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SUMMARY

The worldwide penetration of electric bicycles has caused numerous charging ac-
cidents; however, online diagnosing charging faults remains challenging because
of non-standard chargers, non-uniform communication manners and inaccessible
battery inner status. The development of Internet of Things enables to acquire
the input current information of chargers in the cloud platform, thereby supply-
ing an alternative perspective to excavate underlying charge abnormalities.
Through analyzing 181,282 charge records collected from the power-grid side,
we establish an update-to-date deep neural network algorithm, which can auto-
matically capture these charge feature variables, determine their dependencies
and identify abnormal charge behaviors. Based on the only input current se-
quences, the algorithm can effectively diagnose the charging fault with the
average accuracy of 85%, efficiently ensuring the charging safety of more than
20 million E-bicycles after substantial validations. Besides, this diagnosis frame-
work can be extended to the real-time charge safety detection of electric vehicles
and other similar energy storage systems.

INTRODUCTION

As a supplemental and substantial transportation tool for commuting and short-distance trip, electric

bicycles (E-bicycles) have been progressively developed, and the global market is valued at more than

$40 billion in 2019.1 Owing to the convenience, mobility, maneuverability, operation economy and eco-

friendliness,2 more than 300 million E-bicycles in China3 and more than 3.7 million in Europe4 have

emerged. In particular, the COVID-19 pandemic further promotes E-bicycles sales by up to 145% during

2019 to 2020 under government guidance and supervised social-distance.4 An intrinsic challenge is that

wide operation of E-bicycles around the world has brought numerous charge safety problems, including

thermal runaway, explosion and even fire disaster.3,5,6 From 2015 to 2021, the annual safety accidents dur-

ing charging reach up to 10,000 cases in China.5 Hence, online monitoring and diagnosing charging

behavior and prognosing occurrence of accidents has become an urgent task waiting to be tackled.7 In

E-bicycles, lead acid batteries and lithium-ion batteries are usually deployed as the main energy storage

sources.8 For lead acid battery packs, a battery management unit (BMU) is usually not imperative because

of their safe operation capacity and inherent passive balance functionality.9 However, for lithium-ion bat-

teries, because of its high-demanding operation environment, a BMU is usually indispensable to monitor

and safeguard the operation status, thereby ensuring its normal operation and promoting the lifetime

extension.

The batteries inside E-bicycles are usually charged at home or on public charging facilities by converting

alternating current (AC) into direct current (DC) signal through a converter, referred to as battery charger.5

The compressed price of E-bicycles, especially in China, compels the manufacturers to pursue low-cost

charger. To the best of the authors’ knowledge, non-standard chargers, non-uniform battery management

communication protocols and inaccessible battery inner status information make it intractable to oversee

the charging state via a uniform manner. However, various electrochemical reactions and excessive abuses

of batteries will lead to failures and driving risks. For instance, deciduous positive active substances,10 dried

separators, dehydration, plate gate corrosion,11 anodes irreversible vulcanization and high rate charging12

can deteriorate the safety of lead-acid batteries. For lithium-ion batteries, mechanical collision, internal

short circuit, overcharge, over-discharge and overheating can easily lead to thermal runaway, fire combus-

tion, and even explosion.13–16 Although a variety of research has been attempted to design different con-

trolling schemes for E-bicycles to monitor and oversee the battery operation state,7–9 the all-functional
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BMU and temperature monitoring unit furnished in electric vehicles (EVs) are seldom deployed on

commercial E-bicycles.13,17 Commercial E-bicycle developers usually adopt simple control strategies in-

side charger and battery to implement charging and coarse safety control, such as overcurrent, overvoltage

and overheating protection. In the whole charging process, all the information cannot be acquired exter-

nally, and the system looks like a ‘‘black-box’’, and end-users are tricky to conduct safe charging control.

What is more, it is intractable for users and charging piles to know the charging mode, remaining capacity

and internal temperature, much less identifying state of health (SOH) and the internal failures of batteries.

