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Abstract MFN2 encodes mitofusin 2, a membrane-bound mediator of mitochondrial membrane

fusion and inter-organelle communication. MFN2 mutations cause axonal neuropathy, with

associated lipodystrophy only occasionally noted, however homozygosity for the p.Arg707Trp

mutation was recently associated with upper body adipose overgrowth. We describe similar

massive adipose overgrowth with suppressed leptin expression in four further patients with biallelic

MFN2 mutations and at least one p.Arg707Trp allele. Overgrown tissue was composed of normal-

sized, UCP1-negative unilocular adipocytes, with mitochondrial network fragmentation,

disorganised cristae, and increased autophagosomes. There was strong transcriptional evidence of

mitochondrial stress signalling, increased protein synthesis, and suppression of signatures of cell

death in affected tissue, whereas mitochondrial morphology and gene expression were normal in

skin fibroblasts. These findings suggest that specific MFN2 mutations cause tissue-selective

mitochondrial dysfunction with increased adipocyte proliferation and survival, confirm a novel form

of excess adiposity with paradoxical suppression of leptin expression, and suggest potential

targeted therapies.

DOI: 10.7554/eLife.23813.001

Introduction
Adipose tissue is critical for metabolic homeostasis, and either global excess (obesity) or pathologic

deficiency (lipodystrophy) lead to metabolic disease. Anatomically distinct adipose depots vary in

embryological origins, gene expression profiles and patterns of hormonal regulation

(Tchkonia et al., 2013), but many questions about the determinants of adipose depot differences,

and their importance for metabolic regulation, remain unanswered. In studies of human metabolic

disease, attention focussed for many years on visceral white adipose tissue, and on femorogluteal

subcutaneous white adipose tissue, however interest has recently increased sharply in upper body

subcutaneous adipose tissue, especially in interscapular and supraclavicular regions, where both obli-

gate and facultative thermogenic adipocytes have been shown to exist under some circumstances

(Betz and Enerbäck, 2015).

Since the mid 19th century a devastating but rare disease characterised by a selective, massive

and sometimes life-threatening increase in upper body adipose tissue has been known (Bro-

die, 1846; Herbst, 2012; Madelung, 1888). This disease is called either multiple symmetrical lipo-

matosis (MSL) or Madelung’s disease. Although the degree of adipose overgrowth seen may be

spectacular, it varies in distribution (Herbst, 2012) and the underlying pathogenesis, which is cur-

rently poorly understood, is likely to be heterogeneous. Previous studies have suggested hyperplasia

of adipocytes which manifest impaired catecholamine-induced lipolysis (Enzi et al., 1977), and later

structural studies of pathologically increased adipose tissue have suggested that it is composed of

adipocytes with some morphological and metabolic features of dysfunctional brown adipocytes

(Enzi et al., 2015). However MSL is not precisely defined, and phenotypic heterogeneity is apparent.

People with MSL frequently exhibit variable additional features including peripheral neuropathy,

autonomic neuropathy, non-alcoholic fatty liver disease and/or alcoholic liver disease, dyslipidaemia,

and type 2 diabetes (Herbst, 2012). In some patients upper body adipose overgrowth contrasts

with concomitant lipodystrophy in the femorogluteal region (Herbst, 2012). Physiological studies

have described elevated resting energy expenditure, altered lipolytic rates and perturbed adipokine

levels, however these findings have tended to vary, consistent with pathogenic heterogeneity

(Herbst, 2012).

Sporadic MSL has been strongly linked to chronic alcohol excess (Enzi et al., 2015), and in rare

cases is seen in the mitochondrial myoclonus epilepsy and ragged red fibers (MERRF) syndrome,

accounted for in most cases by the mitochondrial tRNA(Lys) A8344G mutation (Chong et al., 2003).

These observations led to the suggestion that mitochondrial dysfunction may be an important path-

ogenic factor in MSL. In 2015, a homozygous missense mutation, p.Arg707Trp, was identified in

MFN2, or mitofusin 2, in three patients with MSL and neuropathy from two families (Sawyer et al.,

2015). Mitofusin 2 is a nucleus-encoded mitochondrial outer membrane protein involved in mito-

chondrial fusion, mitochondrial interactions with the endoplasmic reticulum (Naon et al., 2016), and

other aspects of cellular metabolism (de Brito and Scorrano, 2008; Zorzano et al., 2015). Arg707

lies in the carboxy-terminal coiled coil domain HR2 of mitofusin 2 that is believed to be critical for
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homotypic and heterotypic interactions of mitofusin 2 (Franco et al., 2016; Koshiba et al., 2004)

with counterparts on other organelles, leading to the suggestion that the p.Arg707Trp mutation

may compromise outer mitochondrial membrane fusion (Sawyer et al., 2015).

MFN2 p.Arg707Trp is the only reported cause of Mendelian MSL to date, however the nature of

the associated adipose pathology, and the mechanism linking this mutation to MSL is unknown. We

now describe four further patients with MSL associated with biallelic MFN2 mutations, in all cases

including at least one p.Arg707Trp allele, investigate key aspects of their intermediary metabolism,

and examine the microscopic and transcriptomic derangements in affected adipose tissue. We

thereby provide a monogenic example of primary, apparently tissue-selective mitochondrial dysfunc-

tion leading to insulin resistance, and describe a form of leptin deficiency in the face of severe upper

body obesity. Our findings yield novel insights into the role of mitofusin 2 in adipocyte energy

metabolism and proliferation in humans in vivo, and suggest targeted treatments for MSL that war-

rant further assessment.

Results

Case histories
Four patients of European ancestry from three families were studied. The first patient (P1) presented

to medical attention at 5 years old with increasing upper body adiposity. Despite repeated attempts

to reduce food intake this progressed throughout childhood in tandem with loss of lower body adi-

pose tissue. She also developed axonal peripheral neuropathy and secondary foot contractures,

requiring corrective surgery at the age of 17 years. By the age of 18 years, her body mass index

eLife digest Obesity and the diseases associated with it are among the biggest healthcare

problems in developed countries. The word obesity means, simply, the accumulation of too much fat

tissue in the body, but this ignores growing evidence that fat tissue is highly complex. Fat tissue is

important for “mopping up” and storing excess calories safely, but also sends messages to the brain

and other organs to report how full the body’s energy stores are. Understanding how fat tissues

perform these roles will aid the development of strategies to treat or prevent obesity.

A hormone called leptin acts as a signal of the status of the body’s fat stores. High levels of leptin

in the blood tell the brain that the body has plenty of fat stored. On the other hand, if the levels of

leptin in the blood become very low it tells the brain to prioritize finding food and shut down any

nonessential processes. This helps to prevent the body from starving. It is not clear how the

production of leptin is controlled, in part because fat tissues in different parts of the body behave

very differently.

Individuals who have a particular rare genetic mutation accumulate large amounts of fat tissue in

their upper bodies and gradually lose fat tissue in their arms and legs. Despite accumulating a lot of

fat tissue in the upper body, these individuals have extremely low levels of leptin in their blood. To

investigate this genetic condition, Rocha et al. studied two children with the mutation and their

healthy parents.

The experiments show that this mutation alters a protein called mitofusin 2, which is found in cell

compartments called mitochondria. Mitofusin 2 helps the mitochondria to bind to each other and to

other parts of the cell, which is important for the mitochondria to generate the energy needed for

vital cell processes. The mitochondria in the fat cells of the children are less closely linked to each

other and have an unusual appearance compared to the mitochondria in the parents’ fat cells.

Further experiments showed that some genes, including the one that produces leptin, are less active

in the children compared to their parents – while other genes that are involved in starvation or stress

responses are more active.

This work suggests that mitochondria play an important role in regulating the production of

leptin. Furthermore, it suggests that leptin or drugs that switch off stress-related genes may have

the potential to be used to treat individuals with this particular mutation.

DOI: 10.7554/eLife.23813.002
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(BMI) was 33 kg/m2 due to massive upper body adiposity, which contrasted with near absence of

femorogluteal, leg and distal arm adipose tissue (Figure 1A). She also had primary amenorrhea with

clinical, biochemical and imaging-based evidence of partial hypogonadotropic hypogonadism

including retarded bone age, delayed development of secondary sexual characteristics, and a small

uterus, all in the context of relatively low luteinizing hormone (LH), follicle stimulating hormone (FSH)

and estradiol levels (Table 1).

The parents of P1 (aged 43 and 51 years) were clinically unaffected. Exome sequencing in the

family trio was undertaken and directly interrogated to look for mutations in MFN2, given the known

association of MFN2 with axonal neuropathy, and its recently reported association with MSL

(Sawyer et al., 2015). This revealed compound heterozygous mutations (p.Arg707Trp and p.

