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Abstract: Satellite glial cells (SGCs) surrounding the neuronal somas in peripheral sensory ganglia
are sensitive to neuronal stressors, which induce their reactive state. It is believed that such induced
gliosis affects the signaling properties of the primary sensory neurons and is an important component
of the neuropathic phenotype leading to pain and other sensory disturbances. Efforts to understand
and manipulate such gliosis relies on reliable markers to confirm induced SGC reactivity and
ultimately the efficacy of targeted intervention. Glial fibrillary acidic protein (GFAP) is currently
the only widely used marker for such analyses. However, we have previously described the lack of
SGC upregulation of GFAP in a mouse model of sciatic nerve injury, suggesting that GFAP may not
be a universally suitable marker of SGC gliosis across species and experimental models. To further
explore this, we here investigate the regulation of GFAP in two different experimental models in both
rats and mice. We found that whereas GFAP was upregulated in both rodent species in the applied
inflammation model, only the rat demonstrated increased GFAP in SGCs following sciatic nerve
injury; we did not observe any such GFAP upregulation in the mouse model at either protein or
mRNA levels. Our results demonstrate an important discrepancy between species and experimental
models that prevents the usage of GFAP as a universal marker for SGC reactivity.
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1. Introduction

Satellite glial cells (SGCs) are supportive cells intimately enveloping the somata of
peripheral sensory and autonomic neurons and structurally organized with several SGCs
surrounding a single neuronal soma, forming a functional SGC–neuron unit [1]. SGCs
are thus ideally positioned to partake in neuronal homeostasis and signaling. The close
monitoring of neuronal homeostasis by SGCs is revealed by their adaptive changes follow-
ing neuronal injury or stress. Accordingly, a wide range of neuronal stressors linked to
the development of acute or chronic pain conditions are accompanied by molecular and
cellular changes of SGCs in the affected SGC–neuron units [2]. Such SGC responses have
been confirmed in rodent models of systemic and local inflammation [3–5], diabetes [6–9],
chemotherapy [10,11], and viral infection [12] as well as after variations of traumatic injury
to peripheral nerves ([13–15] and are reviewed in [1,2]). Interestingly, pharmacological
studies in vitro and in vivo have demonstrated how SGCs constitute a potential new target
for the treatment of peripheral neuropathic pain [2,16]. The success of this approach is
challenged by the rather limited knowledge of several fundamental aspects of SGC func-
tion and details of their response to neuronal stress. A significant barrier is the structure
and position of the SGCs forming a relatively thin envelope around the neuronal soma,
making the study of SGCs very challenging in tissues with standard microscopy techniques.
Studying the SGC reactive response in vitro poses an even greater challenge due to their
tendency to rapidly dedifferentiate when cultured [17,18]. Therefore, it is paramount that
suitable molecular markers are available to identify SGCs in their reactive state in sectioned
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tissue obtained from rodent models. Glial fibrillary acidic protein (GFAP) is one such
widely used marker in the literature [6,13,19–21]. However, we have previously described
how we were unable to confirm GFAP upregulation in a mouse model of sciatic nerve liga-
tion [14], suggesting that GFAP upregulation in SGCs is not necessarily observed following
nerve injury and thus questions the current usage of GFAP as a universal marker of SGC
reactivity. In this work we investigated this hypothesis further and evaluated the GFAP
response in two distinct models, the sciatic nerve ligation model representing chronic and
defined nerve injury [14,22] and the lipopolysaccharide (LPS)-induced transient systemic
inflammation model [3,4], in both mice and rats.

2. Materials and Methods
2.1. Animals

Eight- to twelve-week-old female C57BL/6J mice and female Sprague Dawley rats,
both from Janvier Labs, were used in the study. Animals were housed under standard
conditions with a 12 h light/dark cycle and free access to water and standard chow.
All animal experiments were performed in full compliance with Danish regulations and
all experiments were approved by the Danish Animal Experiments Inspectorate under
the Ministry of Environment and Food (permission numbers 2017-15-0201-01192 and
2016-15-0201-01085).

