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In positron emission tomography (PET), a radioactive compound is injected into the body to promote a tissue-dependent emis-
sion rate. Expectation maximization (EM) reconstruction algorithms are iterative techniques which estimate the concentration
coefficients that provide the best fitted solution, for example, a maximum likelihood estimate. In this paper, we combine the EM
algorithm with a level set approach. The level set method is used to capture the coarse scale information and the discontinuities of
the concentration coefficients. An intrinsic advantage of the level set formulation is that anatomical information can be efficiently
incorporated and used in an easy and natural way. We utilize a multiple level set formulation to represent the geometry of the
objects in the scene. The proposed algorithm can be applied to any PET configuration, without major modifications.
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1. INTRODUCTION

One of the most important quality of PET is its abilities to
model biological and physiological functions in vivo to en-
hance our understanding of the biochemical basis of normal
and abnormal functions within the body. PET is also use-
ful for the detection of cancer, coronary artery disease, and
brain disease. During a PET acquisition, a compound con-
taining a radiative isotope is injected into the body to form
an (unknown) emission density A(x, ¥) = 0. The positron
emitted finds a nearby electron and they annihilate into two
photons of 511keV according to the equation E = mc?.
This energy is strong enough to escape the body. Since the
two photons travel at almost opposite directions, a detec-
tor ring surrounds the patient and tries to collect the emis-
sions. For an emission event to be counted, both photons
must be registered nearly simultaneously at two opposite de-
tectors. In Figure 1, emission paths from two different re-
gions are shown, that is, along the tube covered by detec-
tor pair AD, and along the tube covered by detector pair
BC. Regions with higher concentration of radioactivity cause
a higher emission rate. Given the total number of mea-
sured counts for each detector pair, the challenge is to lo-
cate all the emission sources inside the detector ring. Emis-
sions measured between two detectors could have taken place

anywhere along the tube between these two detectors, but
with a systematic inspection of all detector pairs, it is pos-
sible to reveal variance in the emission rate along the same
tube.

Detection of the radioactive concentration in different
tissues gives useful information both for research and clin-
ical purposes. This information is often analyzed and visu-
alized as an image. Unfortunately, the measured events also
include noise such as accidental coincidences that complicate
the image reconstruction. The Fourier-based filtered back-
projection [1] algorithm is a well-established construction
technique. This algorithm is computationally efficient, but
the drawbacks are constructions with low signal-to-noise ra-
tio and low resolution. Iterative methods to construct PET
images have been an attractive approach during the last two
decades. Most of these methods are based on maximum like-
lihood estimates. Due to the inherent ill-posedness of this in-
verse problem, the reconstruction process suffers from noise
and edge artifacts, see [2, 3] for related problems. It is well
known that the standard EM algorithm [4-6] converges to-
ward a noisy image and it is necessary to terminate the iter-
ation before the noise becomes too dominant [7]. If the it-
eration stops too early, important information could be lost.
A general approach to address these problems is to utilize a
regularization term according to certain a priori assumptions
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FiGure 1: Gamma rays escape the body and are observed by the
detectors.

of the desired image [8-10]. Results with deviation from
these assumptions will be penalized. For example, informa-
tion from surrounding pixels can reveal irregularities and re-
move outsiders. The total variation (TV) minimization has
been successfully used in many image processing applica-
tions [11-17]. In [18], the standard EM algorithm for PET
was modified to incorporate the TV regularization. The blur-
ring effect was subdued by using this approach, but improve-
ments are still needed.

