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Abstract

Background: The amount of published full-text articles has increased dramatically.
Text mining tools configure an essential approach to building biological networks,
updating databases and providing annotation for new pathways. PESCADOR is an
online web server based on LAITOR and NLProt text mining tools, which retrieves
protein-protein co-occurrences in a tabular-based format, adding a network schema.
Here we present an HPC-oriented version of PESCADOR’s native text mining tool,
renamed to LAITOR4HPC, aiming to access an unlimited abstract amount in a short
time to enrich available networks, build new ones and possibly highlight whether
fields of research have been exhaustively studied.

Results: By taking advantage of parallel computing HPC infrastructure, the full collection of
MEDLINE abstracts available until June 2017 was analyzed in a shorter period (6 days) when
compared to the original online implementation (with an estimated 2 years to run the
same data). Additionally, three case studies were presented to illustrate LAITOR4HPC usage
possibilities. The first case study targeted soybean and was used to retrieve an overview of
published co-occurrences in a single organism, retrieving 15,788 proteins in 7894 co-
occurrences. In the second case study, a target gene family was searched in many
organisms, by analyzing 15 species under biotic stress. Most co-occurrences regarded
Arabidopsis thaliana and Zea mays. The third case study concerned the construction and
enrichment of an available pathway. Choosing A. thaliana for further analysis, the defensin
pathway was enriched, showing additional signaling and regulation molecules, and how
they respond to each other in the modulation of this complex plant defense response.

Conclusions: LAITOR4HPC can be used for an efficient text mining based construction of
biological networks derived from big data sources, such as MEDLINE abstracts. Time
consumption and data input limitations will depend on the available resources at the HPC
facility. LAITOR4HPC enables enough flexibility for different approaches and data amounts
targeted to an organism, a subject, or a specific pathway. Additionally, it can deliver
comprehensive results where interactions are classified into four types, according to their
reliability.
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Background
In the past, scientific information used to be shared via letters between peers. This

evolved to printed journals and magazines, and, during the early days of computation,

diskettes became a popular way to exchange articles before the advent of the World

Wide Web. Today, in the digital era, information has become more accessible, but it

has also generated a new venture [1]. Likewise, keeping updated with the “state-of-the-

art” and relating all the information available on most fields of study, if not all of them,

have turned into an emerging challenge since the 21st century information boom in

scientific publishing. According to NCBI resource coordinators (2018) [2], the number

of full-text articles have been increasing at a rate of 11.35% a year!

To understand biology in all its complexity, it is necessary to comprehend the structure

and dynamics of organisms from cellular to organismal levels. Thus, the focus must

change from one element (e.g., protein, gene, phenotype) to a multidimensional point of

view. Systems Biology approaches aim to access multi-OMICS data in a variety of experi-

mental conditions and time series to exhaustively generate networks, which may offer an

organism's response pathways overview under different situations [3, 4].

Research outcomes and relevant Systems Biology studies data are mostly reported in

scientific journals [5]. The need for a more efficient way to explore the plethora of in-

formation buried in the various literature silos, has motivated the application of infor-

mation retrieval and extraction techniques in biology. The area of text or

literature mining has emerged, and it is expanding to fill the gap between published

and useful information from scientific journals. Given the increase in articles’ availabil-

ity and heterogeneity, text mining tools can boost the construction of new networks

using pre-existing information, not to mention revealing insufficiently studied interac-

tions of interest [6, 7]. Text mining can identify and extract biological entities co-

occurrences in different levels, such as cellular, tissue and organism-specific contexts,

allowing their integration in more informative networks [5, 8, 9].

Text mining tools follow three fundamental processes described by Krallinger and Valencia

[10]: (i) information retrieval (finding relevant literature to be analyzed), (ii) biological entities

(bioentities) identification (e.g., protein, gene, taxon tagging) and (iii) biological interaction

terms to relate/associate the tagged entities. PESCADOR [9] is a web server based on

LAITOR [8] and NLProt [11] text mining tools. It uses a list of articles identifiers (PubMed

IDs – PMIDS) as a query to search and retrieve relevant abstracts. Furthermore, PESCADOR

tags bioentities or biointeractions terms mentioned in the text collection (corpus) and identi-

fies biological concepts and their co-occurrences along with bioentities. These co-occurrences

are classified into four types according to their reliability, ranging from 1 (more likely to

correspond to effective interactions) to 4 (less likely to correspond to effective interactions).

Consequently, to build reliable pathways, manual curation is advised [8]. Type classification

criteria are: (1) bioentity names co-occur in the same sentence with biointeraction term(s)

between them; (2) bioentity names in the same sentence with biointeraction term in any pos-

ition; (3) bioentity names in the same sentence, permissive identification of biointeraction

terms; and (4) all biological entities of the abstract are retained (co-occurrence in the same

sentence is not mandatory). Thus, co-occurrences of biological concepts are taken into consid-

eration and reported for co-occurrences of types 1–4. Due to their complexity, the recognition

of bioentities is usually the most time-consuming step. Consequently, making use of text

mining approaches in big data has been a hard task.
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Here, we propose a parallel, fast and unlimited text mining approach by adding cus-

tomized programming functions suitable for HPC (high-performance computing). Text

mining tools have been a valuable approach to support systems biology, not only for

updating databases, but also for providing ab initio annotation of new pathways, by

using automated text processing [12, 13]. To our knowledge, only STRING [14–17] has

a programmatic version, but with a different approach than the one proposed here.

