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Background: Lung adenocarcinoma (LUAD) is the most frequent histological type of lung
cancer, and its incidence has displayed an upward trend in recent years. Nevertheless, little
is known regarding effective biomarkers for LUAD.
Methods: The robust rank aggregation method was used to mine differentially expressed
genes (DEGs) from the gene expression omnibus (GEO) datasets. The Search Tool for the
Retrieval of Interacting Genes (STRING) database was used to extract hub genes from the
protein–protein interaction (PPI) network. The expression of the hub genes was validated us-
ing expression profiles from TCGA and Oncomine databases and was verified by real-time
quantitative PCR (qRT-PCR). The module and survival analyses of the hub genes were de-
termined using Cytoscape and Kaplan–Meier curves. The function of KIF4A as a hub gene
was investigated in LUAD cell lines.
Results: The PPI analysis identified seven DEGs including BIRC5, DLGAP5, CENPF, KIF4A,
TOP2A, AURKA, and CCNA2, which were significantly upregulated in Oncomine and TCGA
LUAD datasets, and were verified by qRT-PCR in our clinical samples. We determined the
overall and disease-free survival analysis of the seven hub genes using GEPIA. We further
found that CENPF, DLGAP5, and KIF4A expressions were positively correlated with clini-
cal stage. In LUAD cell lines, proliferation and migration were inhibited and apoptosis was
promoted by knocking down KIF4A expression.
Conclusion: We have identified new DEGs and functional pathways involved in LUAD.
KIF4A, as a hub gene, promoted the progression of LUAD and might represent a poten-
tial therapeutic target for molecular cancer therapy.

Background
Lung cancer is one of the most frequent malignant tumors in clinical practice [1]. Its morbidity and mor-
tality have ranked first among all types of malignant tumors, and it has been recognized as the most
widespread cancer in the world [2]. More than 80% of lung cancers are non-small cell lung cancers
(NSCLC), and lung adenocarcinoma (LUAD) accounts for over 70% of NSCLC [3,4]. In recent years, the
treatment of LUAD has continuously improved, and a series of new diagnosis and treatment technologies
have been applied in clinical practice, which can improve the treatment outcomes of LUAD patients to
some extent [5–7]. Nevertheless, the 5-year survival rate is still very low, and outcomes are still unsat-
isfactory [8]. At present, early diagnosis and treatment can greatly improve prognosis and survival rates
of LUAD patients [9,10]. Therefore, it is crucial to fully elucidate the molecular mechanism involved in
LUAD.
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In recent years, with the development of microarrays and high-throughput sequencing technologies allowing large
open data resources, such as The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO)
datasets, large amounts of genetic data have been generated [10–12]. Researchers can effectively mine big data to
identify novel cancer-related genes [13–15]. At present, how to extract valuable information from this huge database
has become a new research direction, and bioinformatics has effectively solved this problem. Bioinformatics can
screen for availably and mine the microarray data, and ultimately applies relevant software to graph the results, so as
to reveal genes potentially implicated in oncogenesis at the molecular level [16,17]. Consequently, bioinformatics can
provide new diagnostic markers and novel ideas for the early diagnosis and treatment of LUAD.

The purpose of the present study was to identify the potential key genes and pathways associated with the carcino-
genesis of LUAD. We first compared the gene expression profiles of LUAD and adjacent normal lung tissues utilizing
the data in the GEO public database. Next, we systematically analyzed the expression profiles of microarray data and
screened DEGs. Meanwhile, we determined the Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and protein–protein interactions (PPIs) network analyses of the robust DEGs in LUAD. Further, we also
obtained and analyzed the expression and prognosis of the related hub genes using the Oncomine database and the
TCGA and GTEx datasets in GEPIA. We validated the mRNA expression of the seven hub genes in clinical samples
of LUAD and in paired normal tissues. Furthermore, we investigated the potential functional mechanism of KIF4A
in regulating LUAD cell proliferation, migration, and apoptosis.

Materials and methods
Data acquisition and preprocessing
Processed microarray data were searched from the websites of GEO (available: http://www.ncbi.nlm.nih.gov/geo/)
using “LUAD” as the keyword. Of these, we selected and downloaded the GSE85716, GSE32863, and GSE116959
datasets (Supplementary Table S1). DEGs were identified by the Bioconductor limma package and the robust rank
aggregation (RRA) method was used to integrate and rank all of the DEGs from three GEO datasets. In addition,
the edgeR package was used to screen DEGs with thresholds of |log2fold change(FC)|>1 and the thresholds of the
adjusted p-value false discovery rate (FDR)<0.05.

