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Abstract

Background: Feature selection is a relevant step in the analysis of single-cell RNA sequencing datasets. Most of the current feature
selection methods are based on general univariate descriptors of the data such as the dispersion or the percentage of zeros. Despite
the use of correction methods, the generality of these feature selection methods biases the genes selected towards highly expressed
genes, instead of the genes defining the cell populations of the dataset.

Results: Triku is a feature selection method that favors genes defining the main cell populations. It does so by selecting genes ex-
pressed by groups of cells that are close in the k-nearest neighbor graph. The expression of these genes is higher than the expected
expression if the k-cells were chosen at random. Triku efficiently recovers cell populations present in artificial and biological bench-
marking datasets, based on adjusted Rand index, normalized mutual information, supervised classification, and silhouette coefficient
measurements. Additionally, gene sets selected by triku are more likely to be related to relevant Gene Ontology terms and contain
fewer ribosomal and mitochondrial genes.

Conclusion: Triku is developed in Python 3 and is available at https://github.com/alexmascension/triku.
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Introduction
Single-cell RNA sequencing (scRNA-seq) is a powerful technol-
ogy to study the biological heterogeneity of tissues at the indi-
vidual cell level, allowing the characterization of new cell popula-
tions and cell states—i.e., cell types responding to different envi-
ronmental stimuli—previously undetected owing to their low fre-
quency within the tissue and the lack of individual resolution of
bulk methods [1, 2].

Gene expression datasets are highly dimensional, as the ex-
pression of tens of thousands of genes is measured in any given
experiment. A direct consequence of this is the curse of dimen-
sionality, where the amount of data needed to fill the sampling
space increases exponentially with the dimensions, resulting in a
sparsity of the data [3]. Additionally, this sparsity is exacerbated
by the low capture efficiency of messenger RNA (mRNA) in single-
cell experiments, owing to the tiny amounts genetic material to
be amplified, even though there are considerable recovery differ-
ences across methods [4]. This sparsity affects downstream meth-
ods such as cell type detection or differential gene expression [5].

A common task when working with multidimensional datasets
is feature selection (FS). FS, alongside feature extraction (FE), re-
sponds to the need of obtaining a reduced dataset with a smaller
dimensionality [6]. While FE methods such as principal compo-
nent analysis (PCA) extract new features on the basis of combina-

tions of the original features, FS methods aim to select a subset of
the features that best explains the original dataset.

There are 3 main types of FS methods: filter, wrapper, and em-
bedded methods [6].

� Univariate filter methods look at intrinsic properties of the
data (e.g., variance, correlation), calculating a univariate
score per feature, ranking them and removing the low-scoring
ones. These techniques are usually fast and scalable and are
independent of downstream methods. Common examples of
univariate filter techniques are selection by variance, χ2, t-
test, ANOVA, or information gain ratio.

� Wrapper methods embed the subsequent supervised algo-
rithm within the feature search process. They perform a
heuristic search in the space of feature subsets and score
each subset of features with the scoring associated to the
classification model. A common wrapper method type is ge-
netic algorithms.

� Embedded methods include the search of the subset of fea-
tures within the model construction. A common embedded
method type is decision trees.

Current FS methods in scRNA-seq analysis are filter methods
because common downstream analysis steps do not embed the
FS within the pipeline [7]. FS methods represent a key step in pro-
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cessing pipelines of bioinformatic datasets [8] and provide several
advantages [6]: they reduce model overfitting risk, improve clus-
tering quality, and favor a deeper insight into the underlying pro-
cesses that generated the data (features [genes] that contain ran-
dom noise do not contribute to the biology of the dataset and are
removed). Specifically, in scRNA-seq, removing non-informative
features can improve results in downstream analyses such as dif-
ferential gene expression.

Early methods for FS in scRNA-seq data were based on the idea
that genes whose expression shows a greater dispersion across
the dataset are the ones that best capture the biological structure
of the dataset [9, 10]. Conversely, genes that are evenly expressed
across cells are unlikely to define cell types or cell functions in a
heterogeneous dataset. The most straightforward way of selecting
genes that are not evenly expressed is to look at a measure of
dispersion of the counts of each gene and to select those genes
that have a dispersion exceeding a threshold.

However, the correlation between mean expression and dis-
persion introduces a bias whereby genes with higher expression
are more likely to be selected by FS methods. However, biological
gene markers that define minor cell types are usually expressed
in a medium to small subset of cells. Therefore, new FS meth-
ods based on dispersion are designed to correct for this disper-
sion/expression correlation to select genes with a broader expres-
sion spectrum.

Brennecke et al. [9] developed a FS method that introduces a
correction over the dispersion that accounts for differences in the
mean expression of genes. It does so by setting a threshold to the
correlation between the average gene expression and its coeffi-
cient of variation across cells. Newer FS methods have arisen after
different corrections, such as the one originally described by Stu-
art et al. [11] implemented in Seurat, later adapted to scanpy [12],
a later evolution of the method developed in sctransform [13], or
the one implemented in scry [14].

Early studies observed that the read distribution of most of the
single-cell studies could be fitted to a negative binomial (NB) [15].
More specifically, read counts produced a zero-inflated bimodal
distribution, whereas unique molecular identifier (UMI) counts
produced an NB distribution [16]. These results were later repli-
cated by Svensson, stating that the proportion of zeros in droplet-
based scRNA-seq data, originally assumed to be dropouts, was
tightly related to the mean expression of genes, following an NB
curve [17]. Genes with an expected lower percentage of zeros tend
to have an even expression across the entire set of cells. Con-
versely, genes with a higher than expected percentage of zeros
might possess biological relevance because they are expressed in
fewer cells than expected, and these cells might be associated to
a specific cell type or state.

This finding opened the path for new FS methods that would
rely on genes that showed a greater than expected proportion
of zeros, according to their mean expression. These methods are
based on a null distribution of some property of the dataset,
and genes whose behavior differs from the expected are selected.
The FS method nbumi, an NB method based on m3drop [18],
works under this premise. nbumi fits the NB zero-count prob-
ability distribution to the dataset and selects genes of interest,
calculating P-values of observed dropout rates. m3drop works
similarly by fitting a Michaelis-Menten model instead of the NB
from nbumi.

In summary, existing FS methods assume that an unexpected
distribution of counts for a particular gene in a dataset is ex-
plained by cells belonging to different cell types. However, we con-
sider that there are 3 main patterns of expression according to the

distribution of zeros of a particular gene and overall transcrip-
tional similarity (expression of all genes), as explained in detail in
Fig. 1: (A) a gene evenly expressed across cells, or a gene expressed
by a subset of cells, which can be (B1) transcriptomically separate
or (B2) transcriptomically similar. These patterns can be seen, e.g.,
in genes Dhx30, Cog3, and Lyz2 in Supplementary Fig. S8. Thus, in
some cases a particular gene shows an unexpected distribution of
counts because a subset of cells are expressing it but those cells
might not be transcriptomically similar.

Here we present triku, an FS method that selects genes that
show an unexpected distribution of zero counts and whose ex-
pression is localized in cells that are transcriptomically similar.
Figure 2 summarizes the feature selection process. Triku iden-
tifies genes that are locally overexpressed in groups of neigh-
boring cells by inferring the distribution of counts in the vicin-
ity of a cell and computing the expected distribution of counts.
Then, the Wasserstein distance between the observed and the ex-
pected distributions is computed and genes are ranked accord-
ing to that distance. Higher distances imply that the gene is lo-
cally expressed in a subset of transcriptomically similar cells.
Finally, a subset of relevant features is selected using a cut-
off value for the distance. Triku outperforms other feature se-
lection methods on benchmarking and artificial datasets, us-
ing unbiased evaluation metrics such as normalized mutual
information (NMI) or Silhouette. Of note, features selected by
triku are more biologically meaningful, as compared to other
methods.

Results
The objective of FS methods is to select the features that are the
most relevant in order to understand and explain the structure
of the dataset. In the context of single-cell data, this means find-
ing the subset of genes that, when given as input to a clustering
method, will yield a clustering solution where each cluster can be
annotated as a putative cell type.