STRING looks for co-occurrences based on a protein query with two text mining steps

added after the update. On the other hand, LAITOR4HPC enables access to all entities

ever described in a given species, as well as flexible keyword searches by naming a

condition, a subject, or a specific protein, among other possibilities.

Three approaches were addressed to exemplify LAITOR4HPC's use cases. Firstly, all

available abstracts of a selected species were analyzed, generating a report containing

the absolute number of proteins, co-occurrences and interaction terms. The result pro-

vided enough data for stratification from most to least studied subjects. Secondly, con-

sidering a subject associated with biotic stress, 15 plants were analyzed to access the

different levels of knowledge on a specific field, an approach that may enrich and gen-

erate pathways. Finally, a conceptual plant defensin (PDF) pathway is presented for

Arabidopsis thaliana. PDFs are cysteine-rich, structurally conserved antimicrobial pep-

tides, responsive to biotic stress, including bacteria [18], fungi [19] and insects [20, 21].

Besides the fact that PDF has previously been studied in many plants [21], most of the

information about its regulation is scattered in the literature. Here we show the

potential of LAITOR4HPC to gather comprehensive information on biological co-

occurrences, allowing a conceptual and dynamic view of pathways.

HPC parallelization and execution
All analyses were performed on the Gaia Cluster at Luxembourg University, High-

Performance Computing Department. System configuration and cluster organization

can be accessed online [22].

In the LAITOR4HPC version, abstracts must be provided as NCBI-PubMed XML

format, and the files can be downloaded from PubMed server by doing a search using

keywords, or accessed on MEDLINE FTP servers. A Python 2.7 script was written to

parse the XML tree structure to recover the PMID, title and abstract of each record.

The referred script was already updated to Python 3.0. The script provides an output,

which is used as NLProt input [11], and the NLProt output is then used as

LAITOR4HPC input.

To run the Python parser, we used the interactive (head) node, which is composed of Bull

B500, 2 * Intel Xeon L5640 @ 2,26GHz, 12 cores and 2880 Gb of RAM. Meanwhile, the fol-

lowing steps were run under the request of running nodes as described online. The NLProt

step (bioentity tagging) analysis was launched as four distinct jobs, with 15 cores each (60

cores in total) and LAITOR4HPC was run as a single job, using a total of 20 cores.

Parallelization

GNU Parallel software [23] was used to parallelize the analyses, with the flag “-j N”,

where N represents the number of cores to be used, and each core is running the i-th

input file at a time. To this end, a file containing the list of paths for all the input files
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was generated and shared across the cores to be used. Nevertheless, any tool with a

similar function must work for the purpose of the LAITOR4HPC tool.

Implementation

The time analyses and sources described concerned the first case study, since it was the

most computationally intensive and time-consuming job. To run the time analyses, we

have used all papers available until June 2017 from our selected corpus (i.e., MEDL

INE), retrieved as previously described. A list with all PMIDs from our corpus is avail-

able in Supplementary Material 1. Then, the XML files for the corpus were parsed, and

the parsed output was used as NLProt software input to highlight all bioentities (i.e.,

genes, proteins, taxon names, tissues and cell types). We used NLProt 1.0.2, made avail-

able by Rostlab [24]. The final step was to run LAITOR4HPC. LAITOR was initially de-

veloped using PHP [25] and its database was designed using MySQL database

management system [8, 26]. LAITOR4HPC implementation is intended to be a stand-

alone application, differently from LAITOR version which is integrated to PESCADOR,

since jobs originated from web servers usually are executed in a dedicated (or virtual)

machine, rather than in an HPC environment. Nevertheless, some of the newly imple-

mented features can also run in a single core, such as the in-memory database query

and the name tagging recovery.

A new optional step is to run the summary generator script. This script was written

in Python3, with two running modes: (I) Basic: Generates N + 1 summary file, where N

represents each LAITOR output in one folder and the extra file with an overall sum-

mary of all concatenated data. This is useful when a taxon is analyzed with different

keywords searches, or when a big dataset is split for faster running; (II) Spread: Can

check several folders to join all results of the basic summaries in a unique summary re-

port. This is useful in cases where the same dataset is analyzed against many species.

All summaries inform how many proteins, co-occurrences and terms were targeted

in the analyses. It is important to mention that the basic summary returns a text file for

each LAITOR4HPC output, with the extension “.summary”. This file contains an ‘extra

section’ describing all terms and how many times they were related to a given co-

occurrence. Additionally, if only one file is available, the basic summary step will re-

trieve two very similar files. The additional file (+1) of the basic summary is named

“A.join.dataset.summary” and does not contain the ‘extra section’.