Arg343del) in MFN2 (MIM*608507) in P1, whereas her parents were single heterozygotes.

Patients P2 and P3 were more mildly affected. These patients, a 17-year-old female (P2) and a 16-

year-old male (P3), were siblings from a multiply consanguineous family of Irish ancestry. Only the

two affected siblings and their unaffected parents were available for genetic study, however multiple

family members across three generations of the family were reported to have developed progressive

overgrowth of adipose tissue in the upper back and chest, head and neck, from early in their second

decades. Two older relatives required long term tracheostomies due to airway occlusion by over-

grown neck adipose tissue, with MRI in one demonstrating diffuse fatty infiltration of the tongue and

a lipomatous mass in the supraclavicular fossa. A paternal uncle was reported to have died peri-

operatively after airway problems related to adipose overgrowth in his fourth decade, while three

further relatives were reported to show a similar pattern of head and neck adipose overgrowth. One

of these had been demonstrated to have severe sensorimotor axonal neuropathy (Figure 1—figure

supplement 1).

In keeping with the familial pattern of overgrowth, P2 and P3 developed striae, or stretch marks,

over their upper back, together with adipose overgrowth and concomitant loss of fat from the limbs

around the age of 13 years old. Examination of P2 at 16 years old showed mild loss of adipose tissue

in the forearms, with abnormal adipose tissue accumulation around the neck, upper back, and upper

arms. P3, examined at the age of 15 years old was more mildly affected, but showed dorsal striae,

mild adipose tissue loss from the forearms, a prominent dorsal fat pad or ‘buffalo hump’ and

increased adipose tissue in the anterior neck. Neither sibling showed any other clinical abnormalities,

with age-appropriate progression through puberty, and normal nerve conduction studies.

Given parental consanguinity for all affected family members, an autosomal recessive mode of

inheritance was hypothesized. Exome sequencing was undertaken for P2, P3 and their parents, and

the p.Arg707Trp mutation in MFN2 was identified in homozygous form in both P2 and P3, and in

heterozygous form in both parents.

The final patient, P4, was evaluated at 17 and 37 years old. She first reported increased head and

neck adiposity with increased muscularity of her extremities around 13 years old. This progressed

over ensuing years, with striking accumulation of upper back and anterior neck adipose tissue associ-

ated with severely increased appetite and frequent food craving behaviours. Other symptoms

included male pattern hair growth, an irregular menstrual cycle, and acanthosis nigricans, all sugges-

tive of insulin resistance, as well as leg cramps after exercise, and burning and tingling sensations in

hands and feet. On evaluation at 17 years old she was overweight with highly dysmorphic accumula-

tion of truncal, head and neck adiposity (Figure 1B), extending to the pubic region. This contrasted

with a paucity of adipose tissue on the limbs, which were muscular with prominent superficial veins.

Adipose tissue removed surgically for cosmetic purposes was noted to be highly vascular and lobu-

lated. She was subsequently lost to follow up until 37 years old. At that stage her dominant prob-

lems were distressing upper body adipose accumulation with back pain exacerbated by scoliosis,

with leg cramps as well as burning and tingling in hands and feet. Menstrual bleeds were irregular,

but she had had one successful pregnancy. Abnormally increased appetite persisted, but was less

striking than during adolescence.

Sanger sequencing of MFN2 was undertaken in P4 and her unaffected father, although her

mother (not knowingly related to her father) was unavailable. P4 was found to be homozygous for

the MFN2 p.Arg707Trp mutation, while her father was heterozygous.
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Figure 1. Multiple symmetrical lipomatosis associated with biallelic mutations in MFN2. (A) Profile of P1, showing upper body adipose overgrowth and

loss of adipose tissue and muscle from legs (left) and T1-weighted coronal MRI image of P1, highlighting excess upper body fat (right). (B) Profile of P4,

showing upper body adipose overgrowth (left) and T1-weighted MRI images highlighting excess lower abdominal adipose tissue and a paucity of

adipose tissue at the mid femoral region. (C) Linear depiction of human MFN2, highlighting regions contributing to key structural domains. (D)

Figure 1 continued on next page
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Figure 1 continued

Structure of a GTP-bound, extended tetramer (dimer of dimers) of Bacterial Dynamin-Like Protein (BDLP) as a model of human MFN2. Monomers are

distinguished in yellow and blue and HR2 domain in green. The MFN2 mutations are shown in red. (E) Homology model of antiparallel homodimer of

HR2 domains rendered in surface presentation with the individual monomers coloured in yellow and green and the charged atoms of residues R707

and D742 in blue and red. (F) Plasma non-esterified fatty acid (NEFA) concentrations in P1 (at age 18 (1) and 20 (2) years), P2 and P3 before and after a

75g oral glucose load. Data from 770 obese adolescents and 22 obese adolescents with type 2 diabetes (Hershkop et al., 2016) are shown as controls.

(G) Quantitative real-time PCR of interscapular adipose biopsies from P2 and P3, expressed as fold change from five female controls. (H) Immunoblots

from patient and control adipose lysates for adiponectin (ADIPOQ), perilipin 1 (PLIN1), perilipin 2 (PLIN2), and mitofusin 2 (MFN2). TATA-binding

protein (TBP) and b-actin (ACTB) were used as loading controls. (I) Assessment of adipocyte size in interscapular adipose tissue. Representative

haematoxylin and eosin-stained interscapular adipose tissues from a patient and a control are shown on top. Scale bars = 100 mm. The bottom left

chart shows adipocyte size distribution analysis with bars indicating percentages of cells in the specified area range. The chart on the right shows

cumulative frequencies. �500 adipocytes analyzed per biopsy.

DOI: 10.7554/eLife.23813.003

The following figure supplements are available for figure 1:

Figure supplement 1. Pedigree diagram for P2, P3.

DOI: 10.7554/eLife.23813.004

Figure supplement 2. GTP/GDP-dependent conformations of MFN2 modelled on homology to Bacterial Dynamin-Like Protein.

DOI: 10.7554/eLife.23813.005

Figure supplement 3. Expression of perilipin in affected adipose tissue.

DOI: 10.7554/eLife.23813.006

Table 1. Biochemical profiles of probands P1-4. MRS = Magnetic Resonance Spectroscopy; USS = Ultrasound scanning.

P1 P2 P3 P4 Reference range

Age at time of assessment - years 18 17.8 16.7 17

Age at first presentation - years c.5 c.12 c.13 c.13

Height – m 1.63 1.58 1.62 1.63

Weight – kg 88.4 61.6 53.6 72

BMI - kg/m2 33.0 24.7 20.4 27.0

Liver fat 26% by MRS
(normal < 5.5)

– – increased
(USS and biopsy)

Triglyceride - mmol/L 7.1 1.0 0.9 7.7 <1.7

HDL-Cholesterol - mmol/L 0.9 1.4 0.9 0.6 >1.0

Total-Cholesterol - mmol/L 5.8 4.5 4.2 4.0 <5.2

Insulin - pmol/L 89 96 152 264 <60

Glucose - mmol/L 4.5 4.6 5.2 4.5 <6.1

Glycated haemoglobin -mmol/mol 27 30 32 35 <53

Leptin - mg/L 0.6 (14.9–60.2) 2.4 (2.4–24.4) 2.2 (0.4–8.3) <0.6 (8.6–38.9) *

Adiponectin - mg/L 0.7 (2.6–14.9) 0.8 (4.4–17.7) 1.4 (2.6–12.6) 2.0 (5.0–28.8) *

Lactate – mmol/L 7.3 – – 4.8

LH – U/L 2.0 10.1 5.3 3.0 1.3-8.4‡

FSH – U/L 3.4 8.0 5.0 1.0 2.9-8.4‡

Estradiol – pmol/L 105 107 – 35 ng/dl 72-529‡

Testosterone – nmol/L – – 7.6 93 ng/dl 9-22†

*Sex, BMI and assay-specific reference ranges are indicated in brackets for each patient.
†Adult male range.
‡Follicular phase.

DOI: 10.7554/eLife.23813.007
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Mitofusin 2 mutations
Arg707 is exquisitely conserved among MFN2 orthologues, and lies in the second heptad repeat

(HR2) coiled-coil domain (Figure 1C,D, Figure 1—figure supplement 2). The p.Arg707Trp variant is

found with an allele frequency of 0.055% in Europeans in the ExAC dataset. Literature review

revealed a further patient with MSL and the p.Arg707Trp mutation co-inherited with a second, dif-

ferent loss-of-function allele featuring deletion of exons 7 and 8 (Carr et al., 2015). Three further

siblings were identified with p.Arg707Trp together with the p.Gly109Arg mutation. All three had

severe early onset axonal neuropathy, but no adipose phenotype was reported when the oldest of

the siblings was 25 years old (Table 2). No simple heterozygote for the p.Arg707Trp allele has been

described with MSL, and most of those heterozygotes reported do not have clinically manifest neu-

ropathy. No other HR2 domain mutations (at or distal to amino acid residue 646) were identified in

either homozygous or compound heterozygous forms.