Hierarchical clustering analysis
The top 20 robust DEGs were determined using the robust RRA method. As in a previous report [18], the R language
package was applied for hierarchical clustering analysis based on the TPM values of the genes in each group. In
the analysis, TPM values represented the expression levels of genes, and the gene expression patterns were further
clustered into the same or similar genes. In the clustergram, differences in subregional information were represented
using different colors, and the different experimental conditions were determined using the clustering pattern control
model.

GO analysis
Direct annotation of gene function can obtain multiple and complicated functional nodes, which can result in the
redundancy of results. Thus, we applied the GO analysis method to extract and integrate data and further increase
the reliability of the gene analysis. GO analysis mainly includes cellular components (CC), molecular functions (MF),
and biological processes (BP). In the present study, GO enrichment analysis of DEGs was also analyzed using the
Bioinformatics Tool (DAVID, version 6.8, https://david.ncifcrf.gov/) [19,20].

KEGG analysis
KEGG analysis, created by the Kanehisa Laboratories, is a collection of databases that can integrate genomes, bio-
logical pathways, diseases, drugs, and chemicals [21]. KOBAS 2.0 software (http://kobas.cbi.pku.edu.cn/) was used to
carry out KEGG pathway enrichment analysis for the DEGs in LUAD [22]. A P-value <0.05 was used as the screening
threshold to explore the biological signaling pathways involved in DEGs in LUAD.

PPI analysis
The STRING (http://string-db.org/) is a database that can search for and predict the interactions between known
proteins [23]. The online software string (comprehensive score>0.9) was adopted to analyze the PPIs of DEGs, and
then a PPI diagram including the DEGs was drawn based on the analysis. Meanwhile, a number of nodes in the
network was obtained to denote genetic relationships through network structure analysis, and the core genes were
defined by the number of nodes in the network. Cytoscape software was used to generate the PPI network diagram.
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The software includes two algorithms: MCC and DMNC, which can calculate the top 10 genes and then cross-cut
their intersections. The hub genes were obtained from the PPI network and were then subjected to verification of
their expression, survival analysis, and other analyses.

Application of oncomine database
The Oncomine database (http://www.oncomine.org) was utilized to obtain the expression of seven hub genes in
LUAD and in adjacent normal lung tissues. The screening conditions were as follows: (1) Genes: BIRC5, DLGAP5,
CENPF, KIF4A, TOP2A, AURKA, or CCNA2; (2) Analysis Type: LUAD versus Normal Analysis; (3) Threshold using
P-value<0.05; FC: All; Gene Rank: All.

Gene expression profiling interactive analysis (GEPIA) database
GEPIA is a public database established for expression profiling analysis of cancer and normal genes [24]. GEPIA
analysis contains the expression analysis of RNA sequencing data from 9736 tumors and 8587 normal samples in
TCGA (http://cancergenome.nih.gov/) [25] and Genotype-Tissue Expression (GTEx, http://commonfund.nih.gov/
GTEx/) projects [26,27]. In our study, the expression of the seven hub genes was extracted from the TCGA database.
In addition, the survival and disease-free survival analyses of the seven hub genes were also obtained based on TCGA
and the GTEx data in GEPIA. Moreover, we also obtained the correlation of CENPF, DLGAP5, KIF4A, and the clinical
stage of LUAD.

Total RNA isolation and real-time quantitative PCR (qRT-PCR)
In total, samples from 10 LUAD patients (along with paired normal lung samples) that had undergone surgical treat-
ment in our hospital, were available for examination in our study. All collected tissues were confirmed histologically
by two independent pathologists. Written consent was obtained from all patients who were recruited. This research
was approved by the Ethics Committee of the First Hospital of Changsha.

Total RNA from LUAD samples (n=10) and paired normal samples (n=10) was isolated using the RNeasy Mini
Kit (Cat.74101, Qiagen, Germany) according to the manufacturer’s instructions. The synthesis of cDNA used for
genes was performed using the Bestar™ qPCR RT kit (DBI; #DBI-0) using 2 μg RNA. The relative mRNA levels of
BIRC5, DLGAP5, CENPF, KIF4A, TOP2A, AURKA, and CCNA2 were determined by real-time quantitative PCR
(qRT-PCR) using a 20 μl reaction system. The PCR process was performed on an ABI PRISM 7500 real-time PCR
system (Applied Biosystems, Carlsbad, CA, U.S.A.) using the following settings: 95◦C for 2 min, followed by 40 cycle
of 94◦C for 20 s, 58◦C for 20 s, and 72◦C for 20s. GAPDH was used as the internal normalized reference gene. The fold
change was determined as: 2−��Ct (��Ct = (�Ct of genes of interest) − (�Ct of GAPDH). The primer sequences
are listed in Supplementary Table S2.

