s � l1e1 � l2Da� 1e1

l3

þsTl3 ð
~D þ 2 ~OÞðe2 þ a1Þ þ

~Kðe1 þ qrÞ þ d � ĥðsÞ þ
1

l3

�
e1

l3

þ
l2se1

T

ksk2
l3

Da� 1e1

 ! !

þ trf~DM� 1 _~DT
g

þ trf~OP� 1 _~O
T
g þ trf~KN� 1 _~KT

g þ
1

r

X2

i¼1

~yhi
T _~yhi

¼ � c1e1
Te1 �

l1e1
Te1

l3

þ sTl3
~Dðe2 þ a1Þ þ trf~DM� 1 _~DT

g þ sTl3
~Kðe1 þ qrÞ þ trf~KN� 1 _~KT

g

þ 2sTl3
~Oðe2 þ a1Þ þ trf~OP� 1 _~O

T
g þ sTl3ðĥðsjy

�
Þ � ĥðsÞ þ d � ĥðsjy�ÞÞ þ

1

r

X2

i¼1

~yhi
T _~yhi

Fig 6. Control input signals.

https://doi.org/10.1371/journal.pone.0218425.g006

(34)
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Since D = DT,K = KT,O = −OT and sT ~Dðe2 þ a1Þ ¼ ðe2 þ a1Þ
T ~Ds are scalar, we have

l3sT ~Dðe2 þ a1Þ ¼
1

2
ðl3s

T ~Dðe2 þ a1Þ þ l3ðe2 þ a1Þ
T ~DsÞ

¼ tr
1

2
l3ð

~Dðe2 þ a1Þs
T þ ~Dsðe2 þ a1Þ

T
Þ

� � ð35Þ

Simultaneously, we obtained

l3sT ~Kðe1 þ qrÞ ¼
1

2
l3s

T ~Kðe1 þ qrÞ þ l3ðe1 þ qrÞ
T ~Ks

� �

¼ tr
�

1

2
l3

~Kðe1 þ qrÞs
T þ ~Ksðe1 þ qrÞ

T� �
�

2l3sT ~Oðe2 þ a1Þ ¼ l3sT ~Oðe2 þ a1Þ � l3ðe2 þ a1Þ
T ~Os

¼ tr
�

l3
~Oðe2 þ a1ÞsT � ~Osðe2 þ a1Þ

T
� �

�

Fig 7. Adaption of damping coefficients of microgyroscope.

https://doi.org/10.1371/journal.pone.0218425.g007

(36)
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Substituting (35) and (36) into (34) results:

_V ¼ � c1e1
Te1 �

l1e1
Te1

l3

þ tr
�

~D M� 1 _~DT
þ

1

2
l3 ðe2 þ a1Þs

T þ sðe2 þ a1Þ
T� �

� ��

þtr
�

~K N � 1 _~KT
þ

1

2
l3ððe1 þ qrÞs

T þ sðe1 þ qrÞ
T
Þ

� ��

þtr
�

~O P� 1 _~O
T
þ l3 ðe2 þ a1ÞsT � sðe2 þ a1Þ

T� �� ��

þ
1

r

X2

i¼1

~yhi
T rl3siFðsiÞ þ

_~yhi

� �

þ l3s
T d � ĥðsjy�Þ
� �

ð37Þ

where i = 1,2 represents the two-axis vector.

Fig 8. Adaption of spring constants of microgyroscope.

https://doi.org/10.1371/journal.pone.0218425.g008
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In order to guarantee _V � 0, the online adapting laws for parameters are as follows:

_̂DT ¼
_~DT ¼ �

1

2
l3M ðe2 þ a1Þs

T þ sðe2 þ a1Þ
T� �

_̂KT ¼ _~KT ¼ �
1

2
l3N ðe1 þ qrÞs

T þ sðe1 þ qrÞ
T� �

_̂
OT ¼

_~OT ¼ � l3P ðe2 þ a1ÞsT � sðe2 þ a1Þ
T� �

_yhi ¼ �
_~yhi ¼ rl3siFðsiÞ; i ¼ 1; 2

ð38Þ

Substituting (38) into (37), it is obvious that

_V ¼ � c1e1
Te1 �

l1e1
Te1

l3

þ l3s
Tðd � ĥðsjy�ÞÞ

� � c1e1
Te1 �

l1e1
Te1

l3

þ l3 kskkdk � r
sTs
ksk

� �

� � c1e1
Te1 �

l1e1
Te1

l3

þ l3ðkskkdk � rkskÞ

� � c1e1
Te1 �

l1e1
Te1

l3

� 0

ð39Þ

Fig 9. Adaption of angular velocity.

https://doi.org/10.1371/journal.pone.0218425.g009
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_V is proved to be negative semi-definite which means V; s; ~D; ~K ; ~O are all bounded.

According to (32), _s is also bounded. Integrating _V with respect to time, we

have

Z t

0

c1e1
Te1 þ

l1e1
Te1

l3

þ l3ðkskkdk � rkskÞ � Vð0Þ � VðtÞdt. Since V(0) is bounded and

V(t) is bounded and non-increasing, it can be concluded that

Z t

0

c1e1
Te1 þ

l1e1
Te1

l3

dt and

Z t

0

l3ðkskkdk � rkskÞdt are all bounded. According to Barbalart lemma, lim
t!1

e1ðtÞ ¼ 0,

lim
t!1

sðtÞ ¼ 0, that is to say the tracking error and fractional sliding mode surface will asymptot-

ically converge to zero which guarantees the stability of the gyroscope system.

Results and discussions

A z-axis MEMS gyroscope dynamical model is chosen as a simulation example to validate the

effectiveness of the proposed control strategy. The parameters of the microgyroscope are cho-

sen as follows:

m ¼ 1:8� 10� 7kg; dxx ¼ 1:8� 10� 6 Ns=m; dyy ¼ 1:8� 10� 6 Ns=m;

dxy ¼ 3:6� 10� 7 Ns=m; kxx ¼ 63:955N=m; kyy ¼ 95:92N=m; kxy ¼ 12:779N=m:

Fig 10. Adaption of θh along X axis.

https://doi.org/10.1371/journal.pone.0218425.g010
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Assume that the unknown angular velocity is Oz = 100 rad/s. Then the non-dimensional

gyroscope parameter matrices can be derived as follows:

D ¼
0:01 0:002

0:002 0:01

" #

;K ¼
355:3 70:99

70:99 532:9

" #

;O ¼
0 � 0:1

0:1 0

" #

ð40Þ

The membership functions of the fuzzy variable s are defined as:

mNMðsÞ ¼ 1=ð1þ expð5ðsþ 3ÞÞÞ; mZOðsÞ ¼ expð� s2Þ

mPMðsÞ ¼ 1=ð1þ expð5ðs � 3ÞÞÞ
ð41Þ

In this simulation example, reference trajectory is selected as qr1 = sin(4.17t), qr2 = 1.2sin(5.11t)
and the initial states of the system are set as q1ð0Þ ¼ 0:5; _q1ð0Þ ¼ 0; q2ð0Þ ¼ 0:5; _q2ð0Þ ¼ 0.

Choose the initial conditions of D̂; K̂ ; Ô as D̂0 ¼ 0:95�D, K̂ 0 ¼ 0:95�K, Ô0 ¼ 0:95�O. Select

the sliding surface parameters λ1 = 55,λ2=10,λ3 = 1, the control parameters c1 = 200, r = 10000

and the adaptive gains M = N = diag(150,150),P = diag(20,20).

Fig 11. Adaption of θh along Y axis.

https://doi.org/10.1371/journal.pone.0218425.g011
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When the fractional order is set as α = 0.9 and the disturbance is applied as random signal

d = [0.5�randn(1,1);0.5�randn(1,1)], the corresponding simulation results are shown in

Figs 3–10.