The structure of a full-length mitofusin is not yet known. Sequence homology searching using

HHPred (Söding, 2005) identified mitofusins as the closest mammalian homologues of the bacterial

dynamin-like protein (BDLP), whose structure has been solved (Low et al., 2009). Homology model-

ing suggests that mitofusins retain all key structural domains of BDLP (Figure 1C), and so mitofusin

2 may exist, like BDLP, in two conformations, one GDP-bound, lipid-free and compacted (Figure 1—

figure supplement 2A) and one GTP-bound, extended and membrane-associated (Figure 1D). The

extended conformation is expected to cis-dimerise upon GTP-binding, with dimers further cis-oligo-

merising on the cell membrane (Low and Löwe, 2010). In-frame deletion of Arg343 destroys the

helix next to the hinge between the GTPase and stalk domains (Figure 1D) and is predicted to dis-

rupt the tip of the stalk and seriously impair transition between closed and extended conformations.

Membrane fusion depends on trans-dimerization of mitofusins on different membranes. This

requires a distinct GTPase-independent extended conformation featuring an anti-parallel dimer

between their extended C-terminal domains HR2 (Franco et al., 2016). The X-ray structure of a

Table 2. Genotypes and phenotypes of all patients identified with biallelic MFN2 mutations including p.Arg707Trp; MSL = Multiple

Symmetrical Lipomatosis.

ID Age, years Sex MFN2 genotype Phenotype(s) (age of onset, years) Comment Reference

P1 18 F p.Arg707Trp
R343del

MSL (<10)
Axonal neuropathy (<10)

"" lactate
## leptin
## adiponectin

This study

P2 17 F p.Arg707Trp p.Arg707Trp MSL (c.13)
No neuropathy (17)

# adiponectin This study

P3 16 M p.Arg707Trp p.Arg707Trp MSL (c.13)
No neuropathy (16)

# adiponectin This study

P4 37 F p.Arg707Trp p.Arg707Trp MSL (c.13)
Likely neuropathy*
Renal tubular dysfunction† (c.13)

"" lactate
## leptin
## adiponectin

This study

Sawyer et al Patient 1 61 M p.Arg707Trp p.Arg707Trp MSL (20 s)
Axonal neuropathy (50 s)
Diabetes (50 s)

" lactate
## leptin
# adiponectin

(Sawyer et al., 2015)

Sawyer et al Patient 2 63 M p.Arg707Trp p.Arg707Trp MSL (40 s)
Axonal neuropathy (40s)

" lactate (Nicholson et al., 2008;
Sawyer et al., 2015)

Sawyer et al Patient 3 60 F p.Arg707Trp p.Arg707Trp MSL (20 s)
Axonal neuropathy (c.2)

" lactate (Sawyer et al., 2015)

Carr et al Patient 4/II-1 44 M p.Arg707Trp
MFN2 ex7-8del

MSL (not reported)
Axonal neuropathy (2)

(Carr et al., 2015)

Calvo et al Patient 6 19 M p.Arg707Trp p.Gly108Arg Axonal neuropathy (<10) (Calvo et al., 2009)

Calvo et al Patient 7 24 F p.Arg707Trp p.Gly108Arg Axonal neuropathy (<10) (Calvo et al., 2009)

Calvo et al Patient 8 25 M p.Arg707Trp p.Gly108Arg Axonal neuropathy (<10) (Calvo et al., 2009)

*Based on clinical signs and symptoms.
†increased renal protein, magnesium, potassium and calcium with low serum potassium and magnesium; still apparent at 37 years old.

DOI: 10.7554/eLife.23813.008
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MFN1 HR2 fragment in a homodimer is known (Koshiba et al., 2004) and the structure of the corre-

sponding MFN2 homodimer (Figure 1E) and MFN1/MFN2 heterodimer (not shown) can readily be

modelled. The HR2 domain is involved in different interfaces in GDP-bound monomers (Figure 1—

figure supplement 2B), in GTP-bound cis-oligomers (in which there are two different interfaces

between dimers and between dimer of dimers [Figure 1D]), in GTPase-independent trans-dimers

(Figure 1E) and in MFN2/MFN1 trans heterodimers. Arg707 contributes differently to the stability of

these conformations: whereas it makes an ion pair with Asp742 in the trans antiparallel homodimer

(Figure 1E) or with Glu728 of MFN1 in the heterodimer, it appears on the surface in all other confor-

mations and is not directly involved in intra- or intermolecular helix packing. Its mutation will thus

almost certainly destabilise trans-dimerisation by destroying the ion pair, but will influence other

conformations to much lesser degrees.

Adipose tissue dysfunction
Given the anatomically obvious increase in upper body adipose tissue in all four patients studied,

the function of that adipose tissue was next assessed in vivo and ex vivo. Fasting blood tests showed

P1 and P4 but not P2 and P3 to have elevated plasma triglycerides, while P1 and P4 also had severe

hepatic steatosis (Table 1). Initial oral glucose tolerance testing revealed normal glucose tolerance

with elevated insulin levels in all four patients, consistent with moderate to severe insulin resistance,

with fasting hyperglycaemia seen in P1 and P4 at 20 and 37 years respectively (Table 3). P1 and P4

also showed failure of the normal suppression of plasma non-esterified fatty acids (NEFA) in the face

of increased plasma insulin. This was assessed by OGTT at two ages in P1, in whom impaired NEFA

suppression contrasted both with healthy controls and with obese adolescents with overt type 2 dia-

betes (Hershkop et al., 2016) (Figure 1F). In P4 it was assessed by frequently sampled intravenous

glucose tolerance testing using a previously published protocol (Sumner et al., 2004), and basal

NEFA of 786 mmol/L showed maximal suppression of only 18%, occurring 27 min after the glucose

challenge. These findings suggest impaired suppression of lipolysis by insulin in the overgrown adi-

pose tissue and/or the depleted lower limb adipose depots of P1 and P4. Blood lactate concentra-

tion was elevated at baseline and on two occasions in P1, rising further after an oral glucose load,

suggesting impairment of mitochondrial function in an insulin-responsive tissue, although whether

adipose tissue, muscle or both were responsible for this could not be discerned (Table 3). Lactate

levels were not determined in P2 and P3.

Serum adipokine profiles were highly abnormal in all four patients. Serum leptin was undetectable

in P1 and P4 on initial evaluation (Table 1) despite increased upper body adiposity, as evidenced by

Table 3. Oral glucose tolerance test results for patients P1, P2 and P3. P1 and P4 were tested on two

occasions.

Time (minutes) 0 30 60 90 120

P1 (18 years old) Glucose (mmol/L) 4.6 6.4 6.4 4.3 4.6

Insulin (pmol/L) 109 1010 996 249 190

P1 (20 years old) Glucose (mmol/L) 6.9 9.3 9.8 9.7 9.3

Insulin (pmol/L) 207 630 609 677 708

Lactate (mmol/L) 6.8 8.3 9.6 9.9 9.9

P2 (17.8 years old) Glucose (mmol/L) 4.6 7.1 8.9 6.0 6.2

Insulin (pmol/L) 96 595 962 478 566

P3 (16.7 years old) Glucose (mmol/L) 5.7 9.8 8.4 7.0 5.5

Insulin (pmol/L) 199 2048 1796 1888 773

P4 (17 years old) Glucose (mmol/L) 4.5 5.8 6.9 5.8 6.3

Insulin (pmol/L) 264 1160 2479 1361 1514

P4 (37 years old) Glucose (mmol/L) 6.6 – – – –

Insulin (pmol/L) 688 – – – –

DOI: 10.7554/eLife.23813.009
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body mass indices of 33 and 27 kg/m2 and whole body adipose content determined by DXA of 31%

and 27.4% respectively. Serum leptin remained undetectable in P4 at 37 years old. In P2 and P3 cir-

culating leptin concentrations were also low, but overlapped with levels seen in healthy controls,

possibly reflecting the relatively early stage of evolution of the pathological adipose overgrowth. In

all patients serum adiponectin levels were suppressed to levels usually only seen in generalised lipo-

dystrophy or extreme, non receptoropathy insulin resistance (Table 1) (Semple et al., 2006). Leptin

secretion from adipose explants taken from the neck and abdominal subcutaneous adipose tissue of

P1 was moreover undetectable, and leptin mRNA expression in the same sample was commensu-

rately suppressed (data not shown). Surgical biopsies of overgrown interscapular subcutaneous adi-

pose tissue were independently obtained from P2 and P3, and from five age-matched otherwise

healthy female controls undergoing elective surgery for idiopathic scoliosis. Leptin mRNA expres-

sion, and adiponectin mRNA and protein expression were severely suppressed in P2 and P3 com-

pared to controls, while mitofusin 2 protein levels were unchanged (Figure 1G,H). In view of the

reduced suppression of lipolysis seen in P1, perilipin 1 and 2 expression were determined, with levels

of perilipin 1 found to be reduced, whereas perilipin 2 expression was preserved (Figure 1H).