Cell culture and reagents
The human LUAD cell lines HCC827 and A549 were purchased from AbZyme Biotechnology Inc (Jiangsu, China).
The human bronchial epithelial cells Beas2B were purchased from Zhong Qiao Xin Zhou Biotechnology Inc (Shang-
hai, China). Beas2B cells were grown in DMEM (Invitrogen Life Technologies, Carlsbad, CA, U.S.A.) supplemented
with 5% fetal bovine serum (FBS, Gibco BRL, Gaithersburg, MD, U.S.A.). HCC827 and A549 cells were cultured in
RPMI-1640 (Hyclone, Logan, UT, U.S.A.) supplemented with 10% FBS. Rabbit monoclonal antibodies against KIF4A
were obtained from Abcam (#ab124903, Abcam, Cambridge, MA, U.S.A.).

Western blot analysis
After treatment, the cells were collected, washed and lysed with ice-cold RIPA lysis buffer (Beyotime Inst. Biotech)
with 1 mmol/l PMSF. Protein concentrations were calculated using BCA assay kits (Beyotime Inst. Biotech). To-
tal cellular protein (20 μg) was subjected to 12% SDS-PAGE and transferred to PVDF membranes (Millipore). The
membranes were blocked with 5% nonfat milk powder at room temperature for 2 h, followed by immunoblotting
with primary antibodies at 4◦C overnight and immunoblotting with HRP-conjugated secondary antibody at room
temperature for 1 h. Following each step, the membranes were washed three times with PBST for 5 min. Finally, the
blots were developed using an enhanced chemiluminescence system (Pierce). Actin was used as a loading control.

Colony formation assay
Five hundred exponentially growing cells were plated in six-well cell culture plates in a total volume of 2 ml of medium
and incubated for 6 h. Next, 2 mM of KIF4A-siRNA was added to the medium, and incubation continued for 6 h.
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Following replacement with fresh medium, colony formation was monitored. Ten days later, the colonies were fixed
with 75% ethanol and stained with methylene blue. The optical density (OD) values were detected using a microplate
reader.

Flow cytometry for quantitative analysis of apoptosis
After treatment, 3 × 105 cells were collected used for each sample. For apoptosis detection, cells were stained using
the Annexin V-FITC Apoptosis Detection Kit I (BD Biosciences, San Diego, CA) according to the manufacturer’s
recommendation. The stained cells were determined by flow cytometry (BD FACS Canto) and analyzed by the FCS
Express v2.0 software, as in our previous studies [28].

Transwell assay
Cells were seeded in the chamber with 5 × 104 cells in 100 μl FBS-free culture medium. A 600 μl volume of culture
medium (10% FBS) was added to the 24-well plate. After a 24 h incubation, the suspended cells were washed and
removed, then fixed with methylalcohol for 30 min. Subsequently, the non-migrated cells were removed and the mi-
grated cells were stained with 1% Crystal Violet. The OD values were detected using a microplate reader as described
in our previous studies [29].

RNA interference to inhibit KIF4A expression
A mixture of 200 nM KIF4A-siRNA (KIF4A-siRNA-1: GGAACAGGGCAACAACTCT; KIF4A-siRNA-2: TAAG-
GATACCCTTCTATCT; KIF4A-siRNA-3:TGCTGTTTGAGGAACGAAA) (HonorGene, Changsha, China) and
control siRNA were added to each well of a six-well plate for 6 h, after which fresh RPMI media containing 10%
serum was added. Cells were harvested 48 h later.

Statistical analysis
All statistical analyses were performed using SPSS 19.0 (SPSS Inc., Chicago, IL, U.S.A.). All of the data are presented
as mean +− standard deviation (SD). Statistical significance comparing two groups was evaluated by the Student’s t
test. A P-value<0.05 was considered statistically significant.

Results
Identification of DEGs from GSE85716, GSE32863, and GSE116959
datasets
To identify genes that might be involved in the tumorigenesis of LUAD, we analyzed the DEGs in the GSE85716,
GSE32863, and GSE116959 datasets. We used a Volcano plot to present DEGs in LUAD and nontumor lung tissues
based on the data from these three databases; the red dots indicated genes that were up-regulated in LUAD, and
the green dots indicated genes that were down-regulated in LUAD (Figure 1A–C). Next, we screened the top 20
up-regulated and down-regulated genes in the GSE85716, GSE32863, and GSE116959 datasets, respectively, and the
differential distribution of DEGs between adjacent normal lung and LUAD tissues was displayed using the hierarchical
clustering (Figure 1D). The up- and downregulated DEGs are listed in Supplementary Tables S3 and 4.