Initially, we generated artificial datasets with the splatter pack-
age [19], so that cells belonging to the same cluster have a simi-
lar gene expression. All datasets contained the same number of
genes, cells, and populations, but differed in the de.prob parame-
ter value. This parameter was set so that higher values indicate
a higher probability of genes being differentially expressed, re-
sulting in more resolved populations. A combination of 8 de.prob
values, from 0.0065 to 0.3, were used (see Methods). In addition,
we tested triku on 2 biological benchmarking datasets by Ding
et al. [20] and Mereu et al. [21] that have been expert-labeled
using a semi-supervised procedure. Both benchmarking datasets
are composed of individual subsets of data with different library
preparation methods (e.g., 10X, SMART-seq2) in human peripheral
blood mononuclear cells (PBMCs) (Mereu and Ding) and mouse
colon (Mereu) and cortex (Ding) cells.

We have evaluated the relevance of the features selected by
triku by comparing them to those selected using other feature se-
lection methods, similar to [8, 9, 14, 18]. The relevance of the fea-
tures was first measured using metrics associated to the efficacy
of clustering, and then using metrics to evaluate the quality of the
genes selected.

We made 6 types of comparisons between the subsets of genes
selected by each feature selection method: (i) the ability to recover
basic dataset structure (main cell types) in artificial and biological
datasets, (ii) the ability to obtain transcriptomically distinct cell
clusters, (iii) the overlap of features between different FS methods,
(iv) the localized pattern of expression of the features selected,
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Figure 1: Distribution of gene expression in 3 scenarios. There are 3 main patterns of expression for any particular gene in a single-cell dataset: (A) The
gene is expressed evenly across cells in the dataset, which probably means it does not define any particular cell type. (B) A gene shows an unexpected
distribution of zeros, because it is only expressed by a subset of cells. Within case B, there are 2 possible patterns. (B1) The gene is highly expressed by a
subset of transcriptomically different cells (i.e., cells that are not collocalized in the dimensionally reduced map) and (B2) the gene is highly expressed
by cells that share an overall transcriptomic profile. Triku preferentially selects the genes shown in the B2 pattern. When looking at the proportion of
zeros, genes in cases B1 and B2 show an increased proportion of zeros with respect to A, but they are indistinguishable from each other by that metric.

Figure 2: Graphical abstract of triku workflow. (A) DR representation of the gene expression from the count matrix from a dataset, where each dot
represents a cell. (B) KNN graph representation with 3 neighbors. For each cell the k transcriptomically most similar cells are selected (3 in this
example). (C1) Considering the graph in (B) for each cell with positive expression, the expression of its k neighbors is summed to yield the KNN
distribution in blue. (C2) With the distribution of reads (blue line), the null distribution is estimated by sampling k random cells. (D) The null and KNN
distributions of each gene are compared using the Wasserstein distance. (E) For each gene, its distance is plotted against the log mean expression, and
divided into w windows (4 in this example). For each window, the median of the distances is calculated and subtracted from the distances in that
window. (F) All corrected distances are ranked and the cut-off point is selected.

(v) the ability to avoid the overrepresentation of mitochondrial
and ribosomal genes, (vi) the biological relevance of the genes by
studying the composition and quality of the gene ontology (GO)
terms obtained, and (vii) the resolution of cell types and subtypes
on the UMAP.

triku efficiently recovers cell populations present
in sc-RNAseq datasets
The first set of metrics evaluates the ability to recover the original
cell types based on the NMI index, and the cluster separation and
cohesion using the Silhouette coefficient.
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NMI
NMI measures the correspondence between a labeling considered
as the ground truth and the clustering solution that we obtained
using the genes selected by triku and other FS methods.

First, we evaluated how well the clustering using the genes se-
lected by the FS methods was able to recover the same popula-
tions that were defined when generating the artificial datasets.
Figure 3 shows that triku is among the 3 best feature selection
methods for a wide range of de.prob values. For low values of
de.prob (<0.05), where the selection of genes that lead to a cor-
rect recovery of cell populations is more challenging, triku no-
tably outperforms the rest of the FS methods. NMI values obtained
with triku are 0.1–0.2 higher than the second and third best FS
methods. In addition, the results obtained when using the first
250 selected genes were comparable to those obtained when se-
lecting 500 genes, showing that this efficiency is independent of
the amount of genes chosen within a sensible range. These re-
sults are replicated using the adjusted Rand index (ARI), used by
others [14, 22, 23], in Supplementary Fig. S1.

We also studied how well the selected genes led to a cluster-
ing solution that was similar to the manually assigned cell labels
in the biological benchmarking datasets, as shown in Figs 4A and
5A. For each dataset, the variability between NMI scores was quite
low, meaning that features selected with the different methods
yielded clustering solutions that were quite similar to the manu-
ally labeled cell types, although there are some exceptions to this
rule—e.g., brennecke in Ding datasets, or scanpy in some Mereu
datasets, which showed notably reduced NMI values. In some
datasets, e.g., 10X human, QUARTZseq human, and SMARTseq2
human from Mereu’s benchmarking set, features selected by FS
methods did not lead to increased NMI values as compared with
randomly selected genes.

Despite the differences in NMI between methods being small
for each particular dataset, post hoc analysis revealed that triku
is the best ranked method across all datasets. To do the post
hoc analysis, we ranked for each dataset the NMI of each FS
method. Figures 4A and 5A (left) show the mean rank of each FS
method across datasets. Triku is the best-ranked FS method in
both Mereu and Ding benchmarking datasets, with a mean rank
of 3.2 and 3.7, respectively. m3drop is the second and third best-
ranked FS method for Mereu and Ding datasets, respectively. For
Mereu datasets this difference is statistically significant, whereas
for Ding datasets, the difference is not statistically significant
compared to the second best method, m3drop, but it is significant
compared to the rest (Quade test, P < 0.05).

Supplementary Figs S2A and S3A show similar results using
ARI instead of NMI, where triku is statistically significantly the
best FS method for Mereu datasets, and the best together with
m3drop for Ding datasets.

Silhouette coefficient
Another important aspect of the genes selected by FS meth-
ods in scRNA-seq data analysis is their ability to cluster data
into well-separated groups that are transcriptomically similar. We
used the Silhouette coefficient to measure the compactness and
separation-degree of cell communities obtained with a cluster-
ing method. When the same clustering algorithm is used on a
dataset but using 2 different FS methods, the differences in the
resulting Silhouette coefficients can be entirely attributed to the
features selected by those methods. We assume that FS methods
that increase the separation between clusters and the compact-

ness within clusters are better at recovering the cell types present
in the dataset.

Figures 4B and 5B show the Silhouette coefficients obtained
with the different FS methods. For the Mereu and Ding datasets,
we observed that triku was the best-ranked method (mean rank
of 3.1 and 2.1), and the second best-ranked methods were m3drop
and scanpy, with a mean rank of 3.9 and 3.5, respectively. In Ding
datasets, the difference between triku and the second-ranked
method was statistically significant (Quade test, P < 0.05).

We performed an additional analysis using the labels obtained
with Leiden clustering instead of the manually curated cell types
(Supplementary Figs S2B and S3B). Again, triku outperformed the
rest of the FS methods, showing a statistically significant best
mean rank, for both benchmark datasets.

Supervised cell type classifiers
As an additional measure of FS method accuracy, we trained 2
classifiers, decision tree and KNN, using a 10-fold cross-validation,
as shown in [24]. The results for decision tree classifier in Ding
and Mereu are shown in Figs 4C and 5C, and the results for KNN
classifier are shown in Supplementary Figs S2C and S3C.

In general, classifier efficiency shows high variance, even more
for Mereu datasets, and therefore the results are not completely
conclusive. From the critical difference diagrams, we can state
that triku is in range with most of the FS methods for decision
tree and KNN classifier. In general, we see a decrease of efficiency
in Ding datasets for seurat, sct, and sometimes m3drop, which act
similar to a random choice of features, whereas efficiency of bren-
necke is worse than a random choice of features.

For triku, nbumi, scry, std, and selecting all features, their effi-
ciencies are similar.

Despite the 10-fold cross validation accuracy of decision trees
ranking the highest when trained on the whole set of features,
the actual difference in performance between triku and using all
features is negligible. Overall, FS does not have a strong effect on
classifier accuracy.