Common for the iterative methods mentioned above is
that they estimate the concentration coefficients that provide
the best fitted solution based on a maximum likelihood es-
timate. In PET, different tissues should have different active
levels, while the active values should change smoothly and
slowly in the same tissue [19]. So, the PET image is actually
a piecewise smooth function [20]. Recently, PET has been
combined with CT and MRI devices [21-24]. CT and MRI
can provide high-resolution structural information, which
can be incorporated into the reconstruction process to im-
prove the properties of the constructed PET image. Usually
the anatomical information obtained from CT or MRI image
is used as a Bayesian prior. A penalty technique is utilized to
build in the Bayesian prior, while a parameter f3 to control the
strength of the penalty. However, this approach is very sensi-
tive to the penalty parameter, and finding a proper 3 can be
challenging. In this paper, we use a level set method to serve
this purpose. We reduce the set of possible solutions by esti-
mating the emission rate as a piecewise constant function.
This can be thought of as an approximation to the piece-
wise smooth image. By this way, the anatomical information
based on CT or MRI can be used as the initial guess for the
level set curves, without the need to estimate the penalty pa-
rameter 3. We can see in the numerical experiment section
that the quality of the reconstruction improves with the qual-
ity of the anatomical data.

Level set method is a versatile tool which has been ap-
plied to many areas of computational mathematics [25-29].
As in many other applications, the level set method is used
here to capture the coarse scale information and the discon-
tinuities of the function to be recovered. By incorporating

the level set method into the image reconstruction, sharp
boundaries between different tissues are directly obtained for
PET images. This variant of the EM algorithm (called LSEM
hereafter) can be applied to any PET configuration, without
major modifications. We will first show that even without
anatomical information available, LSEM can produce better
images than EM algorithm in some sense. Moreover, LSEM
can easily and naturally incorporate anatomical information
(interior boundaries for different tissues, which can be ob-
tained from CT or MRI images), and improve the quality of
the reconstructed images further. It is well known that one
drawback of the EM algorithm is its lack of stopping cri-
terion. In this paper, TV regularization will be used to deal
with the ill-posedness of the reconstruction process. The pa-
rameter used to weight the influence of the TV regulariza-
tion more explicitly controls the tradeoff between regularity
and fitting the data. There is a number of well-known tech-
niques for choosing this parameter more systematically [18,
page 6].

Geometric curve-evolution techniques for tomographic
reconstruction problems have been proposed previously, see
[19, 30-37] and the references therein. Similar to [31], we
assume the object intensity values to be piecewise constant,
but we allow for multiple object regions as in [19]. Due to the
piecewise constant intensity value restriction, our cost func-
tional is simpler than the one proposed in [19]. In [36, 37], a
strategy for joint estimation of the unknown region bound-
aries and the unknown activity levels was developed. How-
ever, the movement of the parameterized boundaries in-
volved only translation, rotation, and scaling. We propose a
more flexible framework here, and allow multiple object re-
gions. In addition, level set method is more flexible and ef-
ficient in dealing with complicated geometries, thanks to its
great ability to handle topological changes during the curve
evolution. In [38], the authors proposed a piecewise smooth
model for emission tomography reconstruction, which also
utilized the level set framework. Compared to that model,
our piecewise constant model is simpler, and can simplify
the computations. We would like to emphasize that in most
cases, our method could still work well even if the intensity
function is not piecewise constant. In fact, our method just
needs that the object in the scene can be well segmented into
several phases. We will show some results in the numerical
experiment section to verify it.

The remainder of this paper is organized in the follow-
ing way. In Section 2, we summarize the theory behind the
EM approach and introduce some specific notations used
throughout this paper. Partial differential equation tech-
niques have been successfully used in many image process-
ing applications, and a predecessor for our approach is given
in Section 3. In Section 4, we explain the main idea behind
the level set method and demonstrate that level set functions
can be used to represent general piecewise constant functions
[29, 39, 40]. Motivated by this, we utilize a level set formula-
tion to represent PET images with piecewise constant emis-
sion densities in Section 5. In this section, we also give imple-
mentation details. Finally, we report some numerical results
in Section 6.



Tony E Chan et al.