In all three patients from whom subcutaneous adipose tissue biopsies were obtained, histological

examination revealed the expanded adipose tissue to feature exclusively unilocular adipocytes

(Figure 1I). UCP1 immunostaining was negative (data not shown). There was no difference in adipo-

cyte size among patients and controls (Figure 1I), and in keeping with low perilipin expression in

affected adipose tissue detected by immunoblotting, immunostaining for perilipin was also reduced,

with marked heterogeneity seen in patient but not control adipose tissue (Figure 1—figure supple-

ment 3).

In contrast to the nearly normal appearance of affected adipose tissue by light microscopy, elec-

tron microscopy of adipose tissue from P2 and P3 revealed highly abnormal adipocyte and preadi-

pocyte ultrastructure. Control adipocytes exhibited scattered ovoid mitochondria with narrow

cristae (Figure 2A), while adipocytes from P2 and P3 showed thickening of the cytoplasmic rim and

proliferation of round, enlarged mitochondria, with fragmented cristae on cross sectional imaging

(Figure 2B), reminiscent of those reported in different cell types and tissues in the context of Mfn2

deficiency (e.g. [Lee et al., 2012]). Membrane-bound structures enclosed in double membranes

were seen in many cells (Figure 2B,C,D), potentially consistent with mitophagy, although no exam-

ples of morphologically distinct mitochondria enclosed in such membranes were seen. In occasional

cells apparent extrusion of membrane-enclosed damaged mitochondria was seen (Figure 2D). In

both P2 and P3, 3–4 preadipocytes were seen among approximately 30 adipocytes studied by elec-

tron microscopy, while no preadipocytes were seen in control samples. Preadipocytes were associ-

ated with capillaries, showed characteristic small lipid droplets and glycogen granules, but also

showed evidence of proliferation of fragmented mitochondria, many with deranged cristae, as seen

in mature adipocytes (Figure 2D).

mRNA extracted from affected adipose tissue from three patients was subjected to transcrip-

tomic analysis, using RNAseq in the case of P2, P3 and five matched controls, and a microarray-

based approach in a different laboratory in the case of P1, from whom subcutaneous adipose sam-

ples were independently studied from both neck and abdomen and compared to abdominal subcu-

taneous adipose tissue from ten female controls. Primary analysis was undertaken of P2 and P3

compared to controls, with the more limited data from the comparison of P1 with controls subse-

quently aligned. Affected adipose tissue was transcriptionally distinct from control adipose tissue

(Figure 3A), and unsupervised pathway analysis identified the most highly significant perturbation of

gene expression to be related to mitochondrial dysfunction and oxidative phosphorylation

(Figure 3B). The mitochondrial signal was accounted for by downregulation of 66 of 68 transcripts

derived from mitochondria-encoded genes, contrasting with upregulation of 83 of 91 nucleus-

encoded mitochondrial genes (Figure 3C). Despite this upregulation, however, immunoblotting for

a panel of nucleus-encoded oxidative phosphorylation proteins showed universally strongly reduced

levels, with citrate synthase, a marker of mitochondrial mass, also sharply reduced (Figure 3D). Adi-

pose mitochondrial DNA was modestly reduced in P2 and P3, but was not assayed in P1

(Figure 3E). These findings suggest that the increased numbers of morphologically abnormal mito-

chondria seen on electron microscopy in P2 and P3 are severely hypofunctional, and that the

increased transcript levels of nucleus-encoded mitochondrial genes represents a compensatory

response that is insufficient to normalise function. Indeed, transcript levels of PGC1A, PGC1B, and
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Figure 2. Ultrastructural appearances of interscapular subcutaneous adipose tissue in individuals with the homozygous MFN2 p.Arg707Trp mutation.

(A) Transmission electron micrograph (TEM) of interscapular subcutaneous adipose tissue obtained from a control volunteer, showing a thin cytoplasmic

rim, and, in the panel below, ovoid mitochondria with thin cristae. (B) TEM of interscapular subcutaneous adipose tissue obtained from P2, showing a

thickened cytoplasmic rim containing increased numbers of round, enlarged mitochondria. Lower panel and inset: Mitochondria showed evidence of

degeneration with disorganised cristae and complex inclusions (pointed by red arrows); L= lipid droplet. (C) TEM of affected adipose tissue showing

mitochondria at different degree of degeneration (m) and double membrane-bound structures suggestive of mitophagy (inset in lower panel shows a

concentric double membrane). N: adipocyte nucleus. (D) TEM of juxtacapillary cell representative of several pre-adipocytes (Pa) identified in P2 and P3

but in no controls. Early lipid accumulation and glycogen granules can be seen. In the inset, another image suggestive for active mitophagy is seen in

the adjacent adipocyte.

DOI: 10.7554/eLife.23813.010
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Figure 3. Gene expression profiling of hyperplastic adipose tissue. (A) Multidimensional Scaling Plot showing distinct patterns of gene expression of

interscapular tissue samples from P2 and P3, compared to five age-matched controls. Three separate tissue samples from each of the patients and two

to three separate tissue samples from the controls were used in the analysis. (B) Bar chart showing the 10 most significantly altered pathways identified

by Ingenuity Pathway Analysis (IPA). Canonical pathways are shown in red to indicate increased expression; non-canonical pathways, to which no

Figure 3 continued on next page
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NFE2L2, encoding transcription factors driving mitochondrial biogenesis were upregulated 3.2-fold,

1.8-fold, and 3.8-fold, respectively (Figure 3F).

Other genesets related to cellular stress responses were also highly significantly altered, including

oxidative stress and unfolded protein response pathways, with additional evidence of mTOR path-

way activation (Figure 3B). Despite the strong transcriptional suggestion of mitochondrial dysfunc-

tion and secondary activation of stress signalling pathways, analysis of disease-associated

transcriptional pathways showed that signatures of cell and tissue death were suppressed, while sig-

natures related to cell and tissue proliferation and survival were strongly upregulated (Figure 3G).

The top 100 upregulated and downregulated genes were then compared across all three patients

studied. This revealed 22 shared significantly upregulated genes, which featured genes involved in

the unfolded protein response, including the key transcription factors DDIT3 (better known as

CHOP) and ATF5, the ER chaperone HSPA5 (better known as BiP), and TRB3, which has been shown

in different contexts to inhibit insulin signalling (Du et al., 2003) and to drive apoptosis

(Ohoka et al., 2005) among other roles (Figure 3H,I). BiP, ATF5, and TRB3 are known to be direct

transcriptional targets of CHOP and ATF4 (Han et al., 2013), which was also highly significantly

upregulated, while ATF5 has also recently been suggested to serve as a direct and critical mediator

of the mammalian mitochondrial unfolded protein response (Fiorese et al., 2016), analogous to

ATFS-1 in C. elegans. Strong transcriptional downregulation of both leptin and adiponectin was con-

firmed in all three patients, with other downregulated genes including the brown fat lipid droplet-

associated gene CIDEA, and the pro-adipogenic transcription factor KLF4 (Figure 3H,I).