Genes selected by different FS methods show
limited overlap
Next, we studied the characteristics of the genes selected by triku
and compared them to the genes selected by other methods.

Initially, we studied the level of consistency between the results
obtained using different FS methods by studying their degree of
overlap, as shown in Fig. 6. To compare between equally sized gene
lists, we ranked the genes based on P-values or scoring value from
each FS method and set the number of genes selected by triku as
a cut-off to select the first genes. Although the genes selected by
the different methods yielded clustering solutions that are highly
consistent, as shown in the previous section, we did not see any
clear gene overlap pattern between pairs of FS methods. Actually,
there is no correlation between the degree of overlap between the
genes selected by the different methods and the clustering solu-
tions that are obtained when using those genes as input.

For instance, we found an overlap of 7% between the genes se-
lected by scanpy and std for the 10x mouse dataset, yet the NMI
between the clustering solutions obtained with each of them and
the expert-labeled cell types was 0.7. On the other hand, the over-
lap between seurat and brennecke is one of the highest across
datasets (ranging from 50 to 70%), yet the differences between
their corresponding NMI scores are 0.45.
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Figure 3: Comparison of NMI for FS methods on artificial datasets. Bar plots of the NMI for all FS methods with different artificial datasets, using the
top 250 (A) and 500 (B) features of each FS method. The probability of the selected genes being differentially expressed between clusters (de.prob) is
shown in the x-axis. Higher NMI values mean better recovery of the cell populations. Note that in category "all," all features are selected, not the top
250 or 500; therefore their NMI values are the same in both graphs.

triku selects genes that are biologically relevant
On the basis of these results, we studied the biological relevance of
the genes selected by different FS methods in 3 alternative ways.

Genes whose expression, or lack thereof, is limited to a single
population are more likely to be cell-type specific and thus might
be better candidates as positive or negative cell population mark-
ers. Therefore, we studied which are the best FS methods to select
genes showing a localized expression pattern.

Mitochondrial and ribosomal genes are usually highly ex-
pressed, and many FS methods tend to overselect them despite
them not being particularly relevant in most single-cell studies. In
fact, they are commonly excluded from downstream analysis [22,
25, 26]. Assuming that in these benchmarking datasets ribosomal
and mitochondrial genes are not as relevant to the biology of the
dataset, we measured the percentage of these genes in the subset
of genes selected by triku and compared it to other FS methods.

Last, we analyzed the biological pertinence of the selected
genes by performing gene ontology enrichment analysis (GOEA)
on a dataset of immune cell populations whose underlying bio-
logic characteristics are well understood, as a robust indicator of
FS quality; and analyzed UMAP visual quality of different samples
to assert that cell subtypes were independently represented in the
UMAP.

Selection of locally expressed genes
We first studied the expression pattern of genes selected by triku
and other methods, as shown in Supplementary Fig. S4. We ob-
served that of the 9 populations of the artificial dataset, when a

gene is selected by triku—exclusively or together with other FS
methods—1 of the populations had a markedly higher or lower
expression compared to the rest. On the other hand, when a gene
is selected by other FS methods and not by triku, we do not observe
any population-specific expression pattern. For instance, genes
exclusively selected by scanpy had a wide expression variation
across clusters, but they were not exclusive of 1 or 2 clusters. Fea-
tures selected by std and scry showed some variation, but it was
overshadowed by the high expression of the gene and therefore
not relevant under the previous premise.

To evaluate the cluster expression of selected genes in bench-
marking datasets, for each gene we scaled its expression to the 0–1
range and sorted the clusters so that the first one had the greatest
expression. Supplementary Fig. S5 shows the expression patterns
for several benchmarking datasets. We see that, in most datasets,
triku showed more biased expression patterns; i.e., genes selected
by triku were expressed, on average, on fewer clusters than the
genes selected by other FS methods. The following best methods
were scanpy, seurat, sct, and brennecke, with similar or slightly
less biased expression patterns as compared to triku. With these
methods, up to 80% of the expression of the gene was usually re-
stricted to the 2–3 clusters that most expressed it.

m3drop and nbumi performed similarly, and showed an expres-
sion distribution across clusters similar to a random selection of
genes, which was slightly biased towards 3–5 clusters accumulat-
ing up to 80% of the expression of the gene. Last, std and scry
methods were the least biased, and showed almost a linear de-
crease of expression percentage across clusters, with 4–6 clusters
accumulating up to 80% of the expression of the gene.
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Figure 4: NMI, silhouette of annotated cell types and decision tree metrics in Ding datasets. Bar plots of the 3 represented metrics. Each bar plot
represents the mean over 5 runs, and the error bar is the standard deviation. (A) NMI between clustering solutions and annotated cell types. (B)
Silhouette coefficient of annotated cell types. (C) Decision tree classifier accuracy using a 10-fold cross validation of annotated cell types. The plot on
the left is a critical difference diagram, where each horizontal bar represents the mean rank for all datasets. If 2 or more bars are linked by a gray
vertical bar, the mean ranks for those FS methods are not significantly different (Quade test, α = 0.05).

Avoidance of mitochondrial and ribosomal genes
Table 1 shows the percentage of genes that code for ribosomal
and mitochondrial proteins within the genes selected by different
FS methods in the 2 sets of benchmarking datasets. We observed

that std and scry, followed by m3drop, were the only methods that
tended to overselect mitochondrial and ribosomal genes. Among
the rest of the methods, triku showed percentages that were com-
parable to the rest of the methods, and slightly lower for the Ding
datasets.
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Figure 5: NMI, silhouette of annotated cell types and decision tree metrics in Mereu datasets. Bar plots of the 3 represented metrics. Each bar plot
represents the mean over 5 runs, and the error bar is the standard deviation. (A) NMI between clustering solutions and annotated cell types. (B)
Silhouette coefficient of annotated cell types. (C) Decision tree classifier accuracy using a 10-fold cross validation of annotated cell types. The plot on
the left is a critical difference diagram, where each horizontal bar represents the mean rank for all datasets. If 2 or more bars are linked by a gray
vertical bar, the mean ranks for those FS methods are not significantly different (Quade test, α = 0.05).
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Figure 6: Heat maps of overlap of features between pairs of methods. Bar plot on the left represents the NMI values for the 3 selected datasets on the
overlap heat maps on the right. For each pair of methods, the value represents the proportion of features that are shared between the 2 methods. The
number of genes selected in each method is the automatic cut-off by triku.

Table 1. Percentage of ribosomal protein (RBP) and mitochon-
drial (MT) genes appearing within the selected genes by each FS
method

Method
Mereu Ding

% RBP % MT % RBP % MT

triku 1.92 0.08 0.12 0.01
m3drop 3.83 0.43 0.69 0.11
nbumi 1.87 0.16 0.44 0.09
scanpy 1.56 0.09 0.27 0.04
seurat 1.96 0.20 0.25 0.01
sct 1.34 0.18 0.04 0.03
scry 4.20 0.61 1.31 0.27
std 5.04 0.58 2.00 0.33
brennecke 1.01 0.09 0.03 0.01

Selection of genes based on gene ontologies
We assessed the quality of the GO output by studying its term
composition. We selected 2 PBMC datasets from the Ding datasets.
We used PBMC datasets for this analysis because their cell-to-
cell variability has been extensively studied using single-cell tech-
nologies such as fluorescence-activated cell sorting (FACS) and
scRNA-seq [27–31]. Using these datasets, we measured the propor-
tion of GO terms obtained in the output that were tightly related
to the biological system under study.

Figure 7 and Supplementary Fig. S6 show the first 25 GO terms
obtained with the genes selected by each FS method on the 2
PBMC datasets (10X human and Dropseq human) where the terms
tightly related to immune processes—chosen by 3 independent
assessors—have been highlighted. We observed that triku was the
FS method that yielded the most terms directly related to immune
processes, with 25/25 + 15/25 = 40/50 related terms in the Ding
Dropseq and 10X datasets, respectively. Examples of terms that
we considered to be tightly related to immune processes included
"B cell receptor signalling pathway," "neutrophil degranulation,"
and "regulation of T cell proliferation." The next methods were
scanpy and m3drop, whose performances were comparable to or
better than that of triku for the 10X dataset (21/25 and 15/25) but
less robust for the Dropseq dataset (10/25 and 9/25 related terms),
summing up to a total of 33/50 and 24/50. The rest of the FS meth-
ods mainly selected genes that were related to general cell func-
tions such as RNA processing, protein processing, and cell-cycle
regulation.