2.2. Surgery and Systemic Inflammation Models

Full sciatic nerve ligation was performed under deep isoflurane anesthesia (IsoFlo vet,
Zoetis, Kalamazoo, MI, USA). The left sciatic nerve was exposed after skin incision and
blunt dissection of the overlying muscles. A tight ligation around the sciatic nerve was
made using nonabsorbable 6.0 vicryl suture and the skin was closed with surgical tissue
adhesive (Henkel Indermil Tissue adhesive, Farla Medical Ltd., London, UK). For local
analgesia, lidocaine (Teva, Haarlem, The Nederlands, 583363) was applied on the wound.
Buprenorphine (Temgesic, Schering-Plough, 519752) and ampicillin (Pentrexyl, Applichem,
Darmstadt, Germany, A0839,0100) were mixed and diluted in isotonic saline and injected
subcutaneously following surgery (rats: Temgesic 0.05 mg/kg and Pentrexyl 50 mg/kg;
mice: Temgesic 0.10 mg/kg and Pentrexyl 100 mg/kg). Lumbar dorsal root ganglia (DRGs)
were dissected from naïve animals and from the ipsilateral side on days 3 and 14 after
surgery, three animals per condition [23].

LPS (Sigma-Aldrich, St. Louis, MO, USA, L2880) was administered by a single in-
traperitoneal injection. Doses were 2 mg/kg for rats and 2.5 mg/kg for mice dissolved in
isotonic saline (injection volumes of 0.50 and 0.25 mL, respectively). Lumbar DRGs were
dissected 3 days after the injection, two animals per condition.

Surgery and LPS injections were performed in four independent experiments (n = 4)
with two animals per condition for each experiment.

2.3. Immunohistochemistry

Animals were deeply anesthetized with isoflurane and transcardially perfused with
PBS (15 mL/mouse, 50 mL/rat). The DRGs of L3 + L4 in mice and L4 + L5 in rats were
identified and dissected by counting from costae [23]. These DRGs were chosen, as they
contribute mainly to the sciatic nerve [24]. DRGs were post-fixed in 4% PFA (Sigma-Aldrich,
252549 diluted in PBS) for 2 h at room temperature followed by cryoprotection in 30% (w/v)
sucrose in PBS overnight at 4 ◦C. The tissue was embedded in Tissue-Tek (Sakura, 4583)
and snap-frozen on dry ice. The DRGs were cut into 10 µm sections using a Leica CM1900
cryostat and stored at −80 ◦C. The sections were thawed, washed in PBST (PBS with
0.15% (v/v) Triton X-100) and blocked with 4% (v/v) donkey serum (S30-M, Sigma-Aldrich)
in PBST for 1 h at room temperature. The slides were washed in PBST and incubated
overnight at 4 ◦C with primary antibodies diluted in PBST (Table 1). The next day, the
slides were washed with PBST followed by incubation for 4 h at room temperature with
secondary antibodies diluted in PBST (Table 1). Finally, the sections were washed in PBST
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with Hoechst nuclear marker (Sigma-Aldrich, 33258) diluted 1:30,000 and mounted with
fluorescence mounting medium (Dako, Glostrup, Denmark, S3023). The stained tissues
were analyzed using a Zeiss LSM780 confocal microscope, and all images were obtained
using identical microscope settings. Images were further processed with the Zen software
(Black Edition, and Blue 3.0, Zeiss) to adjust the GFAP intensity threshold using a vague
neuronal staining as the background reference signal, as this was assumed to be constant
due to lack of neuronal GFAP expression. Alternatively, equal settings across samples, thus
disregarding minor sample-to-sample variation, gave similar results. Negative controls
were prepared by omitting the primary antibodies (data not shown).

Table 1. Antibodies.

Antibodies Supplier, Cat. RRID Dilution

Rabbit anti-GFAP Dako/Agilent, Z0334 AB_10013382 1:500
Goat anti-Fabp7 R&D Systems, AF3166 AB_2100475 1:350

Mouse anti-neuronal Class III β-tubulin BioLegend, MMS-435P AB_2313773 1:1000
Donkey anti-rabbit IgG, Alexa Fluor 488 Invitrogen, A21206 AB_2535792 1:300
Donkey anti-goat IgG, Alexa Fluor 568 Invitrogen, A11057 AB_142581 1:300