TasLE 1: Notations used throughout this paper.

b Pixel index (1,2,...,B)
Ay Unknown source intensity at a pixel b, A, > 0 for all b
t Detector pair index (1,2,...,T)

Total number of coincidences counted by detector pair ¢,

" n; > 0 forall t

Py Probability for an emission from b to be detected in ¢

2. MAXIMUM LIKELIHOOD EXPECTATION
MAXIMIZATION

From the measured emission an image can be constructed by
the EM algorithm [5, 6]. This algorithm provides an iterative
formula to construct an image which makes the measured
data most likely to occur. Given an image, the aim is to max-
imize the conditional probability of the data by using a like-
lihood function (and later we will also use a log-likelihood
function):

IA) = f(data | ) or log(A) =log(I(X)). (1)
Here, data are the measured counts in the detector ring, A :
Q — R is the unknown emission rate causing these counts,
and Q is the image domain. The region to be reconstructed
is usually covered by a uniform mesh, where each square in
the mesh corresponds to one pixel in the PET image. The
discrete representation of A and other essential notations for
describing the EM image reconstruction model are listed in
Table 1. To simplify the notations, we still use A to denote its
discretized version, for example, A = (A1, 1,,...,Ap)".

Each element Py, in matrix P describes the probability for
an annihilation event that occurred in the area of the source
covered by pixel b to be detected by detector pair t. Several
physical factors such as attenuation, scatter and accidental
coincidence corrections, time-of-flight, positron range and
angulation information, and so forth, can be incorporated in
the probability matrix P. To compute Py, the angle-of-view
method was chosen in this paper, but other methods can also
be used [41, 42]. By the angle-of-view method, each element
Py in the probability matrix P is approximated by the largest
angle (in fraction of ) completely contained within tube t as
seen from the center of b. For details about the angle-of-view,
see the paper of Shepp and Vardi [6]. The intensity value A,
is the information we are seeking since it is related to the
tracer concentration. During the acquisition process, a ran-
dom number of emissions is generated from a Poisson distri-
bution. A nonnegative, integer-valued, and random variable
Z follows a Poisson distribution if

Poisson(Z = k) = e’”%, (2)
where ¢ > 0 and Z has mean E(Z) = o¢. The Poisson dis-
tribution is applicable to many problems involving random
events, such as particles leaving a fixed point at a random an-
gle. For the moment, we focus on one of the tubes in Figure 1
and assume that this tube corresponds to the region covered

by detector pair t = 1. Given the mean (PA1);, we want to
maximize the probability for (PA); to fit the measured data
np:

_ oo, (PO
I’l]!

, (3)

Poisson(Z = ny)

where a maximum is obtained for n; = (PA);, and simi-
larly the maximum is achieved for n, = (PA), if we focus
on region covered by detector pair t = 2. The measured co-
incidence events also include scattered and accidental coinci-
dences. Some events produced inside the source pass are un-
detected because of tissue attenuation or photon travelling
path that does not intersect the detector ring. This compli-
cates the image construction. However, each #; is distributed
according to a Poisson distribution and since all measure-
ments are independent of each other, the likelihood over all
projections reduces to the product of the separate projections
likelihood [5]. Therefore we want to maximize

T ne
1) = [T e ® SP;?L . (4)

t=1

To simplify the calculation, the log-likelihood function is em-
ployed to convert (4) to the form

|
M=

hog(A) = [loge™ ™V +1og (PA)} —log (n/!)]
=1
B T (5)
== > A+ nlog(PA) +K.
b=1 =1
In (5), we assume

T
Zptb =1 (6)
=1

for any pixel b, and then exploit the conversions

T B T
> (P =D A, — > log (n!) g, (7)
t=1 b=1 t=1

Since K is independent of A, this constant will be ignored.
Maximizing l,g(A) with respect to A will provide us with
the best estimate of A in a statistical sense. The optimization
problem can be rewritten by max/og(l) = min(—leg(A)),
and thereupon a mathematical formulation of PET becomes