Cell subtype distribution on UMAP
UMAP and clustering are common steps within single-cell
pipelines. To assess the quality of FS on the UMAP representa-
tion, we analyzed whether different cell types appeared as differ-
ent entities in the UMAPs. In other words, if 2 cell types that have
different transcriptional profiles appear mixed within the UMAP,
it is possible that some of the features from the transcriptional
profile of the cell types are not selected as relevant.

We analyzed 2 Ding human PBMC datasets, CELseq2 and Seq-
Well, as shown in Fig. 8. In general, we observe a high mixture of
cell types within brennecke and random FS throughout datasets,
where major cell types were mixed and, therefore, would be highly
uninformative for cell type characterization.

From the CELseq2 dataset we observe that the mucosal-
associated invariant T-cell population is more diffuse in m3drop,
seurat, sctransform, and all; and γ δ T cells showed a higher mix-
ture degree in scanpy, seurat, and sctransform. Additionally, the
dendritic cell population, which appeared near CD14+ monocytes,
appears less separated in std and all and is mixed with CD16+

monocytes in seurat. Finally, memory and resting naive B cells ap-
pear less separated in m3drop, nbumi, scanpy, seurat, and sct.

Regarding the Seq-Well dataset we observe that mucosal-
associated invariant T cells are less defined in triku, scanpy,
m3drop, seurat, and sctransform; and seurat and sctransform
show a high degree of mixture of major T-cell populations (CD4
and CD8). Additionally, resting naive B cells are mixed with prolif-
erative naive B cells in scanpy, seurat, and sct; and with CD4+ T
cells in scry and std.

Therefore from these results we conclude that using triku as
FS method produces well-defined cell type populations and sub-
populations. Interestingly, using no FS method also yields good vi-
sual results, even better than other FS methods, probably because
PCA takes into consideration all the information from the genes,
and the PCA projection automatically excludes nonrepresentative
features. Nevertheless, this effect should be addressed with other
datasets and other steps in the analysis pipeline.

Discussion
FS methods are a key step in any scRNA-seq sequencing analy-
sis pipeline because they help us obtain a dimensionally reduced
version of the dataset that captures the most relevant information
and eases the interpretation and understanding of its underlying
biology. However, every FS method relies on a set of assumptions
regarding what characteristics make a gene relevant. FS methods
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Figure 7: Bar plot of P-values of GOEA. Each bin represents the number of features selected for each method, in Ding et al. [20] human Dropseq
dataset. The y-value is the −log10 adjusted P-value for the best 25 ontologies. On the bottom, the bar plot shows the names of the ontology terms for
the case with the best 1,000 features. In immune datasets, gray dots at the left of each term represent that that term is directly related to an immune
process. Non-dotted terms refer to more general processes that may or may not be related to immune processes.

that sort genes according to their dispersion assume that gene
expression variability is indicative of its biological relevance. FS
methods like nbumi and m3drop assume that genes showing a
proportion of zero-counts that is greater than expected (accord-
ing to a null distribution) are more likely to be informative. Triku
assumes that genes that have a localized expression in a subset
of cells that share an overall transcriptomic similarity are more
likely to define cell types. A general trend in FS method design
has been to refine the requirements that a gene must meet in or-
der for it to be selected, from the more general dispersion-based
to more sophisticated formulations. It is noteworthy that the re-
quirements in triku are consistent with the previous dispersion-

based and zero-count–based formulations but involve a new as-
pect that we consider essential for an accurate gene selection: a
localized expression in neighboring cells. Another important ad-
vantage of triku over FS methods that consider the zero-count dis-
tribution is that, unlike m3drop and nbumi, triku does not assume
gene counts to follow any particular distribution, because it esti-
mates the null distribution from the dataset, thus extending the
range of single-cell technologies that it can use beyond droplet-
based technologies.

We verified the locality of the genes selected by triku in differ-
ent artificial and real scRNA-seq datasests and concluded that,
on average, the expression of triku-selected genes is restricted
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Figure 8: UMAP plots based on features selected by different methods. The UMAPs show cell subtypes from 2 Ding datasets in human PBMCs. For each
FS method, the features were set as highly variable, and UMAP was run based on the neighborhood graph constructed from the selection of features
using min_score=0.1. To assign the cell types, Leiden was run to produce a high number of clusters, and a cell-matching algorithm was used based on
a set of markers to assign clusters to cell types. Each cell subtype should ideally appear in a separate group of cells and not be mixed with other cell
subtypes.
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to fewer, well-defined clusters. In addition, the clusters obtained
when using triku-selected genes as input for unsupervised clus-
tering in both artificially generated and biological datasets have
a better resolved pattern structure, as shown by their increased
Silhouette coefficients. In the case of artificial datasets, where
the degree of mixture between clusters can be predefined, triku
proved to be able to recover the originally defined cell populations.
In fact, we found that the higher the degree of mixture between
clusters, the more obvious the advantage of triku over the rest of
the FS methods tested.

In general, a single metric is not sufficient to properly evalu-
ate a novel computational method, but rather, all the results have
to be considered as a whole to provide a general view of how the
different FS methods work. In the present work, we have used a
number of metrics (NMI, ARI, Silhouette, cross-validation accu-
racy of 2 supervised classifiers—decision tree and KNN—and de-
gree of separation of distinct cell populations on UMAP plots). Al-
though individual results may be more or less conclusive, we have
a strong view that triku works among the best for that wide range
of metrics.

An important difficulty in the interpretation of single-cell data
is that we must consider that cell-to-cell variability has both tech-
nical and biological components. That is, it is difficult to know
whether a set of genes is differentially expressed between cell
clusters owing to technical reasons (differences in the efficiency
of mRNA capture, amplification, and sequencing) or whether it
constitutes a biological signal. Moreover, there is a wide range of
sources of biological variability within a dataset, some of which
might not be of interest depending on the experimental context.
For instance, fluctuations in genes that regulate the cell cycle con-
stitute a source of biological variability that is often disregarded.
This has been extensively studied and addressed in a number of
ways: normalization, regression of unwanted sources of variation,
and so forth [13, 32–34].

The expression of genes whose variability is associated with
technical reasons tends to have a high dispersion, but their ex-
pression is usually not restricted to a few clusters. A good example
of these genes is the ribosomal and mitochondrial genes, which
are expressed across all cell types at different levels. Our results
show that these genes are in fact selected by the majority of com-
pared FS methods due to their high expression and cell-to-cell
variability but are less likely to be selected by triku because they
do not usually meet the locality requirement. Additionally, when
performing GOEA, we observed that the list of genes obtained with
triku were more enriched for terms that are specifically related to
a biological process of the system under study.

In our work, we have observed that the genes selected by dif-
ferent FS methods might show little overlap between them. This
phenomenon has been described elsewhere [35]. In fact, gene co-
variation and redundancy is a well-characterized effect that has
been observed in omics studies. The effect of redundancy arises
from the fact that different cell types must have a common large
set of pathways to be active. The difference between cell type and
cell state is that 2 cell types might have large sets of pathways
that are different between each other, and 2 cell states will only
differ in a few pathways. Because pathways are composed of many
genes, only choosing a reduced set of genes from a set of pathways
from cell type A and B might be enough to differentiate them,
and we might not need to select all genes from all pathways. This
“paradigm” explains several effects. Qiu described that scRNA-seq
datasets could preserve basic structure after gene expression bi-
narization [36] or by conducting very shallow sequencing experi-
ments [5]. This can be explained by the fact that only a few genes

are necessary to describe the main cell populations in a single-
cell dataset, and the presence/absence of a certain marker is of-
ten more informative than its expression level. This is related to
the notion that despite the high dimensionality of omics studies,
most biological systems can be explained in a reduced number
of dimensions. Moreover, some authors have claimed this low di-
mensionality to be a natural and fundamental property of gene
expression data [5]. This highlights the importance of designing
accurate FS methods that extract the fundamental information
from single-cell datasets.

