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Organoids and
microphysiological systems:
Promising models for
accelerating AAV gene
therapy studies

Ritu Mahesh Ramamurthy, Anthony Atala,
Christopher D. Porada and Graҫa Almeida-Porada*

Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine,
Winston-Salem, NC, United States
The FDA has predicted that at least 10-20 gene therapy products will be

approved by 2025. The surge in the development of such therapies can be

attributed to the advent of safe and effective gene delivery vectors such as

adeno-associated virus (AAV). The enormous potential of AAV has been

demonstrated by its use in over 100 clinical trials and the FDA’s approval of

two AAV-based gene therapy products. Despite its demonstrated success in

some clinical settings, AAV-based gene therapy is still plagued by issues related

to host immunity, and recent studies have suggested that AAV vectors may

actually integrate into the host cell genome, raising concerns over the potential

for genotoxicity. To better understand these issues and develop means to

overcome them, preclinical model systems that accurately recapitulate human

physiology are needed. The objective of this review is to provide a brief

overview of AAV gene therapy and its current hurdles, to discuss how 3D

organoids, microphysiological systems, and body-on-a-chip platforms could

serve as powerful models that could be adopted in the preclinical stage, and to

provide some examples of the successful application of these models to

answer critical questions regarding AAV biology and toxicity that could not

have been answered using current animal models. Finally, technical

considerations while adopting these models to study AAV gene therapy are

also discussed.
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Introduction – gene therapy today

Over the past two decades, gene therapy has evolved from a

hypothetical concept to a clinical reality for numerous genetic

disorders, fulfilling its promise of a single-treatment cure in

some cases (1). As of June 23, there were 7 gene therapy

products approved by the FDA, several of which use CAR-T

cells (2), and it is predicted that 10-20 products will be

approved by 2025 (3).

Gene therapy involves introducing a functional copy of a

gene into a cell to compensate for a defect in its own

endogenous copy of that gene or to suppress a defective gene

that encodes a harmful product. While gene therapy can take

many forms to achieve its objective, these forms all fall into one

of the following categories: gene addition, gene silencing, and

gene editing/gene replacement, and they are comprised of two

components - the vector and its encoded payload, which can

include the therapeutic transgene, appropriate regulatory

elements to confer transgene expression, and, in the case of

gene-editing, the necessary machinery to mediate this process,

e.g., CRISPR/Cas9, ZFNs, TALENS, prime/base editors. The

process of gene delivery itself can be achieved by exposing the

desired target cells to the vector ex vivo, and then infusing the

cells to act as vehicles to carry the therapeutic gene, or by

directly administering the vector in vivo. Success of gene

therapy is primarily dependent upon the selection of an

appropriate vector that can deliver its payload to the desired

location with high efficiency (and ideally specificity, as well).

For this to occur, the vector must also have the ability to evade

barriers imposed by the host’s immune system.

Among the myriad gene delivery platforms available, vectors

based upon viruses remain the most widely used. Millions of

years of evolution has honed the innate capacity of viruses to

transfer their genetic material into host cells, and this ability can

be exploited to achieve delivery of therapeutic genes at far higher

efficiency than with any nonviral vector that has been created

to-date. Viral vectors used for gene therapy can be classified into

integrating and non-integrating vectors. The choice is made

depending on the desired expression profile (transient or

prolonged), the size of the genetic payload (each virus has an

ideal genome size which must be observed for efficient

packaging), and the inherent biology of the target cell type/

tissue (is the cell quiescent or dividing, is it short- or long-lived,

which viral receptors does it express on its surface, etc.).

Currently, the viral vectors that have shown the most promise

in preclinical studies and in clinical trials are those based upon

adeno-associated virus (AAV), lentiviruses (i.e., HIV), and

murine retroviruses (e.g., MMLV, MSCV). While lentiviral

and murine retroviral vectors are most often used in the

context of ex vivo gene delivery, modifying cells in vitro for

subsequent infusion, AAV has proven highly successful in an in

vivo setting (4).
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Clinical landscape