As above discussed, the charging current, voltage and internal temperature of batteries are critical input to

facilitate the operation safety evaluation, wherein the charging current is directly determined by the

charging mode. To improve the utilization efficiency and prolong service life of batteries, various charging

modes are employed in practice based on various batteries’ chemistries, capacity and charging rate,8,18,19

such as constant-current (CC),20 constant-voltage (CV),21 multistage constant-current,21 pulse current,22

trickle constant current (TCC),20 etc. Such multiple charging modes and their combinations lead to the

characteristic diversification of charging current, augmenting the difficulty of detecting charging safety.

How to ensure the charging safety from complicated charging protocols, different batteries and inacces-

sible charging measures deserves to be further investigated from different perspectives. Because the

charging operation is accomplished through converting AC to DC occurring in the charger, and it is intrac-

table to access the information from the DC side, some necessary information for the AC side may possibly

be explored to find abnormal charging operations. With the development of Internet of Things (IOT), intel-

ligent charging piles progressively appear, and the input voltage and the output current (even both are the

alternating variables) can be processed to find some inherent relationships with respect to abnormal

charging operations. Motivated by this, we collected 181,282 charging records, which last more than

6 months and occur in 15k charging piles located in more than 300 cities, China, as shown in Figure 1A.

It can be found that the measured voltages are generally stabilized at 220 G 20 (V) because of the stability

capability of power grid, and the currents (effective values) are characterized by various amplitude, dura-

tion and dynamic changes, as shown in Figure 1B. These informative current features are far more than stan-

dard current protocols, as sketched in Figure 1C, which, nonetheless, can highlight the internal operation

state of batteries, charging modes and possible user behaviors. On the other hand, the current profiles

shown in Figure 1B still include some useful information that can be leveraged to identify abnormal

charging scenarios. However, such rich and uncertain features contained in the current time series data

also raise significant difficulties in manual charge mode definition, feature extraction as well as feature de-

pendency determination. To tackle this problem, we seek for the support of machine learning technolo-

gies, which can excavate the hidden variation rules of charging current modes. In addition, machine

learning algorithms enable to overcome the shortcomings of deterministic rules that can be incapable

of identifying the complicated abnormal operations in these massive charging data. On this account,

this study innovatively introduces an update-to-date algorithm, i.e., one dimensional convolutional neural

network (1D-CNN)23 and long-short term memory network (LSTM),24 to automatically capture these fea-

tures and their dependencies, and successfully evaluate the charging safety. The trained CNN-LSTMmodel

can be deployed on charging piles to perform real-time detection of the charging process and provide

early warnings for unsafe charging. The proposed machine learning based fault diagnosis algorithm can

supply precise charging fault with the accuracy of 85%, and efficiently promotes the charging safety of

more than 20 million E-bicycles. This non-invasive detection method does not need to acquire the opera-

tion mechanisms of E-bicycles, batteries and chargers, supplying a convenient and efficient solution to

charge safety supervision. In addition, the designed algorithm enables incremental training in the cloud

sever, and facilitates the deployment on charging piles through transfer learning without complementing

extra hardware on existing batteries, circuits and chargers. These efficient supervisions can advance the

development of IOT in E-bicycles, efficiently mitigate the charging safety concern and promote the

acceptance of E-bicycles. Furthermore, the designed detection method on charging piles can also be

extended to the real-time charging safety detection of four-wheeled EVs and other similar energy storage

systems.
RESULTS

We tracked the charging services of more than 3,000 charging piles for 6 months and randomly selected

181,282 original charging records. To identify the charging faults, the abnormal and normal charging sce-

narios are firstly defined, and then the designed advanced algorithms are leveraged to distinguish the

abnormal ones.
2 iScience 26, 105786, January 20, 2023



Figure 1. E-bicycle charging operation on charging pile and corresponding scenarios

(A) The locations of charging piles, E-bicycle charging implementation process on the pile and the charging monitoring

system on the cloudmonitoring system are described. As can be found, the charging piles are widely distributed in China.