Triku Python package is available at Github [37] and can be
downloaded using PyPI. Triku has been designed to be compati-
ble with scanpy syntax, so that scanpy users can easily include
triku into their pipelines. Notebooks developed for figure produc-
tion and additional results are located in GitHub [38] and in Zen-
odo [39].

Methods
The triku workflow, parameter robustness, and run times are fur-
ther described in Supplementary Methods.

Artificial and benchmarking datasets
To perform the evaluation of the FS methods we used a set of ar-
tificial and biological benchmarking datasets. Artificial datasets
were constructed using the splatter R package (v 1.10.1). Each
dataset contains 10,000 cells and 15,000 genes and consists of 9
populations with abundances in the dataset of {25%, 20%, 15%,
10%, 10%, 7%, 5.5%, 4%, 3.5%} of the cells. Each dataset contains
a parameter, de.prob, that controls the probability that a gene is
differentially expressed. Lower de.prob values (<0.05) imply that
different populations have fewer differentially expressed genes
between them and, therefore, are more difficult to differentiate.
Selected values of de.prob are {0.0065, 0.008, 0.01, 0.016, 0.025,
0.05, 0.1, 0.3}. Populations in datasets with de.prob values >0.05
are completely separated in the low-dimensionality representa-
tion with UMAP, even without feature selection (Supplementary
Fig. S7).

Regarding biological datasets, 2 benchmarking datasets have
been recently published by Mereu et al. [21] and Ding et al. [20].
The aim of these 2 works is to analyze the diversity of library
preparation methods, e.g., 10X, SMART-seq2, CEL-seq2, single nu-
cleus or inDrop. Mereu et al. use mouse colon cells and human
PBMCs to perform the benchmarking, whereas Ding et al. use
mouse cortex and human PBMCs. There are a total of 14 datasets
in Mereu et al. and 9 in Ding et al. An additional characteristic
of these datasets is that they have been manually annotated, and
this annotation is useful as a semi ground truth. Ding dataset files
were downloaded from Single Cell Portal (accession Nos. SCP424
and SCP425), and cell type metadata are located within the down-
loaded files. Mereu datasets were downloaded from GEO database
(accession GSE133549), and cell type metadata were provided by
the authors after personal request.

FS methods
Triku is compared to the following FS methods:

� m3drop [18] (distribution-based): fits a Michaelis-Menten
equation to the percentage of zeros versus μ, and selects fea-
tures with higher percentages of zeros than expected. The
features are selected with the M3DropFeatureSelection func-
tion from M3Drop R package.
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� nbumi (distribution-based): acts in the same manner as
m3drop but fitting an NB equation instead of a Michaelis-
Menten equation. The features are selected with the NBu-
miFeatureSelectionCombinedDrop function.

� scanpy [12] (dispersion-based): selects features on the basis of
a z-scored deviation, adapted from Seurat’s method. The fea-
tures are selected with the sc.pp.highly_variable_genes func-
tion from scanpy (v 1.6.0).

� seurat [40] (dispersion-based): uses the FindVariableFeatures
function, which fits a line to the relationship of log(variance)
and log(mean) using local polynomial regression (loess). It
then standardizes the feature values using the observed
mean and expected variance.

� sctransform (sct) [13] (dispersion-based): Seurat implementa-
tion of SCTransform function applies NormalizeData, Scale-
Data, and FindVariableFeatures with vst mode (default in
Seurat).

� scry [14] (dispersion-based): computes a deviance statistic for
counts based on a multinomial model that assumes that each
feature has a constant rate. The features are selected with
the devianceFeatureSelection function from scry R package
(v 0.99.0).

� Standard deviation (std) (dispersion-based): is computed di-
rectly using Numpy (v 1.18.3).

� brennecke [9] (dispersion-based): fits a curve based on the
square of the coefficient of variation (CV2) versus the mean
expression (μ) of each gene and selects the features with
higher CV2 and μ. The features are selected with the Bren-
neckeGetVariableGenes function from M3Drop R package (v
1.12.0).

FS and dataset preprocessing
To make the comparison between FS methods, each feature is
ranked on the basis of the score provided by each FS method.
Calculating the ranking instead of just selecting the features al-
low us to select different numbers of features when needed.
By default, the number of features is the one automatically
selected by triku. Additionally, in some contexts, analyses are
performed with all features or with a random selection of
features.

After the ranking of genes is computed, dataset processing is
performed equally for all methods, in artificial and benchmark-
ing datasets. Datasets are first log transformed (if required by the
method), and PCA with 30 components is calculated. Then, the k-
nearest neighbors (KNN) matrix is computed setting k as (ncells)1/2.
UMAP (v 0.3.10) is then applied to reduce the dimensionality for
plotting. If community detection is required, Leiden (v 0.7.0) is ap-
plied, selecting the resolution that matches the number of cell
types manually annotated in the dataset. This procedure is re-
peated with 10 different seeds. This conditions the output of triku,
random FS, PCA projection, neighbor graph, Leiden community
detection, and UMAP.

ARI and NMI calculation in artificial and benchmarking
datasets
To compare the Leiden community detection results with the
ground-truth labels from artificial and biological datasets, we
used the ARI and the NMI scores [41].

The ARI is a revision of the RI, with correction of the expected
RI:

ARI = RI − RIExpected

RImax − RIExpected

If T and L are the labels of the cell types (true populations) and
Leiden communities, respectively, the NMI between T and L is

NMI(T, L) = 2I(T; L)
H(T ) + H(L)

where H(X) is the entropy of the labels and I(T; L) is the mutual
information between the 2 sets of labels. This value is further de-
scribed in [42]. We used the scikit-learn (v 0.23.1) implementation
of NMI, sklearn.metrics.adjusted_mutual_info_score.

One of the advantages of NMI against other mutual informa-
tion methods is that it performs better with label sets with class
imbalance, which are common in single-cell datasets, where there
are differences in the abundance of cell types.

On artificial datasets, Leiden was applied using the first 250 and
500 selected features, and the resulting community labels were
compared with the population labels from the dataset. On bench-
marking datasets, Leiden was applied with the manually curated
cell types.

Silhouette coefficient in benchmarking datasets
To assess the clustering performance of the communities ob-
tained with benchmarking datasets we used the Silhouette coef-
ficient. The Silhouette coefficient compares the distances of the
cells within each cluster (intracluster) and between clusters (in-
tercluster) within a measurable space. The distance between 2
cells is the cosine distance between their gene expression vec-
tors, considering only the genes selected by each FS method. The
greater the distance between cells that belong to different clusters
and the smaller the distance between cells from different cluster,
the greater the Silhouette score.

To calculate the Silhouette coefficient for a cell c within cluster
Ci (out of n clusters), the mean distance between the cell and the
rest of the cells within the cluster is computed using the gene
expression:

a(c) = 1
|Ci| − 1

∑
j∈Ci,c �= j

d(c, j)

Then, the minimum mean distance between that cell and the rest
of the cells from other clusters is computed:

b(c) = min
Ck �=Ci

{ 1
Ck

∑
j∈Ck

d(i, j)
}

k ∈ 1, · · · , n

Then the Silhouette coefficient is computed as

s(c) = b(c) − a(c)
max b(c), a(c)

Higher Silhouette scores imply a better separation between
clusters and, therefore, a better performance of the FS
method. We used the scikit-learn implementation of Silhou-
ette, sklearn.metrics.silhouette_score.

Effect of FS on supervised classification
Two different supervised classifiers (decision tree and KNN classi-
fier from scikit-learn) were trained on the Ding and Mereu bench-
marking datasets. Their performance on the different feature se-
lected datasets was measured by computing the 10-fold cross-
validation score. The same feature numbers as in the NMI and
ARI analysis were used to train the classifiers.
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Overlap between gene lists
To calculate the overlap between selected features for each FS
method, we applied the Jaccard index [43]: jaccard(i, j) = |i ∩ j|/|i ∪
j|, where i, j are the sets of genes selected by the 2 FS methods.