To distribute LAITOR as a parallel process, it was necessary to make sure that the

processes running on different nodes could query the bioentities and biointeraction dic-

tionaries seamlessly. However, MySQL requires its installation in every node for it to

be used, which is possible, but against the user practices in most HPC systems, includ-

ing ours. Therefore, we chose to switch the original disk-stored LAITOR databases

(MySQL) by an in-memory database system. For that purpose, we used SQLite (version

3.0): a self-contained, highly reliable, embedded, full-featured, public-domain SQL data-

base engine [27]. Consequently, we needed to adapt the queries from the former system

to the latter (Fig. 1).

Three case studies were performed, aiming to encompass the different LAITOR4HPC

applications. The first case study aimed to search all bioentities co-occurrences in all

available abstracts for a given species (Glycine max); the second, to use keywords to
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look for all described interactions on one subject (biotic stress) in 15 different plant

species; and the third, to build a pathway based on the information retrieved by the

keywords “Plant AND Defensin” in A. thaliana.

For the first case study, the taxonomy identifier (tax-ID) filter option of LAI-

TOR4HPC was used to check all soybean (Glycine max – Taxonomy ID: 3847) interac-

tions described in 1134 XML files (approximately 30,000 abstracts each), comprising

every MEDLINE paper available until June 2017. In this case study, no restriction on

the subject was made. Therefore, all possible co-occurrences ever published about soy-

bean could be retrieved. The basic summary report was used to access the 10 most

studied proteins, co-occurrences and related terms.

In a second approach, a collection comprising a set of biotic stress-related keywords

retrieved from MEDLINE (NCBI) was submitted to the pipeline 15 times, one for each

plant species. This case study aimed to uncover interactions that are being over studied

and some that are probably being ignored for some species. The basic summary report

has evidenced the most studied proteins, co-occurrences and related terms, as well as

Fig. 1 LAITOR4HPC database management system updates. The principles are the same as the previously
online version. However, MySQL connects to a server where the database is stored in the disk a, whereas
SQLite loads the database file in the RAM of the node executing the query d. The remaining processes are
similar when using both technologies: b, e, f preparing and executing the query; and c, g retrieving
the results
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the neglected ones for each species. Additionally, the ‘spread report mode’ has allowed

the context analysis of each co-occurrence, independent of species specification.

For the third case study, the defensin-associated pathway regulation was built for A.

thaliana. The parsed XML file related to the keywords “Plant AND Defensin” was se-

lected. Furthermore, only interactions tagged as type 1 (proteins in the same sentence

with the biointeraction term between them) were chosen to be used on CellDesigner

[28] for construction of the pathway model. All the retrieved abstracts related to this

step were manually curated, to verify possible false positives and interactions that may

have not been tagged, thus allowing the expansion of the pathway beyond the auto-

matic annotation (those interactions retrieved exclusively by the pipeline).

CellDesigner was used to make a conceptual visualization of the pathway by connect-

ing the biointeraction terms with tagged proteins and reporting events of activation,

regulation and inhibition. For a better visualization, different bioentities (genes, proteins

and simple molecules) were represented by different shapes and colors.

Scalability test

The scalability test was performed using three XML files containing 1000 abstracts

each, from three different species: Caenorhabditis elegans, Homo sapiens and Arabidop-

sis thaliana in a computer composed by an Intel Xeon(R) E-2124G CPU @ 3.40 GHz ×

4 cores and 32 Gb of RAM following the same pattern proposed here to

LAITOR4HPC.

First, we ran the Python parser script for each species using the GNU parallel. Then,

the NLProt step was performed in two different stages: parallelized and non-

parallelized, to evaluate the running time, per core usage and the number of tagged

proteins. In the first case, the analysis was performed by running the three files using

three, two and one core, sequentially. In the second run, the files were evaluated separ-

ately by using one core, but also a single file containing all the 3000 abstracts.

Finally, the LAITOR4HPC was carried out separately in one core to tag the inter-

actions in each file and the running time, since the necessity of a specific tax-ID

precludes the parallelization in this specific study case Table 1.

Results
First case study (soybean) and implementation

The first step, the Python parser script, was run on the head node against the 1134

XML files (approximately 31 M abstracts) in nearly 5 min. The second and third steps,

comprised by NLProt and LAITOR, took 6 days in total to analyze all files filtering for

soybean tax-ID. This represents an average processing rate of 0.017 s per abstract,

Table 1 Files, cores and their respective steps processed in each stage of the scalability test

No. files No. Cores Step

3 3 Parsing

3 3 NLProt

3 2 NLProt

3 1 NLProt

1 1 LAITOR4HPC (3x)
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which is a speed-up of approximately 117 times in comparison to the original imple-

mentation (in which the NLProt tagging alone took around 2 s to complete) [9]. The

running time should vary depending on node configuration and cores available on the

HPC, but it is faster than using a single core approach.