(B) Various charging AC currents and voltages collected from charging piles are sketched. The X-axis and left and right

Y-axes represent the interval, current (A) and voltage (V), where the blue line and light blue part and the orange-red line

correspond to the AC current and voltage, respectively. Note that in the following current related figures, the X-axis and

Y-axis denote the same meaning.

(C) the classical charging DC current and voltage of lithium-ion and lead-acid batteries are elucidated.
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Current characteristics and classification

According to the operation mechanism of battery, the traditional charging modes usually involve CC, CV,

TCC and pulse current,20–22 and appear according to a specific sequence. For instance, CV charging does

not emerge before CC mode, and for the same E-bicycle, multiple CC modes with different charging cur-

rents seldom appear. Moreover, some modes, such as continuously rising charging current,11 mere TCC or
iScience 26, 105786, January 20, 2023 3
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Figure 2. Abnormal charging classes

(A) Class 1, charging current continuously rises after the CV sub-process, and CC-CV-CRC or CC-CV-CRC-CC charging appears.

(B) Class 2, less than 15% power is charged in the battery only in TCC, SCC-TCC, SCC-CV-TCC or CV mode.

(C) Class 3, multiple E-bicycles are charged in the same order, in which only multiple CCmodes emerge, as shown in subfigures (1) and (2), andmore charging

modes including multiply CC-CV appear in subfigures (5) to (15).

(D) Class 4, intermediate charging current of less than 0.6 A exists. In addition, the current difference of less than 0.3 A before and after temperature control is

classified as this class.
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CVmode usually indicate thermal runaway or battery failure.25 According to the normal charging manners,

current characteristics and possible multi-mode combinations, we define four abnormal charging scenarios

(referred to Classes 1 to 4) related to charging safety, and five normal charging manners (Classes 5 to 9).

Class 1

Continuous rising of current (CRC) after CV mode, as show in Figure 2A. Normally, after CC-CV or CV

charge, the whole charging process will end or enter into the TCCmode. However, because of loss of water

or internal high temperature in lead-acid batteries, the current may continue to rise, thus resulting in

possible thermal runaway.11

Class 2

Limited charged capacity (Less than 15% power).25 Usually, the charging process contains the CV and TCC

mode, whereas short CC (SCC) and CV-TCC (SCC-CV-TCC), SCC and TCC (SCC-TCC) may appear, as

depicted in Figure 2B. This could be caused by the degradation or failure of battery as well as the fault

of charger.

Class 3

Multiple E-bicycles or other devices are charged in turn or simultaneously, as shown in Figure 2C. From the

AC side, we do not allow the multi-charging because it may exceed the maximum allowed charging power.

Charging multiple E-bicycles or other devices in the sequential charging order through external wires and

sockets may result in overheating or other unsafe events. In this case, the charging modes, such as several

different CC (subfigures (1) and (2)), CC-CV and another CC (subfigures (3), (4) and (5)), and multiple

different CC-CV modes (subfigures (6) to (9)) may appear. The modes that multiple E-bicycles are charged

simultaneously involve the combination of CC (CC1) and CC-CV (CC2-CV2) (as shown in subfigures (10) and

(11)), CC1-CC2-CV2-CC1-CV1 (subfigures (12) and (13)), and CC1-CC2-CV2-CC1 (subfigures (14) and (15)).

Class 4

Intermediate charging current of less than 0.6 A, as shown in Figure 2D. Too high ambient temperature may

trigger the protection of charger, and loose contacts will interrupt the charging. When the current differ-

ence before and after temperature control is less than 0.3 A, the same E-bicycle charging will be consid-

ered. The interruption of charging will induce that less expected power is charged to battery, and charging

at higher external temperature will be prone to thermal runaway and accelerate the deterioration of

battery.