Performance of gene selection and locality measures
To assess the performance of different FS methods selecting genes
that are relevant for the dataset, we applied 2 different strategies
for artificial and biological datasets.

For artificial datasets, we selected 4 representative genes of
each of the combinations of genes shown in Supplementary
Fig. S4. Then we calculated the mean expression of each of them
for genes in each population, and we represent this information
in the bar plots.

For benchmarking datasets, to represent Supplementary
Fig. S5, for each dataset and FS method we used the following pro-
cedure: for each gene, the expression was scaled to sum 1 across
all cells. Then, Leiden clustering was run with resolution parame-
ter value 1.2. For each cluster, the proportion of the expression was
calculated, and the clusters were ordered so that the first cluster
is the one that concentrates the majority of the expression. To cre-
ate Supplementary Fig. S5, the average value of the proportion of
expression is calculated.

Proportion of ribosomal and mitochondrial genes
When calculating the proportion of mitochondrial and ribosomal
genes, the list of existing ribosomal and mitochondrial proteins
was calculated by extracting the genes starting with RPS, RPL, or
MT-. The proportion of mitochondrial or ribosomal genes is the
quotient between the genes of the previous list that appear se-
lected by that FS method, and the genes in the list.

GO enrichment analysis
To calculate the sets of gene ontologies enriched for the selected
features of each FS method, we used Python gseapy (v 0.9.17) mod-
ule gseapy.enrichr function with the list of the first 1,000 selected
features against the GO_Biological_Process_2018 ontology. From
the list of enriched ontologies, the 25 with the smallest adjusted
P-value were selected.

Ranking and CD
During calculation of NMI and Silhouette coefficients, to evalu-
ate the overall performance of the FS methods across different
datasets, the FS methods are ranked, where 1 is the best rank.
The methodology proposed by Demšar [44] is used to test for sig-
nificant differences among FS methods in the datasets: the Fried-
man rank test is applied to test whether the mean rank values
for all FS methods are similar (null hypothesis). If the Friedman
rank test rejects the null hypothesis (α < 0.05), this implies a sta-
tistically significant difference among ≥2 FS methods. If the null
hypothesis is refuted, we apply the Quade post hoc test between
all pairs of FS methods to check which pairs of FS methods are
significantly different (α < 0.05). These results are then plotted in
a critical difference diagram.

Cell subtype quality representation in UMAP
For this analysis we use 2 Ding human PBMC datasets—CELseq2
and Seq-Well. To make the analysis more precise, we subdivided
some of the cell types designed in the datasets into different sub-
types, based on relevant markers from bibliography, which were
also robust across datasets [45–48]. The UMAP coordinates were
the ones originally assigned to each dataset, so that we can see the

effect of the FS method in the UMAP construction. UMAPs were
calculated with min_score=0.1.

The cell type division into cell subtypes was the
following: B cells were divided into resting naive B
cells (IGHD+TCL1A+CD79A+), proliferative naive B cells
(IGHD+CD69+CCR7+), memory B cells (IGHG1+CD79A+CD27+),
and plasma cells (MZB1+JCHAIN+IGHA2+); CD14+ mono-
cytes were divided into CD14+ resting monocytes
(CIITA+CLEC12A+NAIP+) and CD14+ active monocytes
(EGR1+IFITM3+IER2+); CD4+ and CD8+ T cells were subdivided
into 2 additional cell types, γ δ T cells (TRDC+KLRC1+A2M-AS1+)
and mucosal-associated invariant T cells (SLC4A10+DPP4+).

To assign these new cell subtypes we used the population-
matching algorithm described below. The unsupervised popula-
tions used to match the cell subtypes based on their markers were
Leiden clusters produced with a high resolution value (8 for both
datasets), so that several clusters can be assigned to the same sub-
type.

Population-matching algorithm
The aim of this algorithm is to assign a set of clusters to a set of
labels, where each label contains a list of representative markers.
For each label we extract the matrix of counts of the genes belong-
ing to the label. Then, we create a new matrix, where we assign
to each cell and gene the sum of the counts of the gene within its
KNN, divided by the number of neighbors. These steps reduce the
noisiness of the expression and also increase the local expression
of a gene and dampen the expression of sparse genes.

Gene expression values are substituted by the ranked index of
their expression, and the values are divided by the largest index
to sum 1. Therefore, the cell with the highest expression will have
a value of 1 for that gene, while the lowest expressed cell will have
a value of near 0. After this normalization is applied to the rest of
genes within the label, the mean of the normalized values across
genes is computed, so that each cell has a single value for that
label.

After the previous steps are computed for the rest of the labels,
a new matrix with the number of clusters by the number of la-
bels is computed. For each label and each cluster, the percentile
of the normalized values within cells of that cluster is computed
(percentile 70 by default). This helps reduce noise on normalized
values and assign a unique number per cluster.

This algorithm makes it possible to choose intermediate states,
i.e., cell labels with a high similarity. By default, the label with the
highest score per cluster is chosen. With the intermediate state
option, labels that have a similar value as the label with the high-
est value are included. The difference in values is set as a thresh-
old (0.05 by default), and labels with difference in value greater
than the threshold are not merged.

This algorithm can be found in its corresponding GitHub repos-
itory [49] and can be installed via PyPI as pip install cellassign.

Data Availability
Project name: Triku
Project home page: https://github.com/alexmascension/triku
Notebook repository: https://github.com/alexmascension/triku_n
otebooks
Notebook output repository: https://doi.org/10.5281/zenodo.552
1361
Operating system: Platform independent
Programming language: Python

https://github.com/alexmascension/triku
https://github.com/alexmascension/triku_notebooks
https://doi.org/10.5281/zenodo.5521361
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License: BSD 3
RRID:SCR_020977
An archival copy of the code and notebooks is also available via
the GigaScience database GigaDB [50].

Additional Files
Supplementary Material
Supplementary Figure S1: Comparison of ARI for FS methods on
artificial datasets. Bar plots of the ARI for all FS methods with dif-
ferent artificial datasets, using the top 250 (top) and 500 (bottom)
features of each FS method. The probability of the selected genes
being differentially expressed between clusters (de.prob) is shown
in the x-axis. Higher ARI values mean better recovery of the cell
populations. Note that in category "all," all features are selected,
not the top 250 or 500, therefore their ARI values are the same in
both graphs.
Supplementary Figure S2: ARI, silhouette of Leiden clusters, and
KNN metrics in Ding datasets. Bar plots of the 3 represented met-
rics. Each bar plot represents the mean over 5 runs, and the error
bar is the standard deviation. (A) ARI between clustering solutions
and annotated cell types. (B) Silhouette coefficient of Leiden clus-
ters. (C) KNN classifier accuracy using a 10-fold cross validation
of annotated cell types, and 10 neighbors. The plot on the left is a
critical difference diagram, where each horizontal bar represents
the mean rank for all datasets. If ≥2 bars are linked by a gray verti-
cal bar, the mean ranks for those FS methods are not significantly
different (Quade test, α = 0.05).
Supplementary Figure S3: NMI, silhouette of annotated cell types
and decision tree metrics in Mereu datasets. Bar plots of the 3 rep-
resented metrics. Each bar plot represents the mean over 5 runs,
and the error bar is the standard deviation. (A) ARI between clus-
tering solutions and annotated cell types. (B) Silhouette coefficient
of Leiden clusters. (C) KNN classifier accuracy using a 10-fold cross
validation of annotated cell types, and 10 neighbors. The plot on
the left is a critical difference diagram, where each horizontal bar
represents the mean rank for all datasets. If 2 or more bars are
linked by a gray vertical bar, the mean ranks for those FS meth-
ods are not significantly different (Quade test, α = 0.05).
Supplementary Figure S4: Selected features for triku, scanpy, std,
and scry in artificial dataset with de.prob 0.01 and 250 genes. The
top row shows Wasserstein distance versus log mean expression
scatter plots with the features selected by each FS method. The
next rows show, for 4 genes, the mean expression per group of
cells for each gene. The 4 features selected for each row are rep-
resented on the squares on the right: features selected only by
triku, by triku and scanpy, by scanpy, by all FS methods, or by std
and scry. We see that features selected by triku, with any other
combination, have a group of cells where that gene is over- or un-
derexpressed, whereas features selected by other FS methods do
not show groups with relevant over- or underexpression.
Supplementary Figure S5: Distribution of gene expression across
clusters in triku is biased to fewer clusters. For each of the
datasets, and each gene, the expression of that gene was scaled
to sum 1. Then, for each of the clusters obtained with Leiden (res-
olution 1.2), the proportion of the whole expression is calculated,
and the clusters are ranked, so that the cluster 0 has the high-
est proportion of expression compared to the rest of clusters. The
lines in each plot represent the mean of the proportions for all
selected genes for each FS method. For instance, in Ding’s 10X hu-
man dataset, the most expressed cluster in features selected by
triku expresses, on average, 50% of the expression of the gene, and
the one with the second highest level of expression, 20%. Ding’s