B T

m)tinF(A) = m)lin ( > A — > nlog(PA) + V(/\)>, (8)

b=1 t=1

where V(1) is a regularization term introduced to improve
image quality [7-10, 18, 43]. Several regularization methods
tend to blur edges because both noise and edges contribute to
inhomogeneous behavior. To subdue the blurring effect, the
total variation norm of A was introduced as a regularization
term in [18]. In the next section, we give a short overview of
the TV-based EM algorithm.
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3. ATOTAL VARIATION-BASED EM ALGORITHM

In [18], an algorithm was designed to find the pointwise val-
ues of A. The authors covered the domain Q with a uni-
form mesh, where each square in the mesh corresponds to
one pixel in the PET image. The emission density function
A is represented by a piecewise linear function or piece-
wise constant function where A takes value A; at pixel b,
b =1,2,...,B. In order to regularize the problem, they find
a minimizer for the following functional:

B T
L) = ‘uJ VA ldx + ( S-S ntlog(P/\)t). )
Q b=1 t=1
From (9), it is easy to see that
% = uC(A)A + € — P'(n./P)A). (10)

In the above, C(1) is a matrix depending on A, ¢'is the vector
with unit entries, P’ is the transpose of the matrix P, and
1./PA is the elementwise division of vector 71 by vector PA. In
[18], the following fixed point iteration was used for finding
the minimizer of (9):

A1 = [uC(AF) + diag (1/A%)] P! (/PAF). (1)

In (11), diag(1./A¥) is the matrix with 1./A% on its diago-
nal and C(A¥) is a finite difference approximation for —V -
(VAk./IVAK]). This scheme is obtained from (10), by replac-
ing ¢ by AF*1/A%. In (11), if let u = 0, we get the classical
EM algorithm. This algorithm finds all the pixel values A,.
In practice, we know that A should be a piecewise smooth
(piecewise constant) function in PET images. However, this
information is not fully utilized in the above algorithm. Be-
low we demonstrate that such information can be incorpo-
rated and handled in an efficient way by using the level set
framework, which can help to produce images with sharper
edges. See also [19, 29, 30, 32-35, 40, 44] for other applica-
tions where level set based ideas are used to identify piecewise
constant functions.

4. ANINTRODUCTION TO THE LEVEL SET METHOD

The level set method was proposed by Osher and Sethian
[25] for tracing interfaces between different phases of fluid
flows. Later, it has been used in many applications involving
movement of interfaces for different kinds of physical prob-
lems [26-28]. In the following, we will present a “unified”
framework, first presented in [29, 39, 40, 45], of using multi-
ple level sets to represent piecewise constant functions.

Let T be a closed curve in Q C R2. Associated with T, we
define a ¢ as the signed distance function:

distance(x,T), x € interior of T,
d(x) = ‘| (12)

—distance(x,I'), x € exterior of I,

where x denotes (x, y). It is clear that I' is the zero level set of
the function ¢. In the case that I is not closed, but divides the

domain into two parts, the level set function can be defined
to be positive on one side of the curve and negative on the
other side of the curve.

Once the level set function is defined, we can use it to
represent general piecewise constant functions. For example,
assuming that A(x, y) equals ¢; inside I and equals ¢, outside
T, it is easy to see that A can be represented as

A=cH($)+c(1-H(¢)), (13)
where the Heaviside function H(¢) is defined by

H(qb):«:l’ ¢ >0,
0, ¢=<o.

(14)

In order to identify the piecewise constant function A, we
need to identify the level set function ¢ and the constants
Ci, i= 1, 2.

If the function A(x, y) has many pieces, we need to use
multiple level set functions. We follow the ideas of [29, 39,
40, 46]. Assume that we have two closed curves I' and T,
and we associate the two level set functions ¢;, j = 1,2 with
these curves. The domain ) can now be divided into four
parts:

Q) ={x€Q, ¢ >0, ¢, >0},
O =1{xeQ, ¢ >0, ¢ <0},
Qs ={x€Q, ¢ <0, ¢, >0},
Qu=1{xeQ, ¢1 <0, ¢ <0}.