Figure 2 represents the general pipeline obtained for the preparation of the MEDL

INE abstracts as an input for the LAITOR4HPC text mining process. After download-

ing the full MEDLINE collection, a dataset of 1134 XML files was obtained, each con-

taining approximately 30,000 PMIDS (Fig. 2a). These files were transferred to the HPC

environment via SCP (Secure Copy Protocol) over an SSH (Secure Shell) protocol (Fig.

2b). The Python parser converted these records into readable NLProt MEDLINE input

files (Fig. 2c). After that, the NLProt job was launched (Fig. 2d), where four nodes and

a total of 60 computing cores were used to run i NLProt processes (where: {i ∈ Ζ | {0 <

i < 1305}) to tag the bioentity names within those 1304 input files (Fig. 2e). Upon con-

clusion, those 1304 NLProt output files were made available in the head node (Fig. 2f),

ready for the LAITOR4HPC step.

The LAITOR4HPC job execution uses the DB file and the NLProt output files as in-

puts (Fig. 2g). The jobs were launched from the head node, to be executed by one node

with 20 cores. Each i-th process was directed to a corresponding computing core

together with the DB file, the LAITOR4HPC script and the NLProt output. Every

Fig. 2 Complete text mining pipeline using NLProt and LAITOR4HPC. a MEDLINE files are downloaded from
NCBI FTP as XML files; b a Python parser is executed to convert the XML files into input files for NLProt which
are then c transferred into the interactive (head) node of the HPC system. d A job is then started and i different
processes are launched in parallel on 60 computing cores (where: {i ∈ Ζ| {0 < i < 1305}). e In each core, the
corresponding i-th MEDLINE input file is tagged by NLProt which generates f an i-th NLProt output file, which is
then placed back to the head node together with the other outputs. g These files are used together with the
DB file as input for the LAITOR4HPC job; h which loads an in-memory database before the i tagging of the
bioentities and biointeraction present in the corpus. j After completion, the results are placed back to the head
node and made available for downstream applications
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computing core loads the DB file as an SQLite in-memory database in that node during

execution (Fig. 2h). Then the LAITOR4HPC script receives the i-th process and ana-

lyzes it against the loaded in-memory database, which contains the bioentity and bioin-

teraction dictionaries (Fig. 2i). Once the results are obtained, they are made available

back to the head node (Fig. 2j). At the end of the job, all the LAITOR4HPC output files

are retrieved back to the head node and can be copied by SCP or another similar

method to a user-client computer; from there, users can further explore the text mining

outputs to create co-occurrence networks, for example.

By switching from MySQL to SQLite, we avoid HPC limitations during the database

querying in the HPC architecture, as previously mentioned. Using SQLite in-memory, a

new database is created purely in the memory of the computing nodes. This database

ceases to exist as soon as the database connection is closed. As the database is self-

contained in a text file, this file needs to be distributed across the computing cores

along with the input file to be analyzed.

LAITOR4HPC running time was drastically decreased by the parallelization ap-

proach, which also allowed the user to query the whole corpus and extract all its

bioentity co-occurrences. In comparison to the original version used by the PESC

ADOR website, where only a maximum of 1000 papers could be read on-the-fly,

and NLProt alone was lasting 2 s. In LAITOR4HPC context: the more articles

available, the better the result. Parallel SQL limitations caused by competitive ac-

cesses on the HPC environment were avoided by loading the database in the RAM

of each computing node.

After the soybean analysis performed on the overall MEDLINE corpus, the pipeline

has tagged 15,788 proteins and 7894 co-occurrences along with the four occurrences

types (type 1, 104; type 2, 685; type 3, 2369; type 4, 4736). The 96 non-redundant

proteins were responsible for 1254 different co-occurrences in soybean. Rubisco Large

subunit (rbcL) was tagged 1767 times and was present in three out of 10 most studied

co-occurrences, followed by photosystem II protein A (psbA), which was tagged 983

times and present in four out of 10 of the most observed co-occurrences (Fig. 3), with

475 co-occurrences of Maturase K (matK)/rbcL. Not by chance, the most abundant

interaction terms, among the non-redundant 227 terms, were encoding (140), amplified

(60) and encode (47) (Fig. 3).

A closer look has revealed that all top 10 co-occurrences in soybean have at least one

chloroplast-encoded protein related to photosystem II, and around 55% of mapped co-

occurrences have the same pattern, with at least one of those being three chloroplast-

encoded proteins (rbcL, psbA, matK) (Supplementary Material 2). The proteins, the co-

occurrences and the terms that were only identified once or twice were considered

as poorly described. Thus, for soybean, almost half of all the co-occurrences (751) and

all the terms (128) were deemed as poorly characterized. All proteins, co-occurrences

and terms can be found in Supplementary Material 2.

Using keywords to search all described interactions on one subject

To describe the interactions related to biotic stress in plants, the same subset of papers

was used to search for information about 15 species. The chosen keywords related to

biotic stress were filtered for plants (keywords are listed in Supplementary Material 3)
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The first two steps (1) Python parsing and (2) NLProt tagging were run only once for

all the analyses. The third step, LAITOR, was executed with different tax-IDs to specify

the species. No co-occurrences were registered for three out of 15 species (Medicago

truncatula, Nicotiana benthamiana and Ricinus communis).