GO and KEGG analyses of robust DEGs in LUAD
Based on the expression profile of DEGs between adjacent normal lung and LUAD tissues, GO and KEGG analyses
for DEGs were performed. The results of GO analysis revealed that the up-regulated DEGs were enriched in CC
terms (nucleosome, centriole, spindle microtubule, nuclear chromosome, microtubule, nucleoplasm, chromosome
passenger complex, and nucleus) and in BP terms (G2/M transition of mitotic cell cycle, DNA damage response,
signal transduction by p53 class mediator resulting in cell cycle arrest, collagen catabolic process, and chromosome
segregation) (Figure 2A). The down-regulated DEGs were enriched in CC terms (plasma membrane part, integral to
plasma membrane, intrinsic to plasma membrane, and extracellular region) and BP terms (blood vessel development,
vasculature development, angiogenesis, cell adhesion, biological, and blood vessel morphogenesis) (Figure 2B). The
results of the GO function annotation for the up-regulated and down-regulated DEGs in LUAD are shown in Tables 1
and 2. Furthermore, KEGG pathway analysis disclosed that the up-regulated DEGs mainly participated in regulating
glycosaminoglycan biosynthesis-heparan sulfate/heparin, mismatch repair, and biosynthesis of amino acids (Figure
2C); the down-regulated DEGs mainly participated in regulating neuroactive ligand–receptor interactions, metabolic
pathways, and the PI3K-Akt signaling pathway (Figure 2D). The detailed KEGG pathways for the up-regulated and
down-regulated DEGs in LUAD are shown in Tables 3 and 4.
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Figure 1. Identification of DEGs from GSE85716, GSE32863, and GSE116959 datasets

(A–C) Volcano plot showing the DEGs of the GSE85716, GSE32863, and GSE116959 datasets. (D) Hierarchical clustering compar-

ing the top 20 up-regulated and down-regulated genes in adjacent normal lung tissues and LUAD tissues.

Establishment of the PPI network and module analyses of genes in LUAD
To further predict the underlying functions of DEGs, we analyzed any potential co-expressed mRNAs of these DEGs
and determined their associations by PPIs. As presented in Figure 3A, the entire PPI network revealed potential in-
terrelationships between a number of genes, which might provide a foundation for the pathway research in LUAD.
Moreover, we also analyzed two of the modules, and the relative networks are displayed in Figure 3B,C. Genes with
the most highly connected cluster were extracted using the MCODE plug-in in Cytoscape after PPI networks were
analyzed. The DMNC and MCC algorithms of Cytoscape were used to identify hub genes. The top ten hub genes
based on the two methods were screened, and seven mutual hub genes were isolated, including BIRC5, DLGAP5,
CENPF, KIF4A, TOP2A, AURKA, and CCNA2. These seven genes were all significantly up-regulated in LUAD sam-
ples compared with normal samples and were used for further analysis.

Validation of seven hub genes expression in LUAD samples based on
TCGA database
We utilized the Oncomine database to further reveal the expression of these seven hub genes in LUAD. The expression
of BIRC5, DLGAP5, CENPF, KIF4A, TOP2A, AURKA, and CCNA2 (Figure 4) was significantly higher in LUAD
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Figure 2. Functional characteristics analyses of robust DEGs

GO enrichment analyses of (A) the up-regulated DEGs and (B) the down-regulated DEGs. KEGG pathway enrichment analyses of

(C) the up-regulated DEGs and (D) the down-regulated DEGs.

tissue samples than that in nontumor lung tissue samples. Meanwhile, TCGA database was used to further identify
the levels of the seven hub genes in LUAD. The results from the TCGA database displayed the same expression trends
as in the Oncomine database (Figure 5). Therefore, these seven hub genes were significantly highly expressed in
LUAD.

Overall survival and disease-free survival analyses of seven hub genes in
LUAD
To further assess the prognostic values of the seven hub genes in LUAD, TCGA, and GTEx datasets were obtained
from GEPIA. The results of the overall survival analyses revealed that the high expression of BIRC5, DLGAP5, CENPF,
KIF4A, TOP2A, AURKA, and CCNA2 (Figure 6) was associated with shorter overall survival than in patients with
low expression. Simultaneously, the data also indicated that high expression of the seven hub genes could shorten
the disease-free survival in LUAD (Figure 7). Therefore, the seven hub genes were associated with poor prognosis of
LUAD.