To address the type of adipose tissue in affected depots, expression of genes suggested in

recent human studies to be markers for white, beige and brown fat were examined (Basse et al.,

2015; Carey et al., 2014; Lee et al., 2016). No consistent pattern of change in gene expression

was seen, with BAT- and beige adipose tissue-selective genes unchanged or lower in affected tissue

than in controls, with the exception of CITED1, proposed as a marker of beige fat, which was upre-

gulated in all three patients. WAT genes showed no consistent changes in expression from controls

Figure 3 continued

directionality was assigned, are shown in grey. The red line represents the p-value cut-off of <0.0001. (C) Heat maps showing decreased expression of

genes in the mitochondrial genome and increased expression of nuclear-encoded oxidative phosphorylation (OxPhos) genes in P2 and P3. (D)

Immunoblots of control and patient adipose tissue for OXPHOS subunits ATP synthase subunit alpha (V), Complex III subunit Core 2 (III), Complex II

subunit 30 kDa (II), and the mitochondrial marker citrate synthase (CS). TATA-binding protein (TBP) and b-actin (ACTB) levels were used as loading

controls (as also shown in Figure 1H). (E) Reduced levels of mtDNA in affected adipose tissue determined by Taqman real-time PCR. Means of three

independent experiments ± SEM are shown. (**p<0.01). (F) Increased expression of PGC1A, PGC1B, and NEF2L2 assessed by real-time qPCR and

expressed as fold change in expression relative to five controls. Shown are means of 3 replicates. Error bars represent SEM. (G) Heat map showing the

top 32 ‘disease and biology’ pathways from IPA. A word/tag weighted cloud of component pathways is shown. (H) Venn Diagrams comparing the top

100 genes up and down with an FDR cut-off of <0.00001 among patients. Genes shared between all three patients’ samples are shown in expanded

lists with genes noted in the text highlighted in red. (I) Transcript levels of DDIT3, HSPA5, ATF5, TRIB3, PSAT1, and CIDEA in P3 and P2, expressed as

fold change relative to controls determined by Taqman quantitative real-time PCR. Shown are means of eight replicates of different dilutions with error

bars calculated from R-squared values of fitted line.

DOI: 10.7554/eLife.23813.011

The following source data and figure supplement are available for figure 3:

Source data 1. Differential expression analysis data.

DOI: 10.7554/eLife.23813.012

Source data 2. Ingenuity Pathway Analysis results for P1.

DOI: 10.7554/eLife.23813.013

Source data 3. Ingenuity Pathway Analysis results for P2.

DOI: 10.7554/eLife.23813.014

Source data 4. Ingenuity Pathway Analysis results for P3.

DOI: 10.7554/eLife.23813.015

Source data 5. Data used to generate the heat maps shown in Figure 3C.

DOI: 10.7554/eLife.23813.016

Source data 6. Ingenuity Pathway Analysis ‘Disease and Biology’ data used to generate the heat map shown in Figure 3G.

DOI: 10.7554/eLife.23813.017

Figure supplement 1. Expression of human brown, ‘beige’, and white adipocyte markers in affected adipose tissue.

DOI: 10.7554/eLife.23813.018
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(Figure 3—figure supplement 1), consistent with the overgrown adipose tissue studied being white

adipose tissue.

Dermal fibroblast studies
Dermal fibroblasts were cultured from the site of adipose biopsy in P1, P2, and P3. Like affected adi-

pose tissue, cultured dermal fibroblasts showed normal MFN2 expression, however quite unlike in

adipose tissue, expression of citrate synthase (Figure 4A) and a panel of oxidative phosphorylation

proteins was normal (Figure 4B), while mitochondrial DNA content was mildly lower than in controls

(Figure 4C). Furthermore, immunocytochemistry showed appropriate localisation of MFN2 expres-

sion to the mitochondrial network (Figure 4D, Figure 4—figure supplement 1), which in patient

cells appeared morphologically indistinguishable from control cells both at baseline (Figure 4E), and

after treatment with the small molecule mitochondrial fission inhibitor mdivi-1 (Figure 4—figure sup-

plement 2). Transmission electron microscopy of dermal fibroblasts from P1-3 revealed normal mito-

chondrial ultrastructure, with no evidence of the striking fragmentation and dysmorphism seen in

adipose biopsies (Figure 4—figure supplement 3). Diffusion of photoactivated GFP within the net-

work was also normal when assessed in living cells (Figure 4F), although this diffusion was impaired

in wild type cells by hydrogen peroxide treatment to fragment the network (data not shown). Mito-

chondrial membrane potential was unchanged in patient cells, as assessed by a mitochondrial mem-

brane potential sensor JC-1 ratio assay (Figure 4G).

Neither adipose tissue nor dermal fibroblasts were available for study from P4, however electron

microscopy of a liver biopsy obtained at 17 years old was reported to show increased lipid droplets

and pericellular collagen but neither abnormal mitochondrial size nor ultrastructure. Together with

dermal fibroblast findings this is consistent with the abnormalities seen in adipose tissue in this study

being tissue-selective.

Discussion
MSL is a phenotypically dramatic condition that has been known since the nineteenth century.

Understanding of its pathogenesis is likely to yield insights into poorly understood aspects of adi-

pose tissue function that are critical to pandemic diseases, including the determinants of the differ-

ing metabolic behaviours of different adipose depots. Study of MSL has been hampered, however,

by its clinical heterogeneity, and lack of knowledge of its cause (Herbst, 2012). The recent report of

homozygosity for the MFN2 p.Arg707Trp mutation in three individuals with MSL (Sawyer et al.,

2015) suggested the first germline Mendelian cause of the disorder, presenting a critical opportunity

to further understanding of the underlying pathogenesis, however the pathology of the overgrown

adipose tissue and the systemic metabolic consequences were not specifically studied. We now

describe four more affected patients, confirming the genetic association, demonstrate that increased

adipose mass is accounted for by hyperplasia of UCP1-negative, unilocular adipocytes, and provide

evidence of mitochondrial dysfunction in affected adipose tissue. We also show that depot-selective

adipose hyperplasia is discordant with suppressed leptin levels and impaired insulin-mediated sup-

pression of lipolysis in severely affected patients, while insulin resistance is seen in all. These findings

offer a new window into the extraordinary depot-selective adipose overgrowth of MSL, and offer

new opportunities for novel therapy, and to gain insights into fundamental aspects of adipocyte

behaviour crucial to pandemic disease.

Bioenergetic efficiency and ATP-generating capacity of mitochondria are heavily influenced by

the dynamic architecture of the mitochondrial network (eg. [Liesa and Shirihai, 2013; Mishra and

Chan, 2016]). This is regulated by specialised proteins including mitofusin 2 (Schrepfer and Scor-

rano, 2016), which is important not only in mitochondrial fusion, but also in mitochondrial-ER tether-

ing (Naon et al., 2016), apoptosis (de Brito and Scorrano, 2008), mitophagy (Chen and Dorn,

2013) and regulation of the unfolded protein response (Pablo Muñoz et al., 2014). Global knockout

of Mfn2 in mice is embryonically lethal (Chen et al., 2003), but knockout specific to cardiac or skele-

tal muscle (Chen and Dorn, 2013; Sebastián et al., 2016), to dopaminergic neurones (Pham et al.,

2012), to the renal proximal tubule (Gall et al., 2015), or to POMC neurones of the hypothalamus

(Schneeberger et al., 2013) is tolerated. Nevertheless in each case cell or organ dysfunction is seen.

Together with evidence that MFN2 expression is lowered in key metabolic tissues in disease states

(Schneeberger et al., 2013; Zorzano, 2009), this has led to keen interest in mitofusin 2 as a
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Figure 4. Preserved mitochondrial network in dermal fibroblasts from patients with MFN2-related MSL. (A) Immunoblots of dermal fibroblast lysates

for mitofusin 2 (MFN2), mitofusin 1 (MFN1), and the mitochondrial marker citrate synthase (CS). g-tubulin was used as loading control. (B) Immublotting

of OXPHOS subunits using an optimized pre-mixed cocktail of monoclonal antibodies specific to Complex I subunit NDUF88 (CI), Complex II subunit

30 kDa (CII), Complex III subunit Core 2 (CIII), Complex IV subunit (IV), and ATP synthase subunit alpha (CV). (C) Reduced levels of mtDNA in patient

dermal fibroblasts determined by Taqman real-time PCR. Means of three independent experiments ± SEM are shown. (*p<0.05). (D)

Immunofluorescence confocal microscopy of endogenous MFN2 in fixed control and patient dermal fibroblasts showing preserved MFN2 expression

and localization to mitochondria (See also Figure 4—figure supplement 1). Mitochondria were visualized with MitoTracker Orange (MT). Images in the

bottom rows show digitally magnified detail of the boxed areas in the top rows. Scale bars: 10 mm (top rows); 5 mm (bottom rows). (E) Normal

mitochondrial morphology in patient dermal fibroblasts demonstrated using the mitochondrial dye MitoTracker Orange. Cells were classified as having

mostly fragmented, short tubular, and long tubular mitochondria as indicated in the representative confocal microscopy images shown. Asterisks

indicate regions digitally magnified to show mitochondrial morphology in detail (insets). Scale bars, 10 mm. Data from four independent experiments

Figure 4 continued on next page
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contributor to the pathogenesis of pandemic obesity-related diseases. No adipose-specific knockout

has been described.

Despite this largely murine evidence for important roles of MFN2 in several tissues, MFN2 loss-

of-function mutations in humans have until recently been implicated solely in axonal sensorimotor

neuropathy (Züchner et al., 2004), which is only weakly recapitulated in mouse models

(Detmer et al., 2008; Strickland et al., 2014). Our findings, together with those of Sawyer et al.