Classes 5 to 9

Normal charging process, including CC-CV-TCC charge (Class 5, Figure 3A), CC charge (Class 6, Figure 3B),

CC-CV charge (Class 7, Figure 3C), TCC-CC, TCC-CC-CV and TCC-CC-CV-TCC charge (Class 8, Figure 3D),

as well as pulse charge (Class 9, Figure 3E). Generally, these charging manners are designed to satisfy the

charging requirements of various E-bicycles according to the statistical analysis. As can be found, most of

normal scenarios include CC modes.
Recognition result

In this article, the built CNN-LSTM model, constituted with 1-dimensional convolutional neural network

(1D-CNN),23 long-short termmemory network (LSTM)24 and one full connection (FC) layer with the Softmax

function,26 is employed to achieve the recognition of these normal and abnormal charging scenarios. To

avoid the disappearance of back-propagation gradient caused by excessive CNN layers and the difficulty

of obtaining features with long duration because of the limited CNN layers, the 1D-CNN stacks 3 pooling

layers to capture various features with different durations in the current sequence. Meanwhile, the diversity
iScience 26, 105786, January 20, 2023 5



Figure 3. Normal charging process

(A) Class 5, CC-CV-TCC represents a typical lead-acid battery charging mode.

(B) Class 6 only contains the CC mode.

(C) Class 7, CC-CV describes a classical lithium-ion battery charging mode.

(D) Class 8. A TCC charging mode emerges before the normal charging modes CC, CC-CV and CC-CV-TCC, and is usually employed to preheat the battery.

(E) Class 9 demonstrates various pulse charging models with different duty cycles and pulse amplitudes.
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of features also requires a certain number of convolution kernels for detection. Therefore, the number of

CNN kernels in each layer is respectively set to 16, 32, 48 and 64 to prevent redundancy of kernels and

determine the optimal number of kernels and training iterations. Then, the LSTM and FC layer further

discover the dependencies of features and conduct classification, and the training procedure is demon-

strated in Figure 4. During model training, the losses of objective functions of CNN-LSTMs with different

kernels continue to decrease with the increase of iteration, and the classification accuracies increase

steadily. However, in the validation set, the loss function undergoes the convergence and the consequent

rising, which correlate with the procedure of CNN-LSTM from under-fitting to stability and following over-

fitting. During this period, the loss during the validation fluctuates more obviously than that during training,

and then it gradually reduces to a steady range. Based on the analysis of the convergent loss and accuracy

on the validation set, the optimal iterations can be determined, that is, 70, 50, 40 and 40 correspond to 16,

32, 48 and 64 CNN kernels, respectively.

The identification of features and feature dependencies is shown in Figure 5A. For the input current

sequence, the stacked CNN layer firstly extracts the features with different lengths, and then LSTM further

recognizes the dependency among features. For instance, when the CNN recognizes the characteristics of

CV and CRC, the LSTM further identifies their dependency relationships, and the Softmax function deter-

mines the sequence with CV-CRC characteristics as Class 1 with higher probability. Based on the optimal

iterations, the recognition performances with different kernels on the test set are depicted in Figure 5B,

where the precision, recall and F1-score denote the recognition precision, coverage and harmonic mean

value. It can be seen the average precisions (recalls) of CNN-LSTMs with 16, 32, 48 and 64 kernels are

0.80 (0.81), 0.82 (0.83), 0.83 (0.82) and 0.86 (0.85), respectively, and the F1-scores reach 0.80, 0.82, 0.82
6 iScience 26, 105786, January 20, 2023



Figure 4. Feature identification and their dependencies of different classes, Precision, Recall, F1-score, and confusion matrixes on test dataset

with 16, 32, 48 and 64 CNN kernels and other optimal parameters

(A) Feature identification and their dependencies of different classes.

(B) The precision, recall and F1-score. The X-axes describe Classes 1 to 9 and Y-axes correspond to their detection Precision, Recall and F1-score, which are in

the range of 0 to 1. CNN-LSTMs with 16, 32, 48 and 64 CNN kernels are depicted with green, blue, lavender and orange-yellow bars, respectively.