CENPF, DLGAP5, and KIF4A expression was positively correlated with the
clinical stage of LUAD
We screened the genes (CENPF, DLGAP5, and KIF4A), which were most likely to be associated with LUAD and
analyzed any possible relationships with the clinical stage of LUAD. As displayed in Figure 8, the expression levels
of CENPF, DLGAP5, and KIF4A were dramatically increased in the different stages of LUAD, and the expression of
CENPF, DLGAP5, and KIF4A were gradually increased as the LUAD stages increased. Thus, we suggested that high

6 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 3. Establishment of the PPI network and modules analyses of genes in LUAD

(A) The overall PPI network in LUAD. (B) The PPI network of module 1 in LUAD. (C) The PPI network of module 2 in LUAD.
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Table 1 The GO analysis of the up-regulated DEGs in LUAD

Category ID Term Genes adj pval

CC GO:0000786 Nucleosome HIST2H3A, HIST1H3B,
HIST1H2AI, HIST1H2AM

0.0020621

CC GO:0005814 Centriole BIRC5, AURKA, CEP55, TOP2A 0.00347557

CC GO:0005876 Spindle microtubule KIF4A, BIRC5, AURKA 0.00623428

BP GO:0000086 G2/M transition of mitotic cell
cycle

NEK2, BIRC5, AURKA, MELK 0.00702927

CC GO:0000228 Nuclear chromosome HIST1H3B, BIRC5, TOP2A 0.00894277

CC GO:0005874 Microtubule KIF4A, NEK2, BIRC5, AURKA,
TUBB3

0.00964457

CC GO:0005654 Nucleoplasm EXO1, HIST2H3A, GINS2,
CYP24A1, KIF4A, CENPF,
AURKA, BIRC5, MCM4, GTSE1,
HIST1H3B, HS6ST2, CCNA2,
TOP2A, UBE2T

0.01268473

CC GO:0032133 Chromosome passenger
complex

BIRC5, AURKA 0.01337317

BP GO:0006977 DNA damage response, signal
transduction by p53 class
mediator resulting in cell cycle
arrest

AURKA, SFN, GTSE1 0.01356678

BP GO:0030574 Collagen catabolic process COL1A1, MMP1, MMP11 0.01441139

BP GO:0007059 Chromosome segregation NEK2, CENPF, TOP2A 0.01616706

CC GO:0005634 Nucleus EXO1, HIST2H3A, CYP24A1,
GINS2, HMGB3, NEK2,
DLGAP5, MEX3A, CENPF,
BIRC5, AURKA, SFN, MCM4,
CBLC, MNX1, HIST1H2AI,
HIST1H3B, HIST1H2AM,
TOP2A, CCNA2, UBE2T,
TUBB3, MELK

0.01726561

Figure 4. Validation of the expression of seven hub genes in LUAD samples based on the Oncomine database

The expression levels of (A) BIRC5, (B) DLGAP5, (C) CENPF, (D) KIF4A, (E) TOP2A, (F) AURKA, and (G) CCNA2 in LUAD were

obtained from the Oncomine database.
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Table 2 The GO analysis of the down-regulated DEGs in LUAD

Category ID Term Genes adj pval

CC GO:0044459 Plasma membrane part FXYD1, CAV3, CAV2, EMCN, CAV1, CLDN18,
ACVRL1, LIMS2, CLDN5, SLC6A4, MME, AQP4,
GNG11, VIPR1, NMUR1, SDPR, TEK, CALCRL,
SCN7A, SLC1A1, CCRL1, PTPRB, RAMP3,
AGER, LYVE1, THBD, ADRB1, SSTR1, CHRM1,
CYBRD1, CA4, SCN4B, JAM2

0.00108239

BP GO:0001568 Blood vessel development SEMA5A, CAV1, EMCN, ACVRL1, LMO2,
EPAS1, FOXF1, ROBO4, ANGPT1, FIGF

0.00230295

CC GO:0005887 Integral to plasma membrane FXYD1, PTPRB, RAMP3, CAV2, CAV1, ACVRL1,
SLC6A4, AQP4, MME, VIPR1, AGER, LYVE1,
ADRB1, THBD, SSTR1, NMUR1, CHRM1, TEK,
SCN4B, SCN7A, CALCRL, JAM2, SLC1A1,
CCRL1

0.00271098

BP GO:0001944 Vasculature development SEMA5A, TCF21, CAV1, EMCN, ACVRL1, LMO2,
EPAS1, FOXF1, ROBO4, ANGPT1, FIGF