(2015), now highlight a second tissue-selective phenotype in humans, namely severe upper body

adipose overgrowth or ‘Multiple Symmetrical Lipomatosis’ (MSL). All cases of MFN2-related MSL

have featured biallelic mutations including at least one MFN2 p.Arg707Trp allele, and many, but not

all, patients have shown early-onset neuropathy in addition. Our structural analysis suggests that the

mutation may have differential effects on different conformations of MFN2, particularly trans-dimer-

isation and thus membrane fusion. It may be important that MFN2 homodimers will be most

affected (Figure 1E) as both surfaces at the interface have a mutation, while in heterodimers only

one surface is mutated. The second mutation we report in P1, who is severely affected, is predicted

significantly to impair or to abrogate MFN2 function by destroying the helical support of the hinge

between the GTPase and stalk domains (Figure 1C). Although the association of the MFN2 p.

Arg707Trp mutation specifically with MSL is striking, existing human genetic data do not exclude

the possibility that other HR2 domain mutations may also lead to the phenotype when both MFN2

alleles are affected.

The overgrown adipose tissue is unable to execute its key metabolic functions normally, as evi-

denced by insulin resistance, and reduced suppression of circulating free fatty acid concentrations

after a glucose load. One caveat to this assertion is that it is possible that the ‘lipodystrophic’ or tri-

glyceride-depleted lower limb adipose depots might also be contributing to the perturbed suppres-

sion of lipolysis and insulin resistance. Most strikingly, despite dramatic upper body adipose

overgrowth in MFN2–related MSL, adipose tissue expression of the archetypal adipocyte hormones

leptin and adiponectin was extremely low, with P1, P4 and one of the older, more severely affected

patients previously described having undetectable plasma leptin despite high fat mass

(Sawyer et al., 2015). We hypothesize that the differences observed in leptin concentrations among

the patients we describe reflects the evolution of the disease, with all adipose depots affected either

by overgrowth (upper body) or dystrophy (lower body) in P1 and P4, while in P2 and P3 some normal

adipocytes remain. We suggest that advanced MFN2-related MSL represents a fourth form of severe

leptin deficiency in humans, adding to congenital LEP mutations, lack of adipocytes in generalised

LD, and ‘empty’ adipocytes in extreme leanness or starvation. We note that this phenotype may not

be present in all MSL cases, as others have reported normal leptin levels in MSL cases of undefined

cause (Haap et al., 2004).

Figure 4 continued

(>50 cells per experiment) are presented as means ± SD. (F) Visualization and quantification of mitochondrial fusion using photoactivatable

mitochondria matrix-targeted GFP (mito-PA-GFP): a dermal fibroblast from P1 expressing both mito-PA-GFP and mito-DsRed is shown to illustrate the

in vivo mitochondria fusion assay. Photoconversion of PA-GFP was restricted to the area marked by the white dashed box. The activated mito-PA-GFP

molecules, in time, redistributed along the area within the green dashed lines. The percentage of fluorescence remaining in the boxed region was

measured, normalized to mito-DsRed signal, and plotted against time. Data are represented as means ± SD of single cell time-lapse measurements (10

randomly selected cells expressing both mito-DsRed and mito-PA-GFP per cell line were imaged). Scale bar, 10 mm. (G) Quantification of mitochondrial

membrane potential (4	) using the fluorescent sensor JC-1. Data show ratio of 590 nm (red) and 535 nm (green) fluorescence signals. Data from three

independent experiments are represented as mean ± SD.

DOI: 10.7554/eLife.23813.019

The following figure supplements are available for figure 4:

Figure supplement 1. Mitochondrial network morphology and mitofusin 2 expression in dermal fibroblasts from P1 and P2.

DOI: 10.7554/eLife.23813.020

Figure supplement 2. Response of dermal fibroblasts to mitochondrial fission inhibitor mdivi-1.

DOI: 10.7554/eLife.23813.021

Figure supplement 3. Transmission electron micrographs of dermal fibroblasts obtained from A. a control volunteer, B. P3, and C. P1, showing normal

mitochondrial morphology in all cases.

DOI: 10.7554/eLife.23813.022
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Suppressed leptin expression could be explained if the pathologically expanding cell lineage had

naturally low levels of leptin expression, as reported for brown adipocytes, or alternatively may

reflect perturbation of a cellular mechanism sensing mitochondrial function and cellular energy state

and transducing it into leptin gene expression. Although we demonstrate that increased adipose

mass is accounted for by hyperplasia of cells with morphologic and transcriptional characteristics of

UCP1-negative, unilocular white adipocytes, we cannot rule out the possibility that these cells are

dysfunctional, ‘whitened’ thermogenic adipocytes, and indeed mitochondrial depletion has previ-

ously been shown to be involved in ‘whitening’ of beige adipocytes (Altshuler-Keylin et al., 2016).

Evidence of impaired mitochondrial function in MFN2-related MSL is seen in strikingly elevated

blood lactate concentrations in P1, P4 and previously described patients (Sawyer et al., 2015),

reduced expression of citrate synthase and respiratory chain components, and highly abnormal mito-

chondrial ultrastructure in affected adipose depots. The reduction in mitochondria-encoded tran-

scripts, contrasting with increased nucleus-encoded mitochondrial transcripts and mitochondrial

biogenesis factors suggests that compensatory transcriptional programmes are activated to try to

restore cellular mitochondrial function. In contrast, gene expression, and mitochondrial morphology

and fusion of primary dermal fibroblasts is normal, confirming mitochondrial dysfunction in MFN2-

related MSL to be tissue-selective, and suggesting that MFN2 Arg707Trp remains able to mediate

mitochondrial fusion in some contexts.

Affected adipose tissue shows strong and consistent evidence of activation of mitochondrial

stress responses, with notably strong upregulation of genes known to be positively regulated by

ATF4 and CHOP (e.g. TRB3, ATF5, PSAT1, CHAC1, HSPA5 (BiP), SLC7A5, SLC7A11) (Han et al.,

2013) or mTORC1 signaling. ATF4 and CHOP activities and expression are upregulated by PERK,

which mediates a key arm of the ER unfolded protein response, and has also been shown to interact

directly with MFN2 at ER-mitochondrial junctions (Naon and Scorrano, 2014; Pablo Muñoz et al.,

2014), while ATF5 has recently been suggested to be the mammalian counterpart of the C. elegans

mitochondrial unfolded protein sensor ATFS-1 (Fiorese et al., 2016). mTORC1 may be activated

either downstream or upstream from the UPR (Appenzeller-Herzog and Hall, 2012), driving protein

synthesis, especially of nucleus-encoded mitochondrial genes (Morita et al., 2013).

Increased cell proliferation or survival in the face of mitochondrial dysfunction is not unprece-

dented: The phenomenon of mitohormesis (Yun and Finkel, 2014), whereby mild mitochondrial dys-

function exerts pro-survival effects on cells and organisms, is well established in model systems. MSL

is also associated with other forms of genetic or acquired mitochondrial insult, including a common

mitochondrial lysyl tRNA mutation (Chong et al., 2003), HIV infection treated with highly active anti-

retroviral therapy (Giralt et al., 2011), and excess alcohol intake (Enzi et al., 2015). This raises the

possibility that in MFN2-related MSL mitochondrial dysfunction falls in a narrow window of severity

that drives mitohormetic upper body preadipocyte differentiation and/or reduced adipocyte clear-

ance. Whether lower body adipocytes are relatively less unaffected, and thus depleted of triglycer-

ide stores as a ‘bystander’ effect of pathologically expanding upper body adiposity, or whether they

are more severely affected and thus die in the face of the same genetic insult, remains to be

determined.

Arguing against a critical role for a general reduction in mitochondrial function as the critical

driver of MSL, the overwhelming majority of known forms of monogenic mitochondrial dysfunction,

of varying severity, are not associated with it, suggesting an alternative, or additional, specific effect

of the MFN2 mutations observed. This is plausible as MFN2 deficiency has been shown in cellular

contexts to suppress apoptosis (Pablo Muñoz et al., 2014; Shen et al., 2007), and in ischemic

hearts and kidneys to reduce ischaemic tissue (Hall et al., 2016; Pablo Muñoz et al., 2014) damage

and cell death. MFN2-related MSL could thus reflect a dyscoordinated cellular stress response to

severe mitochondrial dysfunction, with MFN2 mutations preventing cell death, allowing survival and

proliferation of functionally impaired cells.