(C) The confusion matrixes with 16, 32, 48 and 64 CNN kernels on each convolution layer. The X-axis and Y-axis of each confusion matrix describe the real

classes and the detection results of CNN-LSTM, and the diagonal elements are true positives.
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and 0.85. Overall, the losses of CNN-LSTMs with different kernels highlight convergence on the validation

set, and the recognition performances of various classes are relatively stable and balanced on the test

dataset. The results indicate that even though the number of convolution kernels is different, the proposed

CNN-LSTM can still automatically acquire and identify various features in the current sequence, and

evaluate the dependencies between features. In addition, it is critical to address the classification of the

current sequences when various uncertain features emerge. Furthermore, more kernels contribute to

more data feature acquisition andmore subtle changes and dependencies between features, thus promot-

ing better performance with less training iterations. Through sufficient comparisons between identification

precision and computation intensity, the CNN-LSTM with 64 kernels achieves the optimal performance

and a preferable trade-off on recall and precision on most of categories, except Classes 4 and 8. This

superior performance in average recognition accuracy of over 80% is mainly raised by the stacked

CNN-pooling layers, which enable the tailored CNN-LSTM to capture the inherent relationships with

short and far distances and extract them into features. The acquisition of such features and feature depen-

dencies avoids the labor intensity and inaccurate manual definition, and the exploitation of LSTM further

discovers the dependencies among features, which are all conducive to the accurate classification of the

FC layer.

To observe the misidentification, the confusion matrixes of CNN-LSTMs with different parameters are con-

structed, as shown Figure 5C. We can find that the CNN-LSTM under different parameters achieve

outstanding performances. However, it is prone to misclassification of Classes 4 and 3, whereas Class 8
iScience 26, 105786, January 20, 2023 7



Figure 5. The training and validation process with 16, 32, 48 and 64 kernels under 100 iterations

(A–D) The loss and accuracy of training and validation with different kernels are described. The X-axis and Y-axis represent the number of iterations and loss/

accuracy, respectively, wherein the accuracy ranges from 0 and 1. The blue solid line and the orange dashed line denote the loss and accuracy of the training

dataset, the red and green dashed lines correspond to the loss and accuracy on the test dataset, and the light red and light green parts are related to the

fluctuation range of the loss and accuracy. The losses of CNN-LSTMs with 16, 32, 48, and 64 convolution kernels during training continue to decline and the
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Figure 5. Continued

accuracies gradually increase. However during validation, the loss initially decreases with fluctuation to a certain threshold, and then it starts to

converge to a stable range and increases again. Meanwhile, the precision increases to a steady value. Once the loss on the validation dataset converges

steadily, redundant training will contribute less to the accuracy promotion and may cause over-fitting. Finally, 70, 50, 40 and 40 are selected as the

optimal iterations for CNN-LSTM with 16, 32, 48 and 64 kernels.
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may be mistakenly classified into Classes 3 and 4, especially when the number of kernels is lower than 48.

Meanwhile, because Classes 5 and 6 involve CC-CV-TCC and CC modes, and when the charging time of

TCC, CC-TCC, or CV is short, Classes 5 and 6 may be mistakenly classified into Classes 7 and 8 in the

case of 48 kernels. By referring to definitions and the descriptions of Classes 4 and 3 in Figure 5A, if the

current values before and after temperature control (Class 4) are different, Class 4 may be misrecognized

into multiple charging processes (Class 3). Moreover, when the concave shape of Class 1 is not obvious, the

features of CC-CRCmay be considered as normal CC charge (Class 6) or CC-CV charge operation (Class 5).

Instead, if the concave shape is obvious, this process may be considered as two charge processes (Class 3).

Similarly, Class 8 contains a TCC stage with the current of less than 0.6 A, which is prone to be mistakenly

classified as Classes 3 and 4. Despite the listed possible false identifications, CNN-LSTM still performances

well, especially when identifying abnormal charging operations.
DISCUSSION

Based on the proposedmachine learning algorithm, efficient diagnosis of abnormal charging operations of

E-bicycles can be efficiently attained. Through in-depth analyzing the current profiles of more than 180k

charging records, four abnormal charging patterns and five normal patterns are clearly defined. Based

on only the input of charge current, a well-designed machine learning algorithm with the incorporation

of multiple neural networks is implemented to effectively identify the abnormal charging operations. In

the proposed framework, a 1D-CNN with 4 layers, a LSTM and a FC layer are stacked together to attain

the recognition of classes. Because the number of convolution kernels and stack depth are strongly corre-

lated with the features in the charging data, themore complex features and dependences, themore convo-

lution kernels and deeper stacks are required. In the case of uncertain characteristics and dependences, we

gradually increase the number of convolution kernels to observe the performance of the model. In terms of

convolution and pooling layers, the LSTM and one full connection layer is stacked to generate the detec-

tion model, and the precision, recall and F1-score are applied to evaluate the recognition performance.