(15)

Using the Heaviside function again, the following formula
can be used to express a piecewise constant A with up to four
constant values:

A= cH(¢1)H(¢2) +c2H(¢1) (1 — H(¢2))
+c3(1 = H(¢1))H(¢2) +ca(1—H(¢1))(1 - H(¢2)).
(16)

By generalizing, we see that n level set functions give the pos-
sibility of 2" regions. For i = 1,2,...,2", let

bin(i — 1) = (b}, b},...,b") (17)

be the binary representation of i — 1, where b; =0orl. A
piecewise constant function A with constant coefficients ¢;,
i=1,2,...,2", can be represented as (cf. [29, 40])

2 on
A= ZC,‘ R,‘((Pj), (18)
=1 j=1
where
Ri(¢;) = {H(¢j)’ ife; =0, (19)
1 - H(¢j), ifb; = 1.

Even if the true A needs less than 2" distinct regions, we can
still use n level set functions since some subdomains are al-
lowed to be empty. Using such a representation, we only need
to determine the maximum number of level set functions
that should be utilized.
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5. ALEVEL SET EM ALGORITHM (LSEM)

In this section, we will use the level set idea to represent A as a
function that only takes a limited number of constant values.
Assume that the domain Q can be divided into a union of
subregions such that all 1, have the same constant intensity
value in each of the subregions. For such a case, we can use
level set functions to express A = A(¢) as in (18). Concern-
ing the optimization problem, we utilize the fact that calcu-
lations from (10) can be carried forward by the chain rule for
A(¢). As the A function is already discretized, we will also use
discretized level set functions ¢;, j = 1,2,...,n. From the
chain rule, see [29], we get

oL oL
R

(20)
oL [ oL al
a—Cj B J;; ﬁa—c]

The calculation of dL/0A is given in (10). We only need to
have dA/d¢; in order to get dL/d¢;. If A takes only two con-
stant values ¢; and ¢, as in (13), it is easy to see that

e
o¢

where the delta function §(¢) = H'(¢). In case that we need
two level set functions ¢; and ¢, it follows from (16) that

= (a1 — ¢2)8(9), (21)

—aa/\ =((ca——c+c)H () +c2—ca)d(1),
1
(22)
oA
Frale ((c1 =2 —cs+ca) H(¢1) +c5 — ca)8(¢h2).
b2

The calculation of 0A/dc;, j = 1,2,..., n, is straightforward.

For level set methods, it is standard to use the length of
the level set curves as the regularization term (cf. [39, 46]). So
we replace the regularization term « [, |VA|dx in (9) by the
length term a37_; [ IVH(¢;)|dx, and its derivative with
respect to ¢; is the curvature —aV-(V¢;/|V$;|)5(¢;), where
a is a parameter to be used to control the influence of the reg-
ularization. Once the gradient dL/0¢; is available, we can use
the following gradient method (Algorithm 1 below) to find a
minimizer for the optimization problem.

Algorithm 1 (level set EM algorithm).

(1) Choose initial values for gb? and the time step At?.
(ii) For all the level set functions ¢;, update the func-

tions
7= g7 - At}' %, (¢,) (23)
(iii) Update the constants c;:
oL
il =l - Bja—cj. (24)

(iv) Reinitialize the level set functions ¢; if a “suffi-
cient” amount of pixel values of ¢; have changed sign.
Otherwise, go to the next iteration.

Some remarks about the implementation of the algo-
rithm are given as follows:

(i) We are restricting the class of solutions to piecewise
constant functions represented by (16).

(ii) All the step length parameters can be determined by
trial and error or by using a line search method to get the
optimal ones.

(iii) The parameter o weights the influence of the regular-
ization. An oscillatory curve may occur if « is too small, and
a too large will deny a proper evolution of the curve. By trial
and error € (107%,107*) was found to be a proper choice
for the class of PET images used in our experiments.