Finally, our findings have potentially important implications for therapy. Hypogonadism and

hyperphagia related to absolute leptin deficiency in P1 may respond to subcutaneous leptin therapy,

reducing the burden imposed on overgrown adipose tissue by chronic positive energy balance, while

the effect of inhibiting the upregulated anabolic pathways detected transcriptomically, such as

mTOR signalling, using clinically available inhibitors, is worthy of consideration. This is in keeping

with the promise shown by sirolimus in murine mitochondrial disease (Johnson et al., 2013).
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Materials and methods

Volunteer recruitment
Written informed consent was obtained from all participants or their parents if under 18 years old.

The research was approved by relevant UK, US, or Danish Research Ethics Committees and was con-

ducted in accordance with the Declaration of Helsinki.

Physiological studies and imaging
Biochemical evaluations were performed in accredited diagnostic laboratories. Age- and BMI-

matched reference ranges for adiponectin and leptin were derived from the 5-95th percentiles of

the MRC Ely study (Williams et al., 1995). Oral glucose tolerance tests (OGTTs) were performed

with 75 g glucose following an overnight fast. IVGTT was performed as previously described

(Sumner et al., 2004). Body composition was assessed using Lunar Prodigy dual-energy X-ray

absorptiometry (DEXA, GE Lunar). Hepatic triglyceride was assessed in P1 using proton magnetic

resonance spectroscopy on a Siemens 3T Verio scanner using methods previously described

(Semple et al., 2009), and quantified as the ratio of methylene to combined methylene and water

signals corrected for spin-spin relaxation. Adipose distribution was determined by magnetic reso-

nance imaging, using T1-weighted turbo spin echo, coronal images, also generated by a Siemens 3T

Verio scanner.

Genetic studies
Exome sequencing of lymphocyte DNA was undertaken in separate laboratories for families of P1-3,

in both cases using SureSelect capture (Agilent) followed by HiSeq2000 sequencing (Illumina).

Exome-wide sequencing, sequence alignment and variant calling and filtering are described sepa-

rately below for P1 and P2,3. Sanger sequencing was used for primary genetic diagnosis in P4, and

for confirmation of MFN2 mutations in P1-3.

Exome-wide sequencing and analysis for P1
Lymphocyte DNA from P1 and her parents was used for exome- sequencing, employing SureSelect

capture (Agilent) followed by HiSeq2000 sequencing (Illumina). Sequence data were aligned to the

human genome assembly hg19 using the software bwa23(version 0.7.5a-r405) (Li and Durbin, 2009)

with default parameters. Duplicates were removed, and the mate-pair information was defined using

picard tools (http://picard.sourceforge.net) (version 1.95). Subsequently, local realignment surround-

ing known indel regions was performed, and the quality score for each read was recalibrated with

gatk24 (version 2.4–7-g5e89f01) (McKenna et al., 2010) using the same resource files as in the 1000

Genomes Project (Abecasis et al., 2010). Finally genotypes were called using SAMtools25 (version

0.1.19–44428 cd) http://samtools.sourceforge.net/; SAMTOOLS, RRID:SCR_002105) (Li, 2011) and

bcftools with standard parameters (-A-c -e -g-v). Variants were annotated with Ensembl Variant

Effect Predictor against Ensembl release 84 (McLaren et al., 2010) and the NCBI dbSNP database

build 144 (ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606/). The resulting mutation list was

interrogated to look for rare sequence variants in MFN2 based on the strong pretest probability of a

mutation based on the published association of MSL, neuropathy and MFN2 mutations.

Exome-wide sequencing and analysis for P2,3 and parents
Lymphocyte DNA from P2, P3 and their parents was isolated using the QIAamp and the Autopure

kits. Exome Sequencing was undertaken at the Genomic Analysis Facility at the Duke Centre for

Human Genome Variation, USA. Exons were captured using the Agilent exon capture platform and

sequencing undertaken on the Illumina HiSeq 2000 system. Reads were aligned to the reference

sequence using Novoalign alignment tool (http://www.novocraft.com/products/novoalign/; NovoA-

lign, RRID:SCR_014818). Depth of capture and completeness of coverage of the exome was

assessed using analytical tools built around the BED tools package. Quality filtering was undertaken

using the Sam tools and Picard tools packages. Single nucleotide substitutions and small indels were

called using the Sam tools package (http://samtools.sourceforge.net/; SAMTOOLS, RRID:SCR_

002105) (Li et al., 2009). All identified variants were annotated with respect to open reading frames

and cross referenced with publically available variant databases and internal control samples using
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scripts built around the Annovar tool (http://wannovar.usc.edu/index.php; wANNOVAR, RRID:SCR_

000565) (Yang and Wang, 2015). Filtering for novel variants was performed by comparison to

dbSNP132 and 1000 Genomes SNP calls and patient variants were compared to variants identified

in 250 control exomes sequenced and analyzed in a similar manner. 30 rare variants (in coding

sequence or splice sites) with an allele frequency <0.01 in control populations (1000 genome and

exome variant server) were identified. Of these only the MFN2 variant was recorded in ClinVar (Clin-

Var, RRID:SCR_006169) where is was classified as Pathogenic (https://www.ncbi.nlm.nih.gov/clinvar/

RCV000002369/). The Exome Variant Server (http://evs.gs.washington.edu/EVS/) and EXaC Browser

(http://exac.broadinstitute.org/gene/ENSG00000116688) datasets were accessed in June 2015.

Protein structure modelling
The sequences of human MFN2 and Bacterial Dynamin-Like Protein (BDLP) from Nostoc punctiforme

were aligned using HHpred and PROMALS (Pei and Grishin, 2007) algorithms. PDB coordinates of

monomer (2J69, [Low and Löwe, 2006]), dimer (2W6D, [Low et al., 2009]), and tetramer (provided

by Dr. Harry Low) were used to display the MFN2 regions of interest in Figure 1D and Figure 1—

figure supplement 2. Model of MFN2 HR2 dimer (Figure 1E) and HR1/HR2 heterodimer were built

using coordinates of HR2 NFN1 dimer (1T3J, [Koshiba et al., 2004]) using Modeller software (MOD-

ELLER: Program for Comparative Protein Structure Modelling by Satisfaction of Spatial Restraints,

RRID:SCR_008395) (Sali and Blundell, 1993).

Tissue biopsy and processing
Subcutaneous adipose tissue biopsies were taken from the interscapular region under general anaes-

thesia in the fasting state for P2, P3, and five otherwise healthy volunteers undergoing corrective sur-

gery for idiopathic scoliosis (all female, median age 14.9 (12.9–18.9), median B.M.I. 21.9 kg/m2

(19.0–28.4)). Adipose tissue was dissected from surrounding connective and vascular tissue on dry

ice and either frozen in liquid nitrogen for later protein or RNA extraction, fixed in 4% PFA/PBS and

paraffin embedded using standard procedures for light microscopy, or fixed for 24 hr in 2% glutaral-

dehyde/2% formaldehyde in 0.05 M sodium cacodylate at pH 7.4, followed by storage in 0.05 M

sodium cacodylate, for electron microscopy. Overlying skin from P1, P2, P3, and two otherwise

healthy volunteers biopsies was used to culture dermal fibroblasts using standard procedures. A

third dermal fibroblast control cell line was obtained from ATCC (ATCC Cat# CRL-2707, RRID:

CVCL_2373).

DNA was extracted using QIAamp DNA Micro Kit (Qiagen). For RNA extraction, three frozen adi-

pose aliquots per subject were transferred into 1 mL QIAzol (Qiagen) and homogenized on thawing

with a hand-held TissueRuptor (Qiagen) before centrifugation at 13,000 g for 3 min. Infranatant

beneath the fatty layer was mixed with 1 mL 100% ethanol before binding to RNeasy columns and

purifying using the RNAeasy kit according to manufacturer’s instructions.

Frozen adipose tissue samples were homogenized manually with a pestle in modified RIPA buffer

(150 mM NaCl, 1% Nonidet P-40, 0.25% sodium deoxycholate, 50 mM Tris-Cl, pH 7.8) supple-

mented with Complete Protease Inhibitor cocktail (Roche). Tissue extracts were then cleared by cen-

trifugation. Debris and the top layer of fat were discarded.