CELseq2 and inDrop in mouse datasets do not exist and are not
shown in the figure.
Supplementary Figure S6: Bar plot of P-values of GOEA. Each
bin represents the number of features selected for each method,
in Ding et al. human 10X dataset. The represented value is the
−log10 adjusted P-value for the best 25 ontologies. On the bot-
tom, the bar plot shows the names of the ontology terms for
the case with the best 1,000 features. In immune datasets, gray
dots at the left of each term represent that that term is directly
related to an immune process. Non-dotted terms refer to more
general processes that may or may not be related to immune
processes.
Supplementary Figure S7: Effect of scatter de.prob parameter on
dimensionality reduction. UMAPs of scatter datasets with differ-
ent de.prob parameter values. UMAP and community detection
were done without feature selection. Datasets with de.prob >0.05
are completely resolved in UMAP, whereas lower values make
scatter groups less distinguishable.
Supplementary Figure S8: Effect of proportion of zeros in gene ex-
pression patterns. For each gene, the plot on the left represents the
KNN count distribution of that gene, whereas the plot on the right
is the UMAP DR representation with the KNN counts for each cell.
The genes on the left (Lyz2, Vtn, Sparc) have a higher percentage
of zeros and are, therefore, expressed in a subset of cells, whereas
the genes on the right (Cog3, Gpr107, Dhx30) are more thoroughly
expressed, and their KNN count distributions are not as heavy-
tailed as for the genes on the left.
Supplementary Figure S9: Comparison of convolution and read
distribution in KNNs. The genes on the left (Rac2, Vwa1, and Opcml)
are candidates to be selected by triku, whereas the genes on the
right (Tpcn2, Usp20, Rbm6) are not candidates for selection. In each
6-block graph, the column on the left represents the counts (blue
histogram) and convolution (orange line) of cells with positive ex-
pression, and their KNN; whereas the column on the right rep-
resents the counts and convolution of all cells, and their respec-
tive KNN. The number within each plot represents the Wasser-
stein distance between the convolution-based distribution and
the KNN count distribution. The dataset used for this visualiza-
tion is 10X neuron dataset, preprocessed in a similar fashion as
the set of benchmarking datasets.
Supplementary Figure S10: Robustness of triku parameters. Over-
lap values for the number of k (M1, D1), PCA components (M2, D2),
and number of windows (M3, D3) for benchmarking datasets from
Mereu et al. [21] (M1, M2, M3) and Ding et al. [20] (D1, D2, D3). Lines
in blue represent the overlap between the first 1,000 features, and
the extremes of the shaded regions represent the overlap between
the first 500 (top) and 2,500 (bottom) features.
Supplementary Figure S11: Difference between mean and me-
dian correction in triku. Results for Ding mouse SMARTseq2 (A),
Ding mouse 10X (B), and Mereu human inDrop (C) datasets. For
each dataset, the first plot shows the uncorrected distances on
the y-axis, and the log mean expression on the x-axis. The red and
blue lines represent the mean and median expression values per
window. Dots in blue, red, and dark gray represent selected genes
using mean, median correction, or with both cases, respectively.
Second and third plots show the corrected distances; therefore the
mean and median values are zero. The last plot shows the Jaccard
index between the i top genes using mean and median correction,
for different i values ranging from 50 to the default number of
selected genes using median (default method).
Supplementary Table S1: Number of features automatically se-
lected for each dataset. The cases marked with a hyphen do not
exist.

https://scicrunch.org/resolver/RRID:SCR_020977
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Supplementary Table S2: Computation times of different steps of
a standard single-cell processing pipeline. For each dataset, dif-
ferent steps of the processing pipelines were performed, and their
processing times were computed. Datasets with >1 batch were
corrected using harmony and bbknn.

Abbreviations
ANOVA: Analysis of variance
FACS: Fluorescence-activated cell sorting
FE: Feature extraction
FS: Feature selection
GO: Gene ontology
GOEA: Gene ontology enrichment analysis
KNN: k-nearest neighbors
mRNA: Messenger RNA
NB: Negative binomial
NMI: Normalized mutual information
PBMC: Peripheral blood mononuclear cell
PCA: Principal component analysis
scRNA-seq: Single-cell RNA sequencing
UMAP: Uniform manifold approximation and projection
UMI: Unique molecular identifier

Competing Interests
The authors declare that they have no competing interests.

Funding
This work was supported by grants from Instituto de Salud
Carlos III (AC17/00012 and PI19/01621), cofunded by the Euro-
pean Union (European Regional Development Fund/European Sci-
ence Foundation, Investing in your future) and the 4D-HEALING
project (ERA-Net program EracoSysMed, JTC-2 2017); Diputación
Foral de Gipuzkoa, and the Department of Economic Devel-
opment and Infrastructures of the Basque Government (KK-
2019/00006, KK-2019/00093); European Union FET project Cir-
cular Vision (H2020-FETOPEN, Project 899417), Ministry of Sci-
ence and Innovation of Spain; and PID2020-119715GB-I00 funded
by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of
making Europe. A.M.A. was supported by a Basque Govern-
ment Postgraduate Diploma fellowship (PRE_2020_2_0081), and
O.I.S. was supported by a Postgraduate Diploma fellowship from
la Caixa Foundation (identification document 100010434; code
LCF/BQ/IN18/11660065).

Authors’ Contributions
Conceptualization: A.M.A.; Funding Acquisition: M.J.A.-B.; Inves-
tigation: A.M.A., O.I.-S., M.J.A.-B., A.I.; Methodology: A.M.A., O.I.-
S., II; Project Administration: A.I., M.J.A.-B.; Resources: M.J.A.-
B.; Software: A.M.A., O.I.-S.; Supervision: I.I., A.I., M.J.A.-B.; Vi-
sualization: A.M.A., O.I.-S.; Writing - Original Draft Preparation:
A.M.A., O.I.-S.; Writing - Review and Editing: A.M.A., O.I.-S., I.I.,
M.J.A.-B., A.I.

Acknowledgments
We thank Amaia Elícegui, Ainhoa Irastorza, and Paula Vázquez
for the assessment of the immune Gene Ontology terms.

References
1. Trapnell, C. Defining cell types and states with single-cell ge-

nomics. Genome Res 2015;25(10):1491–8.
2. Maclean, AL, Hong, T, Nie, Q. Exploring intermediate cell states

through the lens of single cells. Curr Opin Syst Biol 2018;9:
32–41.

3. Bellman, RE. Dynamic Programming. Dover; 2015.
4. Bzdok, D, Altman, N, Krzywinski, M. Statistics versus machine

learning. Nat Methods 2018;15(4):233–4.
5. Heimberg, G, Bhatnagar, R, El-Samad, H, et al. Low dimension-

ality in gene expression data enables the accurate extraction
of transcriptional programs from shallow sequencing. Cell Syst
2016;2(4):239–50.

6. Saeys, Y, Inza, I, Larrañaga, P. A review of feature selection tech-
niques in bioinformatics. Bioinformatics 2007;23(19):2507–17.

7. Luecken, MD, Theis, FJ. Current best practices in single-cell RNA-
seq analysis: a tutorial. Mol Syst Biol 2019;15(6):e8746.

8. Su, K, Yu, T, Wu, H. Accurate feature selection im-
proves single-cell RNA-seq cell clustering. Brief Bioinform
2021;22(5):doi:10.1093/bib/bbab034.