The proposed method enables preferable charge fault identification with the average accuracy of 85%.

Through this innovative manner, some hidden hazardous charging faults can be diagnosed in time.

Compared with our similar study results based on the longest similar substring and dynamic time warping

model,27 the model is more robust and does not need to manually define charge abnormal features. In

particular, the designed method does not entail the detailed state of battery from the DC measure, result-

ing in easy online implementation potential. In addition, the proposed manner does not need to extract

some characteristic features, thereby simplifying the application complexity. Thanks to these obvious

merits, the method can be easily extended to the similar application scenarios, such as four-wheeled

EVs and energy storage systems of power grid.
Conclusion

In this study, a non-invasive active diagnosis strategy to supervise the charge safety of E-bicycles is devel-

oped based on machine learning technologies. By means of analyzing the 181,282 charging records ac-

quired from the AC side, and their inherent informative features are in-depth addressed. Because of the

characteristics of uncertain features and unequal lengths of the current data, an update-to-date machine

learning algorithm based on CNN-LSTM is introduced to automatically capture these features and quantify

their dependencies. All of these functionalities avoid the problems of manually selecting features and the

weights as well as aligning features. This non-invasive detection scheme can be simply deployed on cloud

monitor center, effectively diagnose the charging fault with the accuracy of 85%, and ensure the charging

safety of more than 20 million E-bicycles after substantial validations. These IOT based effective supervi-

sion can efficiently mitigate the concern of charging safety and promote the prevalence of E-bicycles. In

addition, it enables incremental training in the cloud server, and facilitates the deployment on the charging

piles through transfer learning without complementing extra hardware on the existing batteries, circuits

and chargers. In the premise of sufficient data, the autonomous learning and fault diagnosis capability

in CNN-LSTM can be easily applied in charging protection of four-wheeled EVs and energy storage

systems of power grid.
iScience 26, 105786, January 20, 2023 9
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Limitations of the study

Even though the proposed scheme showcases many advantages, some limitations are indispensable to be

brought: (1) Limited accuracy, even it is relatively high (0.85), can be achieved based on the algorithm.

Because of the limited information and a mass of uncertainties, it is difficult to reach higher identification

efficiency without the support of the DC side input. With more input from the direct measure of batteries,

the proposed method can further contribute to fault diagnosis and prognostics during the charge opera-

tion. (2) The calculation expense is relatively high for the embedded terminal with limited computation and

storage resources (charging pile). The algorithm needs to be installed on the cloud monitoring center. For

each pile undergoing the charge operation, the algorithm will be executed for one time. When we monitor

the charging process for more than 20 million E-bicycles, some unnecessary calculation will be resulted. (3)

Because the state and temperature of the battery cannot be collected, some unsafe charging scenarios

cannot be fully recognized, based on only the current and voltage measure from the charging piles. For

instance, the fast increase of charge voltage on the battery may not immediately lead to the current or

voltage variation in the charging pile side. Hence, how to identify the immediate thermal failure in a timely

manner needs to be further investigated. Indeed, those limitations are certainly the focus of our next-step

research.
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Materials availability

This study did not generate new materials.

Data and code availability

d The experimental data (charging current data) have been deposited on our GitHub repository (https://

github.com/KUST-traffic/Chunyan-Shuai) and are publicly available.

d All original code has been deposited on our GitHub repository (https://github.com/KUST-traffic/

Chunyan-Shuai) and is publicly available as of the date of publication. DOIs are listed in the key resources

table.

d Any additional information required to reanalyze the data reported in this work paper is available from

the lead contact upon request.
METHOD DETAILS

Model input and output

The whole identification process is shown in Figure S1 in the supplemental information. As can be found,

the current sequences are firstly normalized. Then, together with the corresponding charging mode clas-

sification results, the normalized current data are divided into small batches and inputted into the CNN-

LSTM algorithm for model training and cross validation. When the training termination condition is

reached, the optimal model parameters can be obtained, and the model is determined. The model output

is the charge classification result numbered from 1 to 9.