(iv) For numerical purpose, we approximate the delta
function and the Heaviside function by

1
8, (¢)) = pps €1+ ay He(¢;) = — tan™! 61; .
(25)

This is also standard for level set methods [39]. In our nu-
merical examples, we found that €; = 0.5h and €, = 0.005h
worked well, where / refers to the grid size.

(v) There are efficient numerical methods to reinitialize
the level set functions, see [26, 28, 47] for details. The nu-
merical method we have used for the reinitialization is as in
(40, 47], and we reinitialize the level set functions for each 30
iterations.

(vi) We do not update the constants for every iteration,
updating once for each 5-10 iterations is sufficient.

(vii) Our approach allows the use of prior knowledge
about the constants (active levels) to improve the quality of
the reconstruction. We found that a reasonable estimate for
these constants could help to improve the convergence of
the algorithm In all numerical implementations, an inter-
val [aj, b;] is chosen for each of the constants ¢, j = 1,2, 3.
We assume that the minimzer for ¢; is inside [a, b;]. Dur-
ing the iterations, we project ¢; into the interval by setting
¢; = min(max(aj, ¢j), b;).

6. NUMERICAL RESULTS

In this section, we report some numerical results. The EM al-
gorithm and TV-EM algorithm are implemented and will be
compared with the results achieved by our LSEM algorithm.
In all the examples, the observation vectors (sinogram data)
were constructed by forward projection, then scaled up to to-
tal 2 X 10° counts by multiplying a constant, corrupted with
Poisson noise, and finally scaled back. To quantify the qual-
ity of the reconstructed images, we calculated the root mean
square error (RMSE) for the reconstruction. RMSE is defined

as
2
RMSE = | 1A = Al HM‘”, (26)
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FIGURE 2: Sinogram data, obtained by forward projection: n = PA plus Poisson noise.

where ) and ) are two vectors that represent the computed
image and the true image, respectively, and » is the number
of pixels of the image.

6.1. Without prior information

In our first example we try to reconstruct a 32 X 32 image
of two circles, one inside the other, as seen in Figure 3(e).
Total 1536 (32 positions and 48 angular views) observations
were given to us. The sinogram data as well as the data noise
(after scaling up) are shown in Figure 2. The true intensity
values are {0,1,2}. We first test the EM algorithm. After a
few iterations, it is possible to see some inner structures in
the PET image depicted in Figure 3.

The major drawback with the EM algorithm is its lack
of termination criterion and the introduction of noise as the
number of iterations increases. In Figure 3(b), the intensity
values in the outer circle are almost constant (as it should be
in this test), but it is difficult to decide the exact boundary
for the inner circle. After 30 iterations, the edges are empha-
sized but so is the noise, as seen in Figure 3(c). After 100 iter-
ations, the noise becomes dominant and degrades the qual-
ity of the recovered intensity function. The same sinogram
data were thereafter used for the TV-EM and the LSEM algo-
rithms. The results are shown in Figure 4. For the two level
set functions of the LSEM algorithm, we started with random
initial guesses (cf. Figures 4(a) and 4(e)).

In less than 200 iterations, both level set functions have
converged to a constant shape and these level set functions
together with (16) were used to get Figure 5(c). With two
level set functions, we see from (15) that it is possible to iden-
tify up to 4 distinct regions. The true PET image depicted in
Figure 5(d) consists of only 3 distinct regions: background,
outer circle, and inner circle. To handle this, we put ¢; = ¢3
such that 2 regions yield the same contribution to the con-
structed PET image. The intervals for the intensity values are
{[0,0.5],[0.5,1.5],[1.5,2.5]}. After 200 iterations, the inten-
sity values are recovered as {0, 1.0005,2.0192}, which match
the true values very well.