The number of proteins, co-occurrences and terms varied greatly among the remaining 12

species. Considering all tagged proteins, co-occurrences and terms (Fig. 4), PR-1 (Pathogen-re-

lated) protein family was explicitly the most widespread molecular entity (5382 descriptions

and 138 unique co-occurrences), followed by NPR-1 (3108 descriptions and 173 non-

redundant co-occurrences). PR-1/PR-5 and RPS2/RPS4 (ribosomal protein small subunit)

were the most representative, with 1019 and 914 interactions, respectively. The profile of the

most annotated proteins suggests that for the biotic stress-related subject, expression of re-

sponsive genes is the main focus of study, since among the most retrieved terms are: required

(552), induced (460), induction (299), enhanced (345) (complete list of proteins, co-

occurrences and terms available in Supplementary Material 4).

A. thaliana and Zea mays are, by far, the most studied plants (Fig. 5). Using LAITOR

tax-ID against the same abstract set to filter both species interactions, a total of 14,411

and 2744 co-occurrences were mapped respectively, considering all four types. Con-

spicuously, A. thaliana registered 1468 non-redundant tagged proteins, comprised of

4224 unique co-occurrences (Fig. 6a), where PR-1 alone accounted for 1470 occur-

rences, highlighted in four out of 10 most abundant co-occurrences (Fig. 6b). Addition-

ally, PR-1 was present in a total of 115 co-occurrences in the selected corpus. Terms

such as regulation (135), induced (116) and enhanced (105) are among the most traced

(Fig. 6c).

Considering Z. mays interactions, far fewer proteins were tagged (i.e. 365, which only

represent one fourth when compared to A. thaliana’s amount of tagged proteins). On

the other hand, Z. mays registered almost half the number of unique co-occurrences

(2742). Therefore, a more efficient network link was displayed with PR-1, as well as

with the most abundant protein, totaling 486 tagged PR-1 in 32 co-occurrences. Even

Fig. 3 Mapping of LAITOR4HPC retrieved text analysis of all Glycine max available abstracts (until June
2017). a Non-redundant number of identified proteins, co-occurrences, and terms followed by absolute
entities number. b Top 10 most described entities in absolute number. The list with all proteins, co-
occurrences, and terms is available in Supplementary Material 2
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though PR-1 appears only once in the 10 most cited, the interaction between PR-1 and

PR-5 was registered 370 times (Fig. 6b).

In total, 38 co-occurrences were clustered, considering the 10 most relevant re-

sults for each species (Fig. 6b). Nine of those were exclusively described in A.

thaliana (dcL2/dcL4; EDS1/PAD4; GST/glutathione S-transferase; LTP/lipid trans-

fer protein; NPR1/PR-1; PDF1.2/PR-1; PR-1/PR-2; RIN4/RPM1; RPS4/RRS1), seven

were unique in Z. mays (A1/A2; ARF1/GTPase; CaM/Ltp; CAT2/GBF1; Hm1/Hm2;

MLO2/MLO6; MPK4/MPK6) and five were observed only in Nicotiana tabacum

(ATP6/ATP9; ATP6/cox3; cox1/cox2; cox1/cox3; NaD1/NaD2). The interaction be-

tween matK/rbcL was the only one registered for all 12 species with similar values

and, considering it regards a conserved chloroplast function, it was expected to be

found in all plants. The RPS2/RPS4 co-occurrence was described for all the angio-

sperms searched. The pteridophyte Selaginella moellendorffii was the only species

which did not show any RPS2/RPS4 (Fig. 6b), even after a new online keyword

search on the updated 2019 MEDLINE database was performed. Despite being the

least studied of all plants in the selected set, S. moellendorffii presents three exclu-

sive interactions: chlB/chlL; chlB/chlN; chlL/chlN.

The other eight species (Manihot esculenta, Cicer arietinum, Lotus japonicus, Phaseo-

lus vulgaris, Glycine max, Brachypodium distachyon, Solanum lycopersicum, Solanum

tuberosum) revealed very similar profiles (Fig. 6). This can be explained by poorly de-

scribed abstracts, missing information, or it could be due to abstracts citing more than

a single species, thus causing ambiguous tagging during the NLProt process. On aver-

age, all plants have 18% of poorly studied co-occurrences (with only one or two co-

occurrences registered) (Supplementary Material 5). Despite the distinct high amount

of studies in A. thaliana, 19% of the characterized co-occurrences were poorly studied.

On the other hand, only 10% of Z. mays’ co-occurrences were considered poorly stud-

ied, a result following the inference of efficient network construction.

Fig. 4 Mapping of LAITOR4HPC retrieved text analysis for 12 searched plant species among manuscripts
subsets. The subsets were selected with 20 biotic stress-related keywords combinations (Supplementary
Material 3). a Non-redundant number of identified proteins, co-occurrences, and terms followed by the
absolute number of entities. b Top 10 most described entities in absolute number. The list with all proteins,
co-occurrences, and terms is available in Supplementary Material 4
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Building pathways

The pathway annotation or enrichment is a challenging task in many aspects, mainly

because it requires great efforts in the selection, examination and extraction of relevant

information in the retrieved literature. This work can be even harder to be enriched or

designed, depending on how large the pathways are [9], since a simple pathway can dis-

play many complex interactions (Fig. 7).