Subcutaneous adipose biopsies were also obtained in a separate centre under local anaesthetic

from the neck and abdomen of P1. RNA was extracted from these biopsies, and from surgical biop-

sies obtained from abdominal adipose tissue from ten women undergoing elective abdominal sur-

gery (Median age 68.5 years (range 45–83); median B.M.I. 27.2 kg/m2 (22.2–41.0)).

mtDNA/nDNA determination
Relative levels of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) in total DNA were quanti-

fied by singleplex quantitative real-time PCR with primers targeting the mitochondria-encoded ND1

and the nucleus-encoded B2M genes followed by evaluation of Ct values using the comparative Ct

(2-DDCt) method. Primers and fluorogenic probes used are detailed in Table 4. Differences between

means were analyzed by two-tailed Student’s t test using GraphPad Prism 5.0b software (RRID:SCR_

002798).
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Quantitative histomorphometry of paraffin-embedded adipose tissue
Images were captured from sections using an upright Olympus BX-41 microscope (Olympus)

equipped with a 20 x objective and a colour ColorView CCD camera (Olympus). A semi-automated

workflow in CellP software (Olympus) was used to detect cell membranes of individual adipocytes

and determine the cell area. Briefly, images were background subtracted, filtered, thresholded,

binarised, prior to ROI inspection and manual correction, cell labelling for traceability, and measure-

ment. GraphPad Prism (RRID:SCR_002798) was used to calculate relative frequency and cumulative

distributions. More than 500 adipocytes were measured per condition.

Gene expression analysis
For RNAseq, RNA was concentrated with the RNeasy MinElute Cleanup Kit (Qiagen) and subject to

assessment of quantity and quality using an Agilent BioAnalyzer 2100. RNA samples were whole

transcriptome-amplified with NuGEN RNA-Seq System V2 and converted to indexed libraries with

NuGEN Ovation Rapid DR Multiplex Library System following the manufacturer’s instructions. Librar-

ies were sequenced on an llumina HiSeq 4000 system (50 bp, single read sequencing). Cuffdiff from

the Samtools suite was used to align reads, FeatureCount to count fragments overlapping annotated

human genes, and the resulting data were analysed with the EdgeR package (edgeR, RRID:SCR_

012802): normalization used weighted trimmed means of M-values (TMM) and a design matrix com-

paring affected with unaffected samples. Generalized linear modeling (glmLRT) was used for differ-

ential expression analysis. The resulting gene list was analysed using Ingenuity Pathway Analysis

(IPA) software. Data were deposited in GEO under accession number GSE97156 (http://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE97156).

Confirmation of selected RNAseq findings was undertaken using TaqMan quantitative real-time

PCR using the primer/probesets indicated in Table 4. TBP, UBC, and YWHAZ were chosen as

endogenous controls based on RNAseq analysis. Serial dilutions of all controls and samples were

run, and Ct-values were compared using an efficiency-corrected comparative Ct method based on

the geometric mean of the three endogenous controls.

Table 4. Primers and Probes used for mRNA and mtDNA quantification.

Gene TaqMan GE assay Taqman GE primers and probe

PPARGC1A Hs01016719_m1 NA

PPARGC1B Hs00991676_m1 NA

NFE2L Hs00975961_g1 NA

DDIT3 Hs00358796_g1 NA

HSPA5 Hs00607129_gH NA

ATF5 Hs01119208_m1 NA

LEP Hs00174877_m1 NA

TRIB3 Hs01082394_m1 NA

PSAT1 Hs00795278_mH NA

CIDEA Hs00154455_m1 NA

ADIPOQ Hs00605917_m1 NA

TBP Hs99999910_m1 NA

UBC Hs01871556_s1 NA

YWHAZ Hs03044281_g1 NA

ND1 NA Forward: 5’-CCCTAAAACCCGCCACATCT-3’
Reverse: 5’-GAGCGATGGTGAGAGCTAAGGT-3’
Probe: [6FAM]�5’-CCATCACCCTCTACATCACCGCCC-3’-[TAM]

B2M NA Forward: 5’-CCAGCAGAGAATGGAAAGTCAA-3’
Reverse: 5’-TCTCTCTCCATTCTTCAGTAAGTCAACT-3’
Probe: [6FAM]�5’- ATGTGTCTGGGTTTCATCCATCCGACA-3’-[TAM]

DOI: 10.7554/eLife.23813.023
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Subcutaneous abdominal RNA and neck adipose RNA from P1 was separately analysed in dupli-

cate in the same batch as subcutaneous abdominal RNA from 10 female controls. RNA was purified

using the miRNeasy Mini Kit from Qiagen and mRNA expression measured using the Illumina HT-12

v4 BeadChip. Fold changes in mRNA expression levels were calculated by comparing the median

value of P1 with the median value of the 10 female controls.

Immunoblotting
Proteins were resolved using NuPAGE Novex 4–12% Bis-Tris gels electroblotted onto PVDF mem-

branes using the iBlot system (Invitrogen). Antibodies specific to the following proteins were used:

Citrate synthase (Abcam Cat# ab129095 RRID:AB_11143209), MFN1 (Mitofusin-1 (D6E2S), Cell Sig-

naling Techonology), MFN2 (Mitofusin-2 (D2D10), Cell Signaling Technology), Total Human OXPHOS

cocktail (Mitosciences, Abcam), g-tubulin (Sigma-Aldrich Cat# T5326 RRID:AB_532292), TATA bind-

ing protein (Abcam Cat# ab818 RRID:AB_306337), b-actin (Sigma-Aldrich Cat# A5316 RRID:AB_

476743), PLIN1 (GP33, PROGEN Biotechnik), PLIN2 (GP47, PROGEN Biotechnik), adiponectin

(Abcam Cat# ab13881 RRID:AB_2221613).

Dermal fibroblast studies
Dermal fibroblasts were cultured in DMEM (Invitrogen) supplemented with 10% fetal bovine serum

(Hyclone), 1% penicillin-streptomycin and 2 mM L-glutamine (Invitrogen), in an incubator at 37˚C in

5% CO2/95% O2 atmosphere. All dermal fibroblast lines were routinely tested as negative for myco-

plasma contaminations using VenorGem Classic Mycoplasma Testing PCR Kit (Minerva Biolabs, Cat#

11–1050).

Dermal fibroblast lysates were prepared using M-PER Mammalian Protein Extraction Reagent

(Thermo Scientific) supplemented with protease inhibitors. Whole cell extracts were cleared by

centrifugation.

For confocal studies of MFN2 localisation, dermal fibroblasts grown on glass coverslips were

labeled with MitoTracker Orange CMTMRos dye (Molecular Probes) and then fixed with 4% parafor-

maldehyde for 15 min at room temperature, permeabilized in 0.05% (v/v) Triton X-100/PBS, and

immunostained with antibodies specific to MFN2 in a BSA/PBS blocking solution. Coverslips were

mounted in ProLong Gold Antifade Reagent with DAPI mounting medium (Molecular Probes). To

inhibit mitochondrial fission dermal fibroblasts were incubated at 37˚C with 50 mM mdivi-1 (SIGMA)

for 3 hr.

To assess mitochondrial fusion cells stably expressing photoactivatable-GFP (mitoPA-GFP) and

matrix-targeted DsRed (mitoDsRed) were first generated. Lentivector particles were produced by

transfecting HEK293T cells with either lentiviral mitochondria matrix-targeted PA-GFPmt (a gift from

Orian Shirihai, Addgene plasmid # 19989) or lentiviral mitoDsRed (a gift from Pantelis Tsoulfas,

Addgene plasmid # 44386), and the lentivirus packaging vectors psPAX2 and pMD2.G using Cal-

Phos Mammalian Transfection Kit (Takara) following the manufacturer’s guidelines. Dermal fibro-

blasts were simultaneously transduced with both lentivector particles in the presence of 8 mg/mL

polybrene (SIGMA). Resulting cells expressing mitoDsRed and mitoPA-GFP were plated in glass-bot-

tomed microwell dishes (Matek) and imaged live on a SP8 confocal microscope (Leica) equipped

with a cage incubator for temperature and CO2/O2 control (Life Imaging Services). PA-GFP was pho-

toactivated in regions of interest within mito-DsRed-expressing mitochondria with a 405 nm laser.

The activated fluorescent signal was then collected in confocal image stacks every 5 min for 30 min.

Average fluorescence intensities of mitoPA-GFP at each time point was measured in the region of

photoconversion, normalized to the mito-DsRed signal, and plotted against time. Images were ana-

lysed with the Fiji software package (https://fiji.sc; Fiji, RRID:SCR_002285).

To obtain transmission electron micrographs of mitochondria in dermal fibroblasts, cells were

grown on Thermanox coverslips (Nunc) and fixed in 2% glutaraldehyde in 0.1 M phosphate buffer,

pH7.4. Cells were then scraped, harvested by centrifugation, and post-fixed in a solution of 1%

osmium tetroxide and 1% potassium hexacyanoferrate (II), dehydrated in acetone and finally epoxir-

esin embedded. Semi-thin sections were stained with toluidine blue. Thin sections were mounted on

copper grids, stained with lead citrate, and examined using a Tecnai G2 80-200kv transmission elec-

tron microscope.
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