0.00271098

BP GO:0001525 Angiogenesis SEMA5A, EMCN, ACVRL1, EPAS1, ROBO4,
ANGPT1, FIGF

0.00337538

BP GO:0007155 Cell adhesion CLDN18, EMCN, CLDN5, RADIL, SEMA5A,
LYVE1, WISP2, SRPX, COL6A6, FBLN5, TEK,
JAM2, MFAP4, AOC3

0.00362546

BP GO:0022610 Biological adhesion CLDN18, EMCN, CLDN5, RADIL, SEMA5A,
LYVE1, WISP2, SRPX, COL6A6, FBLN5, TEK,
JAM2, MFAP4, AOC3

0.00494697

CC GO:0031226 Intrinsic to plasma membrane FXYD1, PTPRB, RAMP3, CAV2, CAV1, ACVRL1,
SLC6A4, AQP4, MME, VIPR1, AGER, LYVE1,
ADRB1, THBD, SSTR1, NMUR1, CHRM1, TEK,
SCN4B, SCN7A, CALCRL, JAM2, SLC1A1,
CCRL1

0.00522618

BP GO:0048514 Blood vessel morphogenesis SEMA5A, CAV1, EMCN, ACVRL1, EPAS1,
FOXF1, ROBO4, ANGPT1, FIGF

0.00561097

CC GO:0005576 Extracellular region A2M, EMCN, ITLN2, OGN, RSPO4, WISP2,
COL6A6, SOSTDC1, GPX3, HEG1, SFTPC,
ANGPT1, FIBIN, FAM150B, PI16, FIGF, MYOC,
LPL, HYAL1, SPARCL1, CAMP, AGER, PLAC9,
C2ORF40, GKN2, CHRDL1, ADAMTS8, THBD,
CLEC3B, FBLN5, GDF10, MFAP4

0.00599981

BP GO:0042127 Regulation of cell proliferation HYAL1, CAV2, CAV1, ACVRL1, TBX2, VIPR1,
AGER, WISP2, ADAMTS8, SSTR1, CHRM1, TEK,
RTKN2, FABP4, CALCRL, FIGF

0.00656309

BP GO:0031579 Membrane raft organization CAV3, CAV2, CAV1 0.00679421

Table 3 The KEGG analysis of the up-regulated DEGs in LUAD

Term Count Ratio FDR

Hsa00534 Glycosaminoglycan biosynthesis-heparan
sulfate/heparin

1 0.02912621 0.20276459

Hsa03430 Mismatch repair 2 0.04032258 0.20276459

Hsa01230 Biosynthesis of amino acids 2 0.02234637 0.16376332

Hsa00100 Steroid biosynthesis 3 0.0462963 0.20276459

Hsa04115 p53 signaling pathway 3 0.04 0.16376332

Hsa04130 SNARE interactions in vesicular transport 3 0.02285714 0.21164483

Hsa00512 Mucin type O-Glycan biosynthesis 4 0.04301075 0.21164483

Hsa00601 Glycosphingolipid biosynthesis-lacto and neolacto
series

5 0.02040816 0.20276459

Hsa04950 Maturity onset diabetes of the young 5 0.08333333 0.20276459

Hsa012102 Oxocarboxylic acid metabolism 6 0.05 0.20276459

Hsa00220 Arginine biosynthesis 2 0.03174603 0.20276459

Hsa04215 Apoptosis-multiple species 6 0.04347826 0.21164483

Hsa00250 Alanine, aspartate and glutamate metabolism 6 0.08695652 0.21164483

Hsa00232 Caffeine metabolism 4 0.05681818 0.16376332

Hsa03030 DNA replication 4 0.03488372 0.21164483
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Table 4 The KEGG analysis of the down-regulated DEGs in LUAD

Term Count Ratio FDR

Hsa04080 Neuroactive ligand-receptor
interaction

6 0.02158273 0.06041271

Hsa01100 Metabolic pathways 6 0.00483871 0.50410934

Hsa04151 PI3K-Akt signaling pathway 5 0.01457726 0.12284827

Hsa04261 Adrenergic signaling in
cardiomyocytes

4 0.02649007 0.07636768

Hsa04024 cAMP signaling pathway 4 0.0199005 0.12086446

Hsa04510 Focal adhesion 4 0.01941748 0.12086446

Hsa04144 Endocytosis 4 0.01515152 0.1506064

Hsa00350 Tyrosine metabolism 3 0.08571429 0.04917388

Hsa00982 Drug metabolism -
cytochrome P450

3 0.04411765 0.07636768

Hsa03320 PPAR signaling pathway 3 0.04109589 0.07636768

Hsa05100 Bacterial invasion of epithelial
cells

3 0.03703704 0.08027977

Hsa04974 Protein digestion and
absorption

3 0.03333333 0.09115089

Hsa04670 Leukocyte transendothelial
migration

3 0.025 0.12284827

Hsa04530 Tight junction 3 0.02158273 0.1506064

Figure 5. Identification of the expression of the seven hub genes in LUAD samples in the TCGA database