Considering the whole set retrieved by LAITOR4HPC, we selected 31 abstracts with

type 1 only interactions to build the plant defensin pathway regulation in A. thaliana

(PDF). It is important to highlight that the whole MEDLINE database was used as a

training set, to tag the interaction terms and targets (e.g., genes, proteins) more effi-

ciently. Thus, our pipeline was able to find feasible connections in 24 manuscripts that

served to both automatic and manual annotation (Supplementary Material 6). To our

knowledge, this is the first attempt at gathering information on a PDF network, focus-

ing on building a pathway and specifying the relations among the entities. However, it

must be mentioned that the gene encoding PDF has been tagged on MAPK signaling

pathway at KEGG database (Entry ko04016). A correlation with proteins has also been

reported on STRING, as, for instance, Octadecanoid-Responsive Arabidopsis (ORA59)

and NPR1, both transcriptional activators [29, 30], which have as well been included in

the present pathway.

The modeled pathway (Fig. 7, SMBL file available in Supplementary Material 7) indi-

cates some well studied A. thaliana genes related to defense transcription factors. All

tagged proteins and genes (except for PDF) either belong to TF class or are signaling

regulators, like coi1 and pepr1 [31, 32]. A general overview of the defensin regulation

Fig. 5 Variety of proteins, co-occurrences, and terms per species. At Y axis is possible to see the amount of
each entity (proteins, co-occurrences, terms) and at X axis, species are named with the initials: Angiosperm:
At - Arabidopsis thaliana (Brassicaceae); Zm - Zea mays and Bd - Brachypodium distachyon (Poaceae); Nt-
Nicotiana tabacum, St- Solanum tuberosum and Sl - Solanum lycopersicum (Solanaceae); Gm-Glycine max, Pv-
Phaseolus vulgaris, Lj-Lotus japonicus, Ca-Cicer arietinum, Me-Manihot esculenta (Fabaceae); Pteridophyte:
Selaginella moellendorffii (Selaginellaceae). The list with all proteins, co-occurrences, and terms for each plant
species is available in Supplementary Material 5
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pathway in A. thaliana allows the division of its whole structure into three main

groups: signaling, regulation factors and defense response itself. For the signaling

group, three hormones play a role as positive effectors: nitric oxide (NO), jasmonic acid

(JA) and ethylene (ET) [33]. The second group (regulation factors) regards the tran-

scription factors and receptors, and the third group (defense response) regards the PDF

genes (Fig. 7).

Scalability

In the NLProt parallelized analysis, the run-time varied from 12min (three cores and

three files) to 29 min (one core and three files), tagging 71,969 proteins considering all

results. For the non-parallelized analysis, the run-time varied from 10min to 29 min for

Fig. 6 Comparison of 10 most identified proteins, co-occurrences, and terms for 12 plant species. Those
species were analyzed regarding the biotic stress subset of abstracts. At Y axis the amount of each entity
(proteins, co-occurrences, terms), at Z species are specifies by colors and at X-axis the entities for each item.
a A total of 41 proteins are displayed with respective amounts. b A total of 38 co-occurrences can be
observed with the respective number of occurrences. c A total of 26 interaction terms are shown with
their respective quantities. Pteridophyte: Selaginella moellendorffii (Selaginellaceae). Angiosperm: Solanum
lycopersicum, Solanum tuberosum and Nicotiana tabacum (Solanaceae); Manihot esculenta (Euphorbiaceae);
Cicer arietinum, Lotus japonicus, Phaseolus vulgaris and Glycine max (Fabaceae); Brachypodium distachyon and
Zea mays (Poaceae); Arabidopsis thaliana (Brassicaceae)
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the largest file. However, on the file containing all the 3000 abstracts, the number of

tagged proteins was 84,284, due to the SVM optimization performed by NLProt (Fig.

8).

For the LAITOR4HPC the number of interactions/running time varied from approxi-

mately 4000 interactions in 159 min for H. sapiens to approximately 6000 interactions

in 132 min for C. elegans. The fact that the worm had more proteins and interactions

validated in less time is due to the number of proteins and redundancies retrieved in

other organisms in its abstracts set (Fig. 9).

Discussion
The first case study identified 96 non-redundant proteins responsible for 1254 different

co-occurrences in soybean, in which chloroplast-encoded protein are abundant. Besides

their functional importance, chloroplast-encoded proteins are, together, widely used as

a barcode for species and population studies in Fabaceae [34, 35]. As a consequence, it

is not by chance that the most abundant interaction terms were: encoding, amplified

and encode. Additionally, all top 10 co-occurrences in soybean are somehow related to

photosystem II, whose proteins are part of a thylakoid structure and can be affected by

high salt levels. Plants that can avoid a decrease in such proteins during stress may tol-

erate the stress with higher success [36]. Photosystem II proteins’ efficiency can also

limit biomass [37]. For that reason, improving these proteins on plants of agronomical

importance, such as soybean, is of great interest.