Due to the tremendous potential it has demonstrated in both

decades of preclinical studies and in past and ongoing clinical

trials, AAV is currently a very popular choice for accomplishing

in vivo gene delivery. Clinical data covering over 3000 patients

treated over more than 20 years has demonstrated that AAV is a

safe and well-tolerated gene delivery vector that can be highly

effective (5, 6). Moreover, depending upon the target cell/tissue,

AAV can achieve long-term transgene expression after a single

infusion, with the longest reported period of > 15 years in

primates (7). There are only two FDA-approved AAV gene

therapy products on the market today (Luxturna and

Zolgensma), but there are ~136 ongoing clinical trials

involving AAV products to treat 55 different diseases

(ClinicalTrials.gov). It is also expected that 50 trials will be

completed in the next 3 years, of which 80% will be phase 2

(5). Currently, inherited disorders affecting the eye, lysosomal

storage, and coagulation (hemophilia A and B) account for the

majority of clinical trials. Among these, hemophilia A has the

most ongoing trials, most of which are in late phases of

development and a high likelihood of commercialization. Of

the many ongoing clinical gene therapy trials, the vast majority

involve gene addition - only 3 gene silencing and 3 gene editing

trials are currently ongoing. For more detailed information on

the clinical landscape of AAV, the reader is referred to the very

thorough recent reviews by Au et al. and Kuzmin et al. (5, 6).
AAV biology

AAV is a non-enveloped virus with an icosahedral capsid of

approximately 22 nm in size. Wild type AAV contains a 4.7 kb

single-stranded DNA genome flanked by inverted terminal

repeats (ITRs). The genome consists of the rep and cap genes,

which are required for replication/packaging of the genome and

synthesis of viral capsid, respectively. The cap gene gives rise to

three viral capsid proteins (VP1-3) and assembly-activating

protein (AAP) which, as the name suggests, helps in the

assembly of 60 VP subunits at a 1:1:10 ratio of VP1:VP2:VP3.

Nine variable regions are present on each subunit, and they

determine the tropism and intracellular trafficking of the vector,

as well as the serotype (4). These regions of the capsid proteins

also serve as the recognition domains for neutralizing antibodies

(Nabs) (8, 9). AAV has very high seroprevalence (40-70% of

human population harbor neutralizing antibodies, depending

upon the AAV serotype) (10–12). This is one of the motivations

behind the search for novel naturally occurring variants, and the

quest to create new bioengineered variants, that could evade the

pre-existing immunity present in the majority of the population
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and thereby allow the widespread use of AAV-based vectors.

Bioengineering approaches are also being undertaken in an effort

to increase AAV’s transduction efficiency and to enable

transduction of specific cell types in vivo. Such targeted

transduction would increase both safety and efficiency, since

limiting transduction to only the desired target cell would avoid

transduction of undesirable cells/tissues (e.g., germline) and

would ensure the entire administered dose of vector was

delivered to the target cells, thus maximizing clinical benefit.

Such targeting would also have the added safety benefit of being

able to achieve therapeutic levels of transduction of the target

cells/tissues with a lower dose of vector.
Engineering AAV

When constructing a recombinant AAV vector to be used

for gene delivery, the rep and cap genes are removed and

replaced with a cassette containing the therapeutic transgene

and a promoter to drive its expression, while the ITRs are

conserved, since they are essential for vector genome

packaging (4). Importantly, removal of the rep gene renders

AAV replication-defective, greatly increasing the safety of AAV.

Selection of the appropriate capsid and promoter are the first

steps to designing an effective AAV-based gene delivery vector.

Since the capsid protein determines both the tropism, and

thereby which cells can/will be transduced, and the antigenic

profile of the vector (and its potential for being eliminated by

pre-existing immunity or triggering an immune response) (9),

bioengineering strategies have focused primarily on genetically

modifying the capsid protein to achieve desired characteristics

for the specific disease setting being targeted (4). To-date,

hundreds of natural and bioengineered AAV variants have

been reported, and tremendous progress has been made

towards enhancing tropism for specific cells/tissues and for

evading pre-existing anti-capsid immunity (13–18).

The promoter provides the opportunity to restrict expression

of the therapeutic transgene to certain tissues, or even to specific

cell types. Choosing a tissue-specific promoter avoids off-target

expression of the transgene in undesirable cells, e.g., antigen-

presenting cells (APCs) that could lead to an immune response,

elimination of transduced cells, and loss of therapeutic effect. On

the other hand, the use of a promoter that has been engineered to

drive high-level constitutive expression, such as CAG, CBA, and

CMV, or simply including the appropriate enhancer regions, can

enable higher-than-normal expression of the transgene, allowing

one to achieve a therapeutic effect from even a small number of

transduced cells. Each choice has its own pros and cons. More

than 25 trials have used tissue-specific promoters (5), yet these

studies have shown that off-target effects still occur, due to

“leakiness” of the promoter, allowing its promiscuous expression

in non-target cells. Moreover, these studies have demonstrated the

use of a tissue-specific promoter also results in a marked reduction
Frontiers in Immunology 03
in the effective dose of vector that reaches the target tissue, due to