Box plots show the expression of (A) BIRC5, (B) DLGAP5, (C) CENPF, (D) KIF4A, (E) TOP2A, (F) AURKA, and (G) CCNA2 in LUAD

from the TCGA database. *P<0.05.
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Figure 6. Overall survival analyses of the seven hub genes in LUAD on the basis of the TCGA and GTEx data in GEPIA

Statistical graphs indicate the results of overall survival analyses of (A) BIRC5, (B) DLGAP5, (C) CENPF, (D) KIF4A, (E) TOP2A, (F)

AURKA, and (G) CCNA2 in LUAD. Red lines represent the high expression of genes and the blue lines represent low expression of

genes.

Figure 7. Disease-free survival analyses of the seven hub genes in LUAD based on TCGA and GTEx data in GEPIA

In accordance with the TCGA and GTEx data in GEPIA, the disease-free survival of the seven hub genes are shown: (A) BIRC5, (B)

DLGAP5, (C) CENPF, (D) KIF4A, (E) TOP2A, (F) AURKA, and (G) CCNA2.

expression of CENPF, DLGAP5, and KIF4A might be associated with higher stages of LUAD. Meanwhile, the seven
hub genes including KIF4A, CENPF, and DLGAP5 contributed mostly to the GO analysis results (Figure 2A, Table
1).

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 8. CENPF, DLGAP5, and KIF4A expression was positively correlated with the clinical stage of LUAD

The levels of CENPF, DLGAP5, and KIF4A expression were analyzed in different stages of LUAD.

Figure 9. KIF4A was significantly up-regulated in LUAD cells

(A) mRNA expression levels of KIF4A in the LUAD cells were higher than those in normal bronchial epithelial cells. (B) Expression of

KIF4A protein in the LUAD cell lines was higher than in normal bronchial epithelial cells. (C) The protein expression levels of KIF4A

targeted by siRNA-1, siRNA-2, and siRNA-3. *, P-value<0.05; **, P-value<0.01.

Expression validation of the seven hub genes by qRT-PCR
We compared the mRNA expression levels of the seven hub genes in LUAD tissues and paired normal tissues. As
shown in Supplementary Figure S1, compared with their expression in paired normal samples, the expression of
BIRC5, DLGAP5, CENPF, KIF4A, TOP2A, AURKA, and CCNA2 was significantly increased in LUAD samples
(P<0.01).

KIF4A was highly expressed in LUAD cells
After identifying the seven hub genes and given the limited number of studies focusing on the relationship between
KIF4A and the progression of LUAD, we further studied the expression and function of KIF4A in vitro. As shown in
Figure 9A,B, the mRNA and protein expression levels of KIF4A were upregulated in LUAD cells (HCC827 and A549)
compared with that in normal bronchial epithelial cells Beas2B.

12 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 10. Silencing KIF4A inhibited proliferation, migration, and promoted apoptosis in the A549 cell line

(A and B) Silencing KIF4A suppressed the migration of A549 cells. (C and D) KIF4A knockdown decreased cell proliferation capacity

of A549 cells. (E and F) KIF4A knockdown promoted the apoptotic rate of A549 cells; *, P-value<0.05.

Knockdown of KIF4A decreased the migration in A549 cell lines
To further confirm the role of KIF4A, siRNA experiments were performed in A549 cells. The efficiency of the knock-
down of KIF4A expression was examined by Western blotting, as shown in Figure 9C. To investigate the relationship
between KIF4A and migration, we conducted the Transwell assay. The results revealed that the OD value of migrated
KIF4A-siRNA-1 cells was decreased significantly, compared with that in the blank and the negative control groups
(P<0.05) (Figure 10A,B).

Effect of KIF4A on the proliferation and apoptosis of A549 cell lines
The colony formation assay showed that the OD values of the clone numbers decreased significantly in the
KIF4A-siRNA-1 cells compared with that of the blank group and the negative control group (P<0.05) (Figure 10C,D).
In addition, the apoptosis rate of the KIF4A-siRNA-1 cells increased significantly compared with that in control group
as determined by the flow cytometry assay (P<0.05) (Figure 10E,F). Together, these results indicated that KIF4A sup-
pression decreased cell proliferation and increased apoptosis abilities in A549 cell lines.