Fig 3 describes the trajectories of the system states. It is obvious that the tracking perfor-

mance is well achieved with the existence of external disturbance by the proposed adaptive

fractional fuzzy sliding mode control based on backstepping technique. Fig 4 plots the tracking

error of the microgyroscope system which converges to zero in a short time and guarantees

the asymptotical stability of the system. In addition, the tracking error under the condition of

α = 0.9 is demonstrated to be the lowest that will be introduced in detail below.

Fig 5 depicts the convergence of the fractional sliding surface s. It is intuitive that the sliding

surface converges to zero within a short time which ensures that the trajectory of the system

attains to sliding surface. In Fig 6, the time evolution of the input control signal is brought.

The chattering is effectively reduced as a result of the approximation for switching function of

fuzzy system. Fig 7 and Fig 8 draw the adaption of the system parameter matrix D and K
respectively. With persistent sinusoidal signals, the estimation of D and K have been verified to

converge to their true values which allows the existence of small range of errors. Fig 9 describes

the adaption of angular velocity whose estimate also converges to its actual value. Fig 10 and

Fig 11 depict the adaption of fuzzy parameter θh along X and Y axis respectively. It is obvious

that the parameter reaches a steady state after 40 seconds.

Fig 12 and Fig 13 plot the tracking trajectories and tracing errors of microgyroscope along

x-axis and y-axis respectively using integer sliding mode controller. It can be seen that the

Fig 12. Tracking trajectory using integer order sliding surface.

https://doi.org/10.1371/journal.pone.0218425.g012
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tracking performance also meet the expected requirements and the tracking error converges to

zero asymptotically. However, compared to previous fractional sliding mode controller, the

tracking performance seems to be a little inferior. In order to see the tracking performance

under different fractional orders and integer order visually, a universal standard is used to

quantify tracking error by calculating root mean square error (rms error). The rms error

reflects how much the measured value deviates from the true value. The smaller the rms error

is, the higher the measurement accuracy is. So, it can be a criterion to assess the tracking per-

formance of the control scheme under different orders. Table 1 shows the rms errors along x-

axis and y-axis under different fractional orders.

Fig 13. Tracking error using integer order sliding surface.

https://doi.org/10.1371/journal.pone.0218425.g013

Table 1. RMS errors of x and y axis under different fractional orders.

RMS ERROR

α
X Y

0.1 0.0134 0.0121

0.3 0.0156 0.0125

0.5 0.0157 0.0120

0.7 0.0149 0.0133

0.9 0.0129 0.0118

https://doi.org/10.1371/journal.pone.0218425.t001
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For fairness, the fractional order α is added in a ladder-type increase and the integer order

is set α = 1. It is intuitive to see that the fractional order has impact on tracking errors. When

fractional order α = 0.9, the rms error seems to be minimal that is why we choose α = 0.9 in

previous design procedure. In the case of α = 1, the rms errors along x-axis and y-axis are

0.0154 and 0.0131 which are slightly larger than the case of fractional order α = 0.9. This effec-

tively verified that the adaptive fractional fuzzy sliding mode control based on backstepping

technique is superior to the conventional integer order ones.

Remark: The computational cost of the proposed fractional order sliding mode control and

traditional integer order sliding mode control is about 2 minutes and 70 seconds.

Conclusion

An adaptive fractional fuzzy sliding mode controller for microgyroscope system based on

backstepping design is presented in this paper. The object of the controller design is to make

the output trajectory of microgyroscope track the reference trajectory accurately and effec-

tively. Compared to the earlier control methods such as AGC technique and PLL technique,

the proposed technique has advantages in terms of control accuracy and adaptability in engi-

neering applications. Unlike traditional SMC with integer order, a fractional differential slid-

ing surface is proposed which has more design freedom. Then a fuzzy system is incorporated

into fractional sliding mode control to attenuate the chattering in the sliding phase. Further-

more, adaptive estimators are used to identify the angular velocity and other unknown system

parameters. In order to find the best fractional order α for the system, simulations under dif-

ferent fractional orders are carried out, verifying the efficacy of the proposed control schemes.

In the future research, we will focus on the design of hardware circuits and control method,

build a test platform and complete the test of the microgyroscope system based on FPGA.
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