9. Brennecke, P, Anders, S, Kim, JK, et al. Accounting for tech-
nical noise in single-cell RNA-seq experiments. Nat Methods
2013;10(11):1093–5.

10. Osorio, D, Yu, X, Zhong, Y, et al. Single-cell expression variability
implies cell function. Cells 2019;9(1):14.

11. Stuart, T, Butler, A, Hoffman, P, et al. Comprehensive integration
of single-cell data. Cell 2019;177(7):1888–902.

12. Wolf, FA, Angerer, P, Theis, FJ. SCANPY: large-scale single-cell
gene expression data analysis. Genome Biol 2018;19(1):15.

13. Hafemeister, C, Satija, R. Normalization and variance stabiliza-
tion of single-cell RNA-seq data using regularized negative bi-
nomial regression. Genome Biol 2019;20(1):296.

14. Townes, FW, Hicks, SC, Aryee, MJ, et al. Feature selection and di-
mension reduction for single-cell RNA-Seq based on a multino-
mial model. Genome Biol 2019;20(1):295.

15. Vieth, B, Ziegenhain, C, Parekh, S, et al. powsimR: Power analy-
sis for bulk and single-cell RNA-seq experiments. Bioinformatics
2017;33(21):3486–8.

16. Chen, W, Li, Y, Easton, J, et al. UMI-count modeling and differen-
tial expression analysis FOR single-cell RNA sequencing. Genome
Biol 2018;19(1):70.

17. Svensson, V. Droplet scRNA-seq is not zero-inflated. Nature
Biotechnol 2020;38(2):147–50.

18. Andrews, TS, Hemberg, M. M3Drop: dropout-based feature se-
lection for scRNASeq. Bioinformatics 2018;35(16):2865–7.

19. Zappi, L, Phipson, B, Oshlack, A. Splatter: simulation of single-
cell RNA sequencing data. Genome Biol 2017;18(1):174.

20. Ding, J, Adiconis, X, Simmons, SK, et al. Systematic comparison
of single-cell and single-nucleus RNA-sequencing methods. Nat
Biotechnol 2020;38:737–46.

21. Mereu, E, Lafzi, A, Moutinho, C, et al. Benchmarking single-cell
RNA-sequencing protocols for cell atlas projects. Nat Biotechnol
2020;38:747–55.

22. Freytag, S, Tian, L, Lönnstedt, I, et al. Comparison of cluster-
ing tools in R for medium-sized 10x Genomics single-cell RNA-
sequencing data. F1000Res 2018;7:1297.

23. Lall, S, Ghosh, A, Ray, S, et al. sc-REnF: An entropy guided ro-
bust feature selection for single-cell RNA-seq data. Brief Bioin-
form 2022:doi:10.1093/bib/bbab517.

24. Hemphill, E, Lindsay, J, Lee, C, et al. Feature selection and clas-
sifier performance on diverse biological datasets. BMC Bioinfor-
matics 2014;15(S4):doi:10.1186/1471-2105-15-S13-S4.



16 | GigaScience, 2022, Vol. 11, No. 1

25. Lun, ATL, Mccarthy, DJ, Marioni, JC. A step-by-step workflow for
low-level analysis of single-cell RNA-seq data with Bioconduc-
tor. F1000Res 2016;5:2122.

26. Senabouth, A, Lukowski, SW, Hernandez, JA, et al. ascend: R
package for analysis of single-cell RNA-seq data. Gigascience
2019;8(8):doi:10.1093/gigascience/giz087.

27. Chen, J, Cheung, F, Shi, R, et al. PBMC fixation and processing for
Chromium single-cell RNA sequencing. J Transl Med 2018;16:198.

28. Massoni-Badosa, R, Iacono, G, Moutinho, C, et al. Sampling time-
dependent artifacts in single-cell genomics studies. Genome Biol
2020;21:112.

29. Villani, AC, Satija, R, Reynolds, G, et al. Single-
cell RNA-seq reveals new types of human blood
dendritic cells, monocytes, and progenitors. Science
2017;356(6335):doi:10.1126/science.aah4573.

30. Zheng, GXY, Terry, JM, Belgrader, P, et al. Massively parallel
digital transcriptional profiling of single cells. Nat Commun
2017;8:14049.

31. Zhu, L, Yang, P, Zhao, Y, et al. Single-cell sequencing of pe-
ripheral mononuclear cells reveals distinct immune response
landscapes of COVID-19 and influenza patients. Immunity
2020;53(3):685–96.e3.

32. Lytal, N, Ran, D, An, L. Normalization methods on single-
cell RNA-seq data: an empirical survey. Front Genet
2020;11(41):doi:10.3389/fgene.2020.00041.

33. Nestorowa, S, Hamey, FK, Sala, BP, et al. A single-cell resolution
map of mouse hematopoietic stem and progenitor cell differen-
tiation. Blood 2016;128(8):e20–31.

34. Tran, HTN, Ang, KS, Chevrier, M, et al. A benchmark of batch-
effect correction methods for single-cell RNA sequencing data.
Genome Biol 2020;21:12.

35. Yip, SH, Sham, PC, Wang, J. Evaluation of tools for highly vari-
able gene discovery from single-cell RNA-seq data. Brief Bioinform
2018;20(4):1583–9.

36. Qiu, P. Embracing the dropouts in single-cell RNA-seq analysis.
Nat Commun 2020;11:1169.

37. Ascensión, AM. Github repository for “Triku: a feature selection
method based on nearest neighbors for single-cell data.” 2022.
https://www.github.com/alexmascension/triku. 1 February,
2022.

38. Ascensión, AM. Github repository for notebooks of “Triku: a fea-
ture selection method based on nearest neighbors for single-cell
data.” 2022. https://www.github.com/alexmascension/triku_not
ebooks.

39. Ascensión, AM, Ibáñez-Solé, O, Inza, I, et al. Zenodo repository for
“Triku: a feature selection method based on nearest neighbors
for single-cell data.” Zenodo 2022. https://doi.org/10.5281/zenodo
.4016714.

40. Hao, Y, Hao, S, Andersen-Nissen, E, et al. Inte-
grated analysis of multimodal single-cell data. Cell
2021;184(13):doi:10.1016/j.cell.2021.04.048.

41. Kvalseth, TO. On normalized mutual information: mea-
sure derivations and properties. Entropy 2017;19(11):
631.

42. Liu, X, Cheng, HM, Zhang, ZY. Evaluation of community detection
methods. 2019. arXiv:1807.01130.

43. Jaccard, P. The distribution of the flora in the Alpine Zone. New
Phytol 1912;11(2):37–50.

44. Demšar, J. Statistical comparisons of classifiers over multiple
data sets. J Mach Learn Res 2006;7:1–30.

45. Sanz, I, Wei, C, Jenks, SA, et al. Challenges and opportunities
for consistent classification of human B cell and plasma cell

populations. Front Immunol 2019;10: doi:10.3389/fimmu.2019.
02458.

46. Shi, J, Zhou, J, Zhang, X, et al. Single-cell transcriptomic pro-
filing of MAIT cells in patients with COVID-19. Front Immunol
2021;12:doi:10.3389/fimmu.2021.700152.

47. Stewart, A, Ng, JCF, Wallis, G, et al. Single-cell transcrip-
tomic analyses define distinct peripheral B cell sub-
sets and discrete development pathways. Front Immunol
2021;12:doi:10.3389/fimmu.2021.602539.

48. Wilk, AJ, Rustagi, A, Zhao, NQ, et al. A single-cell atlas of the pe-
ripheral immune response in patients with severe Covid-19. Nat
Med 2020;26(7):1070–6.

49. Ascensión, AM. Github repository for cellasign package. 2022. ht
tps://github.com/alexmascension/cell_asign.

50. Ascensión, AM, Ibáñez-Solé, O, Inza, I, et al. Supporting data for
“Triku: a feature selection method based on nearest neighbors
for single-cell data.” GigaScience Database 2022. https://doi.org/10
.5524/100989.

https://www.github.com/alexmascension/triku
https://www.github.com/alexmascension/triku_notebooks
https://doi.org/10.5281/zenodo.4016714
https://github.com/alexmascension/cell_asign
https://doi.org/10.5524/100989