Even though this is a simple test that involves a nonmed-
ical image, it illustrates the potential in the LSEM algorithm.
Sharp edges are recovered properly for the PET image and
different regions do not suffer from inhomogeneities caused
by noise. Notice the improvement of LSEM over EM and
TV-EM in the recovery of the shape of the inner circle in
Figure 5. The RMS error, as shown in Figure 5(e), also sug-
gests that the LSEM algorithm produces the best reconstruc-
tion.

In the next example, the interior structure of the PET
image is more complicated. We try to reconstruct a 32 X
32 image of the brain from 1536 observations (32 po-
sitions and 48 angular views, synthetic data). The sino-
gram data as well as the data noise (after scalling up) are
shown in Figure 6. The true intensity values are {0,1,4}.
The results obtained with the EM algorithm are displayed in
Figure 7.

We also used the same sinogram data to test the TV-EM
and the LSEM algorithms. For the LSEM algorithm, the evo-
lutions of the two functions ¢, and ¢, are given in Figures 8
and 9, respectively.

In less than 600 iterations, the two level set functions
have converged. Combining ¢, from Figure 8(c) and ¢, from
Figure 9(c) together with (16), we get the PET image de-
picted in Figure 10(c). In this test, we used ¢4 (background),
¢, (gray matter), and ¢; = c3 (white matter). The intervals for
the intensity values are: {[0,0.5],[0.5,1.5],[3.5,4.5]}. After
600 iterations, the intensity values are recovered pretty well
as {0,0.9802,4.0620}.

In Figures 10(a) and 10(b), the boundaries between the
tissue classes are not sharp. In contrast, we see that LSEM
algorithm is able to recover almost all the fine details in the
PET image in this example.

Next, we challenge our algorithm with a 64 X 64 image
obtained from a segmented MRI slice of the brain. This im-
age was used to generate totally 6144 (64 positions and 96 an-
gular views) observations. The sinogram data as well as the
data noise (after scaling up) are shown in Figure 11. Notice
that we are using the MRI image to generate the PET data,
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EM iterations = 5 EM iterations = 30

(a) Initial image (b) 5 iterations (c) 30 iterations
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FIGURE 3: Evolution of a two circles using the EM algorithm.
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FIGURE 4: Interfaces given by the zero level set of the function ¢, and ¢,.

and we are not trying to solve the MRI tomography prob- in Figure 14(c). The evolutions of the ¢, and ¢, functions
lem. The true intensity values are {0,1,4}, and the inter- are shown in Figures 12 and 13.

vals {[0,0.5],[0.5,1.5],[3.5,4.5]} were used for our LSEM We see that the level set function ¢, is recovered rather
algorithm. Compared with Figures 5(c) and 10(c), the inner ~ accurately, while the interior structure for ¢, is not that nicely
structure to be recovered here is more complicated, as seen  recovered. This will influence the appearance of the PET
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Ficure 5: PET image of two circles constructed with different algorithms.
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FIGURE 6: Sinogram data, obtained by forward projection: n = PA plus Poisson noise.

image, as seen in Figure 14(b). After 650 iterations, the inten- tified dark region and the sharp edges in Figure 14(c), the
sity values are recovered as {0,0.95549, 3.8629}. If we look at LSEM algorithm still produces a better result than what was
Figure 14(e), the RMS error does not reveal any advantages achieved with the EM algorithm in Figure 14(a) or TV-EM
for the LSEM algorithm. Even so, due to the clearly iden- in Figure 14(b).
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FIGURE 7: Evolution of a brain image with the EM algorithm.
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FIGURE 9: Interfaces given by the zero level set of the function ¢,.