Discussion
In recent years, with the development of high-throughput sequencing and bioinformatics, a novel research model
was formed [30,31]. Massive quantities of research data generated by microarrays have been uploaded to the GEO
database for sharing, and scientific researchers classified and downloaded the relevant data in accordance with their
area of interest [32]. Meanwhile, researchers have further integrated and compared similar experimental data carried
out by different laboratories, so as to unearth potentially useful data.

LUAD is a type of lung cancer with a high degree of malignancy, poor prognosis, and characterized by the in-
creased likelihood of developing chest, liver, bone, and even intracranial metastasis [33,34]. At present, the majority
of LUAD patients are diagnosed in the advanced stages and cannot be treated with surgery due to the presence of
distant metastasis [35]. Although chemoradiotherapy can improve symptoms, the adverse reactions are significant
[36]. Therefore, attempts at improving the survival rate of patients have become the main purpose of LUAD treat-
ment. High-throughput genetic sequencing and bioinformatics might provide a new approach for the study of LUAD
pathogenesis.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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In our study, we selected ‘LUAD’ as the keyword to search for related datasets from the GEO datasets, and then
performed a detailed biological analysis of these DEGs. Subsequently, in order to better understand the DEGs and
their associated gene function, related pathways, protein interaction in LUAD, we conducted bioinformatics studies on
LUAD using GO functional annotation, KEGG pathway analysis, and PPIs analysis. Overall, our results may provide
a theoretical basis for exploring the pathogenesis of LUAD and further studies.

The results of the GO function annotation revealed that the upregulated DEGs in LUAD were mainly concentrated
in the nucleosome, centriole, and spindle microtubule, while the down-regulated DEGs in LUAD were mainly en-
riched in the plasma membrane, in blood vessel development, and in functions integral to the plasma membrane.
Meanwhile, KEGG pathway analysis revealed that the up-regulated DEGs in LUAD were mainly enriched in alanine,
aspartate, and glutamate metabolism, and oxocarboxylic acid metabolism, while the downregulated DEGs in LUAD
were mainly enriched in neuroactive ligand–receptor interactions and in tyrosine metabolism. Moreover, we obtained
the key DEGs in LUAD using PPI network analysis.

With the intensive study of the PPI network, the topological structure of the PPI network obtained is frequently
associated with disease-related proteins [37,38]. Previous studies have documented that the proteins in the same dis-
ease are more likely to interact and be co-expressed in the network [39], while the functional changes of neighboring
node proteins associated with a disease are more likely to cause the same or similar diseases [40,41]. Meanwhile, the
smaller nodes that interact with numerous proteins in the protein network are called hubs [42]. Hub genes may have
more crucial biological functions in disease development. In biological networks, the change in expression of hub
proteins will generate serious destruction of the connected network and may seriously affect the biological functions
of cells [43]. Currently, a large number of key hub genes have been identified in a variety of cancers, such as hepato-
cellular carcinoma [44], bladder cancer [45], renal cell carcinoma [46], and osteosarcoma [47]. However, a number
of hub genes in LUAD remain undetermined. In our study, we have filtered seven key hub genes including BIRC5,
DLGAP5, CENPF, KIF4A, TOP2A, AURKA, and CCNA2 in LUAD. Simultaneously, we found that these seven hub
genes were significantly up-regulated in LUAD using Oncomine data and TCGA datasets, and up-regulation of these
seven hub genes were associated with a poor prognosis of LUAD. In addition, we determined that the expression of
CENFP, KIF4A, and DLGAP5 might be associated with the metastasis of LUAD. Moreover, we further confirmed
the increased mRNA expression level of these seven key hub genes in primary LUAD samples compared with paired
normal samples.

In the present study, we provided evidence that KIF4A was significantly up-regulated in LUAD cells. To date, only
one study has reported that the knockdown KIF4A might suppress the growth of NSCLC cell lines [48]. As for other
tumor types, KIF4A has been reported to enhance carcinoma development by promoting cell cycle progression in
vitro and in vivo in colorectal cancer and hepatocellular carcinoma [49,50]. Our study revealed that silencing KIF4A
expression inhibited proliferation, migration, and promoted apoptosis in A549 cell lines, which was in agreement
with the previous studies indicated above.

Conclusions
We have identified new DEGs and pathways active in LUAD, and more specifically, KIF4A as a hub gene with the
capacity to promote the progression of LUAD. Our findings provide researchers with a potential therapeutic target
for molecular cancer therapy.
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