Donkey anti-mouse IgG, Alexa Fluor 647 Invitrogen, A31571 AB_162542 1:300

3. Results

Mice and rats received an intraperitoneal injection of LPS for induction of systemic
inflammatory pain, previously described to induce activation of SGCs in mouse sensory
ganglia with upregulation of GFAP immunoreactivity, increased sensitivity to ATP, as well
as increased SGC-GC coupling via gap junctions [3,4]. To evaluate the effect of the LPS
model on GFAP expression in mice and rats, the polyclonal anti-GFAP antibody from Dako
was used, which is widely used in other studies to visualize GFAP expression and regula-
tion by immunohistochemistry across species and experimental models [3,4,6,10,14,25–48].
The analysis of lumbar DRG sections demonstrated minimal GFAP immunoreactivity in
the naïve animals, particularly in the rat (Figure 1) whereas we observed some sporadic
signal in mouse lumbar DRGs which seemed to be mainly unspecific neuronal binding
(Figure 2). We observed a clear increase in GFAP immunoreactivity in both rat (Figure 1)
and mouse (Figure 2) SGCs 3 days after LPS administration, as confirmed by overlay with
the SGC marker Fabp7 [15]. GFAP thus appears to be a qualified marker for SGC reactivity
following inflammation, as demonstrated by others in both mice [3,4,36] and rats [5,35,49].

Next, we tested how traumatic injury to the sciatic nerve affected GFAP expression in
the contributing lumbar DRGs [24]. In rats, a clear increase in GFAP immunoreactivity at 3
and 14 days after injury was observed (Figure 3). This is consistent with abundant existing
literature on the use of increased GFAP immunoreactivity as a marker for SGC reactivity
following traumatic nerve injury in rats (see discussion for details), qualifying the usage of
GFAP in this setting.

In contrast to the results in rats, we did not be observe any increase in GFAP immunore-
activity in SGCs of mouse lumbar DRGs at 3 and 14 days after nerve injury (Figure 4). This
is in accordance with results in our previous study under similar conditions [14]. Based
on the present LPS studies in mice as well as existing literature, there is very little doubt
that the polyclonal anti-GFAP antibody from DAKO is specific and sufficiently sensitive to
detect cellular GFAP expression.
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Supporting a lack of GFAP upregulation in SGCs is our recent study on the SGC
transcriptional response in DRG from mice subjected to sciatic nerve injury. In this study,
glutamine-synthetase-positive SGCs from L3-L5 DRGs were FACS isolated for downstream
mRNA sequencing by NGS. Despite a comfortable sequencing depth, we did not detect
GFAP transcripts above cutoff in SGCs isolated from either naïve mice or 3 and 14 days
following injury [14]. We also obtained single cell RNA sequencing data from mouse
L3–L4 DRGs in naïve mice as well as 7 and 14 days following partial sciatic nerve ligation
(unpublished results), confirming GFAP mRNA expression in only a few percent of SGCs
from naïve mice and no significant upregulation of GFAP expression in SGCs 7- and 14-
days following nerve ligation (single cell data available at the Gene Expression Omnibus:
GSE174430). This is in contrast to previous studies in rat nerve injury models detecting
3–7-fold upregulation of GFAP gene expression in the relevant DRGs [50–52].

The data presented here support the notion that mouse SGCs do not express significant
levels of GFAP under naïve conditions and that nerve injury (in contrast to inflammation)
does not reliably result in an increased GFAP expression level in these cells.
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4. Discussion

Here we demonstrate, by comparative analysis of two different experimental models
in two different rodent species, that SGC reactivity and increased GFAP expression are
not causally linked. While both the experimental model in the rat and the inflammation
model in the mouse resulted in increased GFAP immunoreactivity of SGCs in the DRGs,
the mouse sciatic nerve injury model did not induce increased GFAP immunoreactivity or
GFAP gene expression in the corresponding SGCs of DRGs.

GFAP has become a commonly used marker protein to characterize a reactive state
of SGCs across species and experimental paradigms. We are unaware of the origin of
this approach, however, speculate that it arises from the common functional comparison
between CNS astrocytes and PNS SGCs. Despite their rather different developmental
origin as well as structural features, both cell types are considered important supportive
cells, supporting neuronal homeostasis and activity [21]. An overwhelming amount of
evidence exists for the upregulation of GFAP in astrocytes in numerous CNS disease
models, and the use of biofluid GFAP levels as a potential biomarker for such diseases
has been suggested [53–55]. Indeed, GFAP is an intriguing protein. It is an intermediate
filament expressed in most glial cells, involved in their cytoskeletal structure as well as
their support of neighboring neurons. GFAP is encoded by a single gene but at least ten
isoforms with distinct expression patterns have so far been identified. As GFAP (together
with vimentin) appears to be a key component in the assembly of intermediate filaments
inside astrocytic processes, GFAP seems to play a central role in normal astrocytic function,
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and the observed GFAP upregulation is believed to be a functionally important part of
astrogliosis [53]. Thus, it is very intriguing that several studies on independent GFAP
knockout mouse lines have described how these mice seem to be normal in terms of
development, growth, fertility, and lifespan. There also seemed to be no significant changes
in terms of brain architecture including numbers of neurons and astrocytes, no apparent
impact on the function of the blood–brain barrier (as judged by electron microscopy
analyses), and no compensatory increase in any other intermediate filaments was observed
upon GFAP gene ablation [56]. Even the astrocytic response to CNS injury was largely
unaffected in the absence of GFAP [57].