6.2. Incorporating prior information

To obtain improved reconstructions, one approach is to use
priors that reflect the nature of the underlying radionuclide
distribution. Recently, there has been a considerable inter-
est in incorporating side information derived from highly
correlated anatomical information (such as MRI and CT) in
the form of Bayesian priors [22, 48]. The main attraction of
this approach is that one can expect to obtain improved re-
constructions to the extent that functions follow anatomy.
Usually, the anatomical information is incorporated by some
penalty technique, and a parameter 3 is used to control the
influence of the priors, which should smooth the image un-

der reconstruction. There are also some papers dedicated to
keeping sharp boundaries in the smoothing process. The key
point there is to try to derive and represent the boundary
information in the form of local smoother from the anatom-
ical MRI or CT image. However, by level set formulation, the
anatomical information can be incorporated into the EM al-
gorithm in a natural and efficient way, and the sharp bound-
aries are preserved naturally and easily. We just need to know
the location of the boundaries, the intensity values in the CT
or MRI image are not necessary.

Assume that MRI or CT observations are used to generate
information of the PET phantom, partly or in the entire do-
main Q—see [49, 50]. Below we will demonstrate that such



10 International Journal of Biomedical Imaging

EM iterations = 200 TV-EM iterations = 200 LSEM iterations = 600
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F1Gure 10: Construction of a PET image with different algorithms.
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FIGURE 11: Sinogram data, obtained by forward projection: n = PA plus Poisson noise.

information will improve the image reconstruction capacity ~ with the results in Figure 14, we see that a prior information
noticeably. First, we assume both ¢; and ¢, to be known,  of the geometrical objects improves the reconstruction dra-
which means that all the boundaries are known a priori,and ~ matically. We need only about 20 iterations to reconstruct a
we just need to recover the piecewise constant intensity val-  perfect image. In this case, after 200 iterations, the intensity
ues of the image. The result is shown in Figure 15. Compared ~ values were recovered pretty well as {0, 1.01, 3.98}.
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FIGURE 12: Interfaces given by the zero level set of ¢;.
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FIGURE 14: 64 X 64 segmented MRI slice of the brain.
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FIGURE 15: 64 X 64 segmented MRI slice of the brain.
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FIGURE 16: 64 X 64 segmented MRI slice of the brain.
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FIGURE 17: 64 X 64 segmented MRI slice of the brain, nonpiecewise constant by adding sin() functions.
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FIGURE 18: 64 X 64 segmented MRI slice of the brain, nonpiecewise constant by adding Rand() functions.

Next, we assume ¢, to be known, and let ¢; evolves freely.
This corresponds to wrong or incomplete anatomical infor-
mation. The results are shown in Figure 16. From this ex-
ample, we see that LSEM can tolerate wrong or incomplete
anatomical priors. In this case, LSEM will try to discard the
wrong information. After 200 iterations, the intensity values
were recovered as {0,0.97,3.99}.

In our final example, we try to show that our method
works well for nonpiecewise constant images. Let A(x, y) de-
notes the 64 X 64 true piecewise constant image as in the
above example. We also assume that ¢, is known, while ¢,
is unknown.

Firstly, we add a smooth function to the original piece-
wise constant image, so that the true image is somehow
piecewise smooth,

Ax, y) = A(x, y) + 0 * (sin(167x) sin(167y)). (27)

The original true image as well as the reconstructed image are
shown in Figure 17. We use ¢ = 0.1 in this test. The intensity
values were recovered as {0,0.92,3.99}.

Then, we add random noise to the true piecewise con-
stant image by

A(x, y) = Mx, y) + 0 * (Rand(x, y) — 0.5), (28)

where Rand(x, y) produces uniformly distributed real num-
bers between [0, 1]. In this test, we use ¢ = 0.2.

The original true image as well as the reconstructed im-
age are shown in Figure 18. The intensity values were recov-
ered as {0,0.99,3.99}.

7. CONCLUSIONS

We have applied a level set method to the positron emission
tomography reconstruction problem, based on the assump-
tion that the active values can be identified with different lev-
els.

The basic idea is to modify the maximum likelihood ex-
pectation maximization algorithm by using a level set formu-
lation. With this approach, we can incorporate anatomical
prior information naturally and easily into the algorithm.
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