Fifteen species were selected, however, three had no co-occurrences described, prob-

ably due to one of the two reasons: either (1) there is no description available for the

searched protein interactions, or (2) the protein interactions are not well described in

the paper's abstract. Such a flaw could lead to a false-negative result, since the main

Fig. 7 Arabidopsis thaliana’s defensin (PDF) pathway. On the left a representation of all interaction types
recovered in the present case study: a Transcription; b Translation; c State transition; d Phosphorylation; e
Receptor; f Inhibition; g Activation; h Modulation; i Boolean sign “&” indicating that both proteins activate a
transcription. The PDF gene pathway represents the co-occurrences recovered by LAITOR4HPC when using
the terms “Plant AND Defensin”. The presented data regards the summary of 31 curated abstracts
containing type 1 interactions. Yellow rectangles represent genes; Bright green parallelograms represent
RNA transcripts; Light green rectangles are proteins; Light yellow arrow-like figures represent a receptor;
Light pink circles are inactive hormone forms; Green oval-shaped forms regard the active form of each
hormone. Abbreviations: PDF: Plant Defensin; NO: nitric oxide; JA: jasmonic acid; ET: ethylene; SA:
salicylic acid
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text mining tools, such as LAITOR4HPC, PESCADOR [9], STRING [14–16], iHop

[38], only access the abstracts. The preference for accessing abstracts is due to the diffi-

culties in parsing full paper texts, which can include images and tables. The more ob-

jective the abstract is, including the key information, the more efficient the text mining

tool will be in retrieving the results.

Considering the remaining 12 plants from the original set, PR-1 and NPR-1 proteins

are the most described bioentites. The former was identified in the 1970s, and it still is

largely studied and vastly induced during plant defense response. Since there is also evi-

dence of PR-1 activity in growth and development besides stress response, its full bio-

logical role has not been completely clarified. As a consequence, the number of studies

on this behalf keeps growing [39]. On the other hand, NPR-1 is a transcriptional regu-

lator of plant stress response that is regulated by stress-released hormones recognized

by plant receptors [40]. The two most representative interactions were PR-1/PR-5 and

RPS2/RPS4, which contain the PR and RPS plant-disease resistance (R) genes, with a

specific bacterial-resistant response [41, 42]. Together with the most annotated terms

(required, induced, induction, enhanced), this suggests that expression profile is one of

the most studied topics for plant biotic stress response.

First suggested as a model plant in 1943, A. thaliana has been studied for approximately

70 years, cited in more than 54,000 manuscripts until 2016 and considered a benchmark

on the understanding of plant-pathogen responses, helping to enlight higher plants re-

search. Nevertheless, this model is still an important source to fully understand stress re-

sponse in flowering plants, considered an entry point for elucidating or identifying still

uncovered plant-protein interaction [43–46]. Thus, it is not a surprise that this small plant

stood out as the most researched plant and that the not yet completely clarified PR-1 pro-

tein is being exhaustively studied in the model plant as well.

Despite the abundance of repetitive sequences and complex genome, Z. mays was the

second in the number of available data, exhibiting fewer tagged proteins, but almost

half of the unique co-occurrences when compared with A. thaliana; therefore, display-

ing a more efficient network link. Z. mays is one of the primary sources for food

Fig. 8 Relation among number of proteins, running time and file used to run the NlProt. 1A - Arabidopsis
thaliana; 1H - Homo sapiens; 1C - Caenorhabditis elegans; 1all - all the abstracts gathered in one file
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security and one of the most studied plants when it comes to breeding studies aiming

to boost productivity, seed protein quality and, especially, to raise resistance to patho-

gens [46–48]. Therefore, it is not a coincidence that, as in A. thaliana, PR-1 is also the

most abundant protein in Z. mays.

In general, plant hormones are involved in a wide range of defense-related signal-

ing pathways [44]. In the presented case study, four manually curated hormones (NO,

JA, ET and salicylic acid; SA) interact regulating defense response. The JA hormone

works like a positive effector, by activating regulation factors as COI1 and PEPR1,

which is also activated by ET. In turn, PEPR1 modulates at PEP1 (as COI1), involved in

PDF1.2 transcription induction [31, 45, 46]. Additionally, JA controls defensin expres-

sion by inducing specific transcription factors, as ORA59 [29], or by modulating the

transcription of MYC2 that inhibits PDF [47].

Another signaling molecule that plays an essential role in the pathway is NO, first be-

cause it inhibits MYC2 transcription and, second, because it induces PDF expression.

Besides, NO also activates the JA signaling positive effectors LOX2 and AOS [47]. Thus,

it plays a role in the pathway, not only by enabling transcription factors to induce the

defense response, but also by regulating JA signaling intensity. Finally, ET signaling

hormone can induce PDF transcription indirectly by activating ORA59 and ERF1 [29,

46] (Fig. 7). Both ORA59 and ERF1 are positive effectors to PDF1.2 transcription, des-

pite activating PEPR1 receptor, an indirect positive regulator of defensin transcription,

as aforementioned [31].