The role of GFAP in the PNS is even less clear compared to the CNS. Studies have
described how GFAP is expressed relatively late in Schwann cell development and is
downregulated in myelinating Schwann cells while remaining in non-myelinating (Remak)
and repair Schwann cells [58,59]. As for the CNS, studies on GFAP knockout mice found
that the PNS developed normally and displayed similar (although slightly delayed) nerve
regeneration properties compared to wild-type controls [60,61].

Despite this apparent gap in the understanding of the precise mechanistic role of
GFAP in the glial reactive response, it appears to serve well as a molecular marker of such
glial activation. This property has been utilized to demonstrate SGC activation in rats in
various traumatic nerve injury models [13,19,25–30,45,47,48,62–81] as well as models of
type 1 diabetes [82], ischemia [83], facial cancer [84], chemotherapy administration [33,34],
and peripheral inflammation [5,35,49]. Though far from exhaustive, this list of studies
demonstrates a strong correlation between increased GFAP immunoreactivity across rat
experimental models and induction of SGC reactivity.

For mice, the picture is slightly different. Unfortunately, a vast majority of published
papers appear not to distinguish between findings in rats and mice nor experimental
models when referring to increased GFAP immunoreactivity as a marker of SGC reactivity.
This leads to the conclusion that the generalized link between GFAP and gliosis that we
demonstrate here might not always be the case. The literature on mouse models shows
increased GFAP expression in models of type 1 diabetes [6,39], chemotherapy [10], and
inflammation [3,4,37,38]. However, in stark contrast to rat models we were able to locate
very few papers utilizing mouse models of nerve injury with simultaneous analysis of
GFAP regulation in the DRGs. Studies by Ohtiro et al. [85] and Lim et al. [86] both show
GFAP upregulation in an SGC-like pattern following sciatic/spinal nerve injury. In contrast
to the abovementioned mouse models on diabetes, chemotherapy, and inflammation
performed in BALB/c or C57BL/6 strains, these two studies apparently used other mouse
strains but the provided information is vague. A further study by Zhang et al. identified
injury-induced GFAP immunoreactivity in a SCG-like pattern following spared nerve
injury. Further staining identified a population of these cells as BrdU+, arguing that
they constitute proliferating SGCs [36]. We have previously demonstrated that SGCs
do not appear to proliferate following nerve injury. Rather, nerve injury triggers the
approximation of (proliferating) macrophages to an SGC-like position surrounding the
neuronal somas [14]. The omission of appropriate SGC markers (e.g., glutamine synthetase
(GS) or Fabp7) to positively identify perineuronal cells as SGCs may unfortunately give
rise to the interpretation of proliferating (BrdU+) cells as SGCs in response to nerve injury
(see [14] for details).

Support of absent GFAP regulation in mouse traumatic nerve injury models is evident
from other studies. A recent study finds no regulation of GFAP immunoreactivity in SGCs of
DRGs following sciatic nerve crush [87], in accordance with observations from our lab in a
mouse sciatic ligation model [14]. In the latter study we were further unable to detect any
expression of GFAP mRNA in naïve or injured mice (https://rna-seq-browser.herokuapp.com,
accessed on 13 August 2021), and in the present manuscript we further substantiate
this finding by single-cell analysis of DRGs in the spared nerve injury model. Further,
recent transcriptional analyses of the mouse DRG injury response at a single-cell level
support our data: a study on the SGC transcriptional response to sciatic nerve crush

https://rna-seq-browser.herokuapp.com
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did not support significant upregulation of GFAP expression using single-cell analysis
(https://mouse-drg-injury.cells.ucsc.edu, accessed on 13 August 2021) [15], and similar
results can be extracted from single nuclei transcriptional analyses of DRGs obtained from
five different models of PNS injury or induced pain (https://painseq.shinyapps.io/publish,
accessed on 13 August 2021) [88]. While we might have missed other mouse studies, the data
presented here does indeed demonstrate that the universal usage of GFAP upregulation
as a molecular marker of SGC reactivity across species and experimental models needs to
be reconsidered.