transduction of cells that will not contribute to expression of the

transgene. While the ability to manufacture larger quantities of

AAV has enabled the use of native promoters to drive more

physiologically-relevant/appropriate expression of the therapeutic

transgene, recent preclinical studies have suggested this approach

can lead to severe toxicity due to the high vector copy number

needed to achieve sufficient expression (19). As a result, the trend

has been to rely on strong, constitutively active promoters, with

45% of trials between 2015 and 2019 employing the CAG, CBA, or

CMV promoters discussed above (5). The use of one of these

promoters does not guarantee success, however, as the high

expression levels of such promoters often triggers their

transcriptional silencing by methylation. In addition,

supraphysiologic levels of expression of the transgene often

come at the expense of reduced expression of endogenous genes

that are forced to compete for limiting resources within the cells,

leading to cell stress (6).

In addition to altering the capsid and the transgene cassette,

the design of the vector backbone also provides an engineering

opportunity to improve transduction efficiency. AAV naturally

exists in a form with a signle-stranded DNA genome. After

entering the target cells, the single-stranded AAV genome, upon

reaching the nucleus, relies on the host cell’s machinery to be

converted to a double-stranded form that can be transcribed. This

conversion is a rate-limiting step in the transduction process. To

attempt to overcome this bottleneck, researchers have developed

what are known as “self-complementary” AAV vectors, the

genome of which is double-stranded by design. As such, the

vector genome undergoes transcription immediately upon nuclear

entry, thereby increasing transduction efficiency and also

decreasing the dose of vector required (20). This increase in

transduction efficiency does not, however, come without a cost.

By rendering the AAV genome self-complementary, the carrying

capacity of resultant AAV vector is halved, severely limiting which

transgens can be delivered by these vectors. In addition, some

studies employing self-complementary AAV vectors have

reported an increase in the innate immune response following

transduction (21, 22). At the present time, the majority of the

clinical trials are using AAV vectors with a single-stranded

genome (6).
Hurdles to be overcome with AAV
gene delivery

The simplicity of its genome organization, which facilitates

engineering and production, its ability to mediate sustained

transgene expression in a variety of quiescent cells, its wide

range of tissue tropism and high efficiency of transduction, and

its established safety profile all contribute to the extensive

application of AAV in gene therapy (23, 24). Despite its many

advantageous properties, however, it is also important to
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acknowledge aspects of AAV that hinder its more widespread

clinical use in gene therapy trials and pose potential risks to

subjects receiving AAV vectors.
Fron
(i) Immunogenicity/seropositivity: Two of the major

hurdles to the use of AAV-based vectors in clinical

gene therapy are its high degree of immunogenicity

and the fact that, depending upon the AAV serotype

in question, 40-70% of people in the general population

harbor neutralizing antibodies (NAbs), depending upon

the AAV serotype (11, 12, 20, 25, 26). At the present

time, clinical trials avoid the issue of pre-existing

immunity to AAV by simply excluding any patients

that harbor NAbs to the serotype of AAV being used as a

vector. As a result, the vast majority of patients who

could benefit from gene therapy are ineligible to receive

this potentially life-saving treatment. Even in patients

with no pre-existing immunity, a single injection of

AAV can trigger a robust immune response to both

the AAV capsid and the transgene product, causing cell-

mediated elimination of transduced cells, loss of

therapeutic effect, and potentially lead to toxicity in

the transduced tissue (27–34). To prevent this

deleterious cascade arising from T cell-mediated

immunity, many AAV clinical trials pre-emptively

administer a course of corticosteroids to the patients

(32). However, novel strategies are constantly being

developed (14, 16) to overcome these issues. These

strategies run the gamut, starting at the design level

with mutating critical antigenic sites on the capsid to

generate novel AAV variants with no seroprevalence, all

the way to strategies that are only incorporated at the

time of AAV administration, such as chemical shielding

of AAV antigens, elimination of antibody-producing

cells, or removal of NAbs through plasmapheresis or

using the IgG-degrading enzyme, IdeZ (35). While

promising, these approaches are still in early stages of

development and will require extensive preclinical

testing and validation before clinical implementation

can be considered.