The only hormone mapped as a negative regulator of A. thaliana defensin expression

was SA, by inducing the EIN3 and EIL1 transcription, which become a complex EIN3/

EIL1. This complex is responsible for inhibiting the positive regulator ORA59 [29] as

mentioned before. Additionally, SA hormone and NPR1 protein activate GRX480 tran-

scription. Once active, it forms an interaction complex with TGA and inhibits PDF1.2

transcription [48] (Fig. 7). These results show how complex the plant defense regula-

tion can be and shed some light to understand the cross factors that may occur. Thus,

Fig. 9 Relation among the identified interactions, running time and the species for each set of abstracts
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in this case study, the pipeline was very effective, not only in retrieving information

automatically, but also in providing a significant and pertinent abstract set for manual

annotation. Such a combination of approaches allowed specifying the correlation

among the entities in an efficient way, giving a more detailed view of the defensin regu-

lation pathway in A. thaliana.

Most of the current text mining tools are either online, like PESCADOR [9], STRING

[14–16] and PPIcurator [49]; or very specific, such as FamPlex [50], for human pro-

teins, MPTM [51], for post-translation modification in humans, and PaperBLAST [52],

for homology search. LAITOR4HPC and STRING updates are the only programmatic

text mining tools available that came to our knowledge. Nevertheless, both have differ-

ent approaches. STRING focuses on co-occurrences within neighborhood genes and

uses protein names for keyword searches. Text mining functionality is directed to cor-

roborate interactions in their database and, when used separately, it retrieves only the

top tagged proteins [14–16]. On the other hand, LAITOR4HPC pipeline is intended to

retrieve information from a different point of view, thus providing flexibility in research

topics. Our pipeline is prepared to search all the interactions of a given PubMed XML

corpus, retrieving data for a comprehensive network design. Besides, LAITOR4HPC

can help spotting co-occurrences that have already been exhaustively studied, as well

as highlight some that have been poorly studied or that still have not been

considered.

The parallelization has sped up the analyses, since it avoids the pilling up of files. The

time rate comparison revealed a speed improvement of more than double from the

parallelized version to the non-parallelized one.

Conclusion
The improvement of LAITOR [8] and development of LAITOR4HPC has decreased

computing time significantly, due to the implementation of parallelization. Such an in-

crease resulted not only in much faster run time, but also maintained the consistency

and reliability of previously LAITOR implementations. Time will vary accordingly, de-

pending on available hardware resources, specially regarding memory capacity and the

number of available cores. Since this improved online tool includes only data from ab-

stracts, it is essential to consider manual data curation to confirm predicted protein-

protein interactions from co-occurrences terms.

Despite its economic importance and intensive research investments, most soybean

publications are focused on chloroplast-encoded proteins, rather than on stress-

responsive proteins. On the other hand, in the case study that analyzed the biotic stress

terms, PR-1 was the most representative protein, and probably some effort should be

applied to clarify other genes/proteins related to the biotic stress response. A more

comprehensive subset of described interactions can fill gaps in the understanding of

PR-1 role and in other relevant pathways related to the biotic stress response. Using

manual and automatic annotation, the pipeline provided a very detailed pathway with

literature support, evidencing the components of plant defensin signalling and modula-

tion. Thus, it maintains the accuracy of PESCADOR with the improved possibility to

analyze big data in a short time.

LAITOR4HPC is suitable for establishing or enriching new interaction pathways.

It has shown to be efficient in retrieving reliable information, providing an
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overview for a given target, or even for a given keyword associated with an organ-

ism of interest. It is important to highlight that the pipeline was able to retrieve all

the relevant sets of papers for the searched topics in a more efficient way than just

digging into the list of MEDLINE publications. Since the number of manuscripts is

increasing quickly, new approaches for linking information are demanded to enable

a fast, reliable and prompt way of fully understanding the targeted taxon's or orga-

nism's systems biology.

As take-home message, for more efficient development and application of tools, such

as LAITOR4HPC in Systems Biology, future publications should include some ‘minimal

information about publication of interaction data’ (MIAPID) preferably in a tabular for-

mat. This summary of identified and validated interactions will simplify the data recov-

ery and integration to generate or enrich existing pathways.

Datasets availability
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Any restrictions to use by non-academics: No restriction

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03620-4.

Additional file 1. PMID list. Unformatted text file containing the list of PMIDs used to the soybean analysis. The
list represents all the MEDLINE PMIDs available until July 2017.

Additional file 2. Searching bioentities co-occurrences in all available abstracts for one specie (First case study re-
port). Excel file containing information about the total of proteins, co-occurrences and terms of interaction mapped
by LAITOR4HPC in Glicine max. For each category there are information about the absolute number of each elem-
ent category, the total number of elements and the number of non-redundant elements. Additionally, one section
is dedicated to the total for each interaction type, INT_1 (more likely to be effective) to INT_4 (less likely to be
effective).
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