The vast majority of studies described here find little or no GFAP expression in rat
or mouse SGCs under naïve conditions. The same appears to be the case for the guinea
pig [43], whereas basal expression levels were detected in the dog and monkey [40,89,90].
The purpose of animal models is often to deduce mechanistic insight of relevance to human
diseases, but due to the general unavailability of human DRGs we still know relatively
little about this tissue [91]. For ethical reasons human nervous tissue can mainly be derived
from deceased individuals, or alternatively from surgery. Such studies do demonstrate
that SGCs from human DRGs express some level of GFAP [92,93] although information of
basal versus induced levels can hardly be derived. Any further comparison of similarities
and discrepancies between rodent and human DRGs in general and SGCs in particular
therefore remains to be studied.

While such species/model discrepancies can be important for studies pursuing in-
formation on SGC reactivity and attempts to therapeutically reduce such an induced
phenotype, they may also impact on our understanding of other aspects of SGC biology
by the utilization of genetic models. Xiang and colleagues investigated rat SGC transduc-
tion by AAV by driving gene expression under the GFAP promotor for glial selectivity.
Reporter expression in an SGC-like pattern did indeed confirm successful transduction and
is suggestive of some level of baseline GFAP promotor activity in rats, or perhaps reflects a
virus-induced reactive state [94]. Based on the transcriptional data discussed here, such a
GFAP-based strategy may be directly applicable to some mouse models with confirmed
GFAP expression but not to others. For example, a few researchers have studied the NF-κB
pathway in SGCs by overexpression of a dominant negative form of the inhibitor of kappa
B (IκBα) under the GFAP promotor [95,96]. Fortunately, these studies exploited the chronic
constriction model with significant elements of inflammation [97] which as discussed above
may induce GFAP expression in mouse SGCs. The choice of e.g., the sciatic ligation model
with no underlying induced GFAP expression could likely have interfered with correct
interpretations of the NF-κB pathway in SGCs.

A general drawback in numerous studies is the lack of appropriate SGC markers, with
the identification of SGCs as cells in very close proximity to the neuronal soma. While
SGCs are indeed found at this position [98], the reverse may not always be true, i.e., not all
cells in close proximity to the neuronal soma are SGCs. This is evident when observing
the migration of macrophages following nerve injury, moving to a position very similar to
that of SGCs where they apparently intermingle and make it impossible to differentiate
between these two cell types by light microscopy without the use of molecular markers [14].
We strongly urge the use of validated SGC markers such as GS [99] or Fabp7 [15] for
future studies. Another common source of confusion is the lack of appropriate identifiers
for the antibodies used. The various GFAP studies discussed here have used anti-GFAP
antibodies from >11 sources. Sensitivity and specificity [100] are of paramount importance
in these studies, but too often the catalogue numbers are omitted which prevents other
scientists evaluating the study design by gaining access to prior studies using these anti-
bodies (e.g., provided via www.citeab.com, accessed on 13 August 2021). Some companies
provide several different anti-GFAP antibodies, and some antibodies provided across com-
panies/brands may even be identical but distributed under different names. Considering
that the main conclusions of the majority of the discussed papers are derived directly
from staining patterns, it is crucial that such reagent details are transparent by providing

https://mouse-drg-injury.cells.ucsc.edu
https://painseq.shinyapps.io/publish
www.citeab.com


Biomedicines 2021, 9, 1022 9 of 13

the unique Research Resource Identifier (RRID) provided at www.rrids.org, accessed on
13 August 2021.

In this study we investigated whether an increase in GFAP immunoreactivity is a
suitable marker for the detection of SGC reactivity across two different experimental
models in both rat and mouse. We found that whereas rat SGCs seemed to indeed increase
GFAP expression upon neuronal stress, the same is not true in the mouse where we
did not observe any increased GFAP expression following sciatic nerve injury. A closer
examination of published studies appears to support this conclusion, suggesting that
GFAP may indeed be a suitable SGC reactivity marker for most published experimental
models but that caution should be taken when examining, for instance, the mouse injury
models. This study is limited to the Sprague Dawley rat strain and the C57BL/6 mouse
strain, two commonly used rodent models in experimental research. Further, we have only
investigated SGCs in lumbar DRGs. The regulation of GFAP in other rodent strains as
well as non-rodent species, not to mention SGCs in sympathetic and trigeminal ganglia,
remains to be investigated.
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