Data and evaluation indicators

We analyzed 181,282 original charging records, and after initial analysis, the incredible data, such as

abnormal voltage measure and current of exceeding 4 A, are eliminated. In the remaining data records,

the normal charging data accounts for 84%. In order to make each category well-balanced and prevent

the normaldata from drowning other types of data, we screened the data and kept 12,309 records for

model training and performance validation. Since the time interval of the acquired pile data is 90 seconds

and the time length of different orders is different, 12.5 hours are enough for most charging orders. On this

account, we unified the length of charging current to 500 by filling in zero at the end. Meanwhile, the

maximum and minimum standardization is applied in the dataset to avoid prediction accuracy incurred

by different scale value, as:

c0ij =
cij � minðci1; ci1; :::cilÞ

maxðci1; ci1; :::cilÞ � minðci1; ci1; :::cilÞ (Equation 1)
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where l represents the length of the ith current data, and cij is the jth current values. To evaluate the accu-

racy, coverage performance and their recognition, three indexes, including precision, recall and F1-score

are employed evaluate the performance of the proposed model, as:

precision =
true postives

true postives+ false postives
(Equation 2)
recall =
true postives

true postives+ false negatives
(Equation 3)

and

F1 � score =
2 � precision � recall
precision+ recall

(Equation 4)

Objective function

Given the charging current time serials C = ðc1; :::;ctÞ, feature sequence X = ðx1; :::; xT Þ and category tag

sequence Y = ðy1; y2; :::; ysÞ (s is the number of classes), where the lengths of the current and feature se-

quences may be different, the first characteristic sequence X needs to be learned from the original current

sequence C. The purpose of feature sequence classification is to categorize a given length sequence into a

most likely specific class according to the maximum logarithmic likelihood method. The objective function

is defined as:

max
q

1

N

XN
n = 1

XTn
j = 1

log p
�
yi
��xn1 ; :::; xnT � 1; x

n
T ; q
�

(Equation 5)

where yi ˛Y , T is the length of the feature sequence,N is the number of the train dataset, and q is the set of

super-parameters for the model learned from the data.
Overall structure of detection

With the objective function (5), the overall structure of detection based on CNN-LSTM is established, as

described in Figure S2A in the supplemental information. The filtered and cleaned current sequence is

input into the CNN-LSTM to make diagnosis, and the algorithm contains three 1D convolution and max

pooling layers, two LSTMs and one full connection layer with the ‘‘Softmax’’ and ‘‘Cross-Entropy’’ loss func-

tion.26 The stacked three convolution-pooling layers with multiple kernels gradually obtain inherent tem-

poral features of the current sequence, and then the two LSTMs further capture such feature associations

with different time tags. Finally, the outputs of the last LSTM are identified in the full connection layer with

the ‘‘Softmax’’ function to achieve multiple classification. Figures S2B and S2C in the supplemental infor-

mation describe the 1D convolution and max-pooling operation and the structures of LSTM in detail.
One dimensional convolution and pooling

Thanks to its strong ability in capturing the spatial correlation between natural language semantics and im-

age pixels, CNN has been successfully applied to natural language processing and image recognition.28,29

In the 1D time series, the temporal relation of data before and after processing is equivalent to the spatial

relation. In order to efficiently capture numerous unknown abstract features of the charging current, the

1D-CNN30 is employed, which contains 3 convolution layers and each layer has multiple kernels. Given a

convolution kernelW = ðw1;:::;wkÞ;wi ˛R, for It = ðxt ;:::;xt + kÞ;t = 1;:::;T , the 1D-CNN can be formulated,

as:

OðxtÞ = f

 X
k

It 1W + b

!
; t = 1; :::;T (Equation 6)

where b˛R denotes the bias vector, and f ð ,Þ is the activation function, which is usually a rectified

linear unit (ReLU) or parameter ReLU. 1 denotes the dot product of the corresponding positions of It
and W , and

P
k It1W can be formulated as It 5 W . For the ith convolution kernel of the lth layer with

Wi
ðlÞ ˛R13k and bi

ðlÞ ˛R, the output of the convolution operation equals

OðlÞ
i ðxtÞ = f

�
Oðl� 1Þ

i ðItÞ5W ðlÞ
i + bðlÞ

i

�
(Equation 7)
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whereO
ðl� 1Þ
i is the output of the previous layer. After the convolution layer, a pooling layer is implemented

to reduce the dimension of output and obtain more abstract features. In the proposed method, the

maximum pooling scheme with four steps is applied on the output of convolution layer,31 as:

OðlÞ
i

�
xj
�
= max

�
OðlÞ

i ðxtÞ;OðlÞ
i ðxt +1Þ;OðlÞ

i ðxt + 2Þ;OðlÞ
i ðxt + 3Þ

�
;0 % t % T ;0 % j%T

.
4 (Equation 8)

In addition, three convolution pooling layers are stacked to capture more abstract features and their

dependencies.
LSTM

To avoid gradient disappearance or gradient explosion caused by excessive convolution pooling layers,

LSTM is stacked after the last convolution pooling layer to obtain the linear and nonlinear dependency re-

lationships between features.24,32,33 LSTM learns long- and short-term dependent relationships of the data

by recurrent structure and multiply gates, involving input gate (in), output gate (o), forget gate (f), memory

unit (h) and state gate (c). For the input xt, the outputs of all gates and units are expressed as:8>>>><
>>>>:

int = sðWxixt +Whiht� 1 +biÞ
ft = sðWxf xt +Whf ht� 1 +bf Þ
ct = ft1ct� 1 + int1tanhðWxcxt +Whcht� 1 +bcÞ
ot = sðWxoxt +Whoht� 1 +boÞ
ht = ot1tanhðctÞ

(Equation 9)

where s is sigmoid function, Wxj and bj , j˛ fi; f ; c;og are the weight and bias of the corresponding gate or

unit, and ct� 1 and ht� 1 are the output of thememory unit ht and state gate of xt� 1. Considering LSTM exists

the inaccessible problem of the long-term lags,34 two LSTMs are stacked to capture the dependencies with

long terms.
Full connection layer

A full connection layer with ‘‘Softmax’’ and ‘‘Cross-entropy’’ loss function is added to the last LSTM to

achieve multiple classification.26 During model training, back propagation and batch gradient descent al-

gorithm are adopted to update the weights of CNN, LSTM and the full connection layer, and the optimal

parameters are obtained through multiple iterations, as:

soft maxðhtÞ = pðyijhtÞ =
expðwihtÞPS

s = 1 expðwshtÞ
(Equation 10)

Framework and training process

In the proposed 1D-CNN with 4 layers, LSTM and a full connection layer are stacked to attain the recogni-

tion of classes. Since the number of convolution kernels and stack depth are strongly correlated with the

features in the charging current data, the more complex features and dependences, the more convolution

kernels and deeper stacks are required. In the case of uncertain characteristics and dependences, we grad-

ually increase the number of convolution kernels to observe the performance of the model. In terms of

convolution and pooling layers, an LSTM and a full connection layer are stacked to form the detection

model, and the precision, recall and F1-score are applied to evaluate the recognition performance.
14 iScience 26, 105786, January 20, 2023


	ISCI105786_proof_v26i1.pdf
	Promoting charging safety of electric bicycles via machine learning
	Introduction
	Results
	Current characteristics and classification
	Class 1
	Class 2
	Class 3
	Class 4
	Classes 5 to 9

	Recognition result

	Discussion
	Conclusion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Model input and output
	Data and evaluation indicators
	Objective function
	Overall structure of detection
	One dimensional convolution and pooling
	LSTM
	Full connection layer
	Framework and training process