(ii) Genomic integration: Wild-type AAV integrates into a

specific locus (AAV-S1) on human chromosome 19,

through actions of the rep gene (36–38). Unlike wild-

type AAV, replication-defective AAV vectors lack the

rep gene, and as such the majority of genomes that

entered the target cell were assumed to remain episomal

(39). However, studies over the past 2 decades have

provided evidence that host (both animal and human)

cell DNA-modifying enzymes can mediate genomic

integration of AAV vectors, albeit at very low

frequency (39–41). The extremely low incidence of

genomic integration in these studies provided a sense
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of security with respect to the potential for AAV vectors

to cause genotoxicity. The low likelihood of this risk

being of concern for human patients receiving AAV

vectors was further supported by a number of studies

performed in juvenile and adult mice, all of which

demonstrated a lack of AAV-induced mutagenesis in

large cohorts of animals followed for relatively long

times (23, 42–46). Unfortunately, however, the story

proved to be very different when therapeutic, and even

reporter-encoding, AAV vectors were administered to

neonatal (1-2 day-old) mice, with some studies

reporting AAV-induced hepatocellular carcinoma

(HCC) in 100% of recipients (47–54). Interestingly,

the majority of the AAV integrations that were present

in the tumors were in the Rian (RNA imprinted and

accumulated in nucleus) locus, which is orthologous to

the human long non-coding RNA MEG8, increased

expression of which has been correlated with poor

prognosis in HCC patients (55). Needless to say, these

findings raise significant concerns for human safety.

Although to-date no AAV-induced genotoxic events

have been confirmed in humans, these findings

highlight the need for more in-depth studies in

human-based systems to better determine the true risk

of AAV-mediated genotoxicity in human patients, and

the impact that the patient’s age may have on this risk.

This need is further underscored by an elegant 10-year

follow-up of AAV-mediated FVIII expression in adult

dogs, which detected >1700 integration events and

evidence of clonal expansion in liver tissue (56) and

the recent demonstration that a powerful a new

multiplex linear amplification-mediated polymerase

chain reaction (M-LAM-PCR) assay was able to

identify integration events and persistence of these

integrated AAV genomes in both nonhuman primate

tissues and human clinical liver biopsies post-AAV gene

therapy (57, 58).

(iv) Tropism/Vector Biodistribution: Given these afore-

detailed limitations and the lack of data in human-

based model systems that accurately recapitulate

normal physiology, it is not surprising that AAV

clinical GT trials are experiencing immunological and/

or inflammatory responses and levels of transgene

expression that are often lower than what was

expected based on preclinical studies (31, 59–64).

Another issue that has hampered the translation of

AAV vectors from animal models into human patients

is the marked species-species differences that exist in

AAV vector tropism (65), which precludes extrapolation

of results between species and raises the critical question

of how accurately even the best animal models can

predict tropism/vector biodistribution, transduction
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efficiency, and eventual treatment success in humans.

AAV’s tropism is governed by the specific molecular

interaction between the viral capsid and moieties on the

surface of the cell, with the interactions differing by

serotype (66). Cellular uptake occurs after initial binding

to moieties such as glycans and proteoglycans that are

ubiquitously expressed in cells (67). This is followed by a

series of secondary protein interactions which facilitate

internalization (66–71). While species-species variation

in tropism can be explained, in part, by differential

expression of these receptors on animal vs. human

cells, it has also been observed to be due to differences

in capsid sequence which could vary the processing of

the virus after its entry into the cell, thereby affecting

eventual gene transfer (72). For example, studies have

shown serotype-dependent difference in hepatic

transduction efficiency may not always be due to the

ability of different serotypes to enter hepatocytes but

may instead be due to variation in post-entry processing

such as translocation to the nucleus and conversion of

single-stranded genome to double-stranded (59, 72–75),

again emphasizing the importance of performing studies

in the specific human tissues and cell types to be targeted

to be able to draw meaningful conclusions and

accurately predict clinical outcome. Since it is difficult

to obtain multiple biopsies from patients in the clinical

setting, especially those with hemophilia, which account

for a substantial percentage of the ongoing trials,

information on tropism and vector biodistribution has

not been reported in detail in any published clinical

trials to-date (29–32, 76), leaving this critical safety and

efficacy issue unanswered.
In an effort to fill this void, Lisowski et al. (77) and others

(78, 79) have made use of FRG® mice whose liver was partially

repopulated with human hepatocytes to evaluate the clinical

utility of natural and genetically-engineered variants/serotypes

of AAV These studies led to the identification of two variants

that transduced human hepatocytes with high efficiency in

vivo, AAV5 and AAV-LK03, both of which are currently being

used in liver-directed clinical GT trial for hemophilia A. These

data represent an important first step to defining the relative

efficiency with which various AAV serotypes transduce human

liver. However, because the only humanized tissue was the liver

(specifically, only the hepatocytes) (77, 78), it is impossible to

derive information on the specificity of these AAV serotypes

for hepatocytes, i.e., the true tropism in humans, only the

efficiency with which they transduce these cells when there are

no other human cells to compete for binding. As such, this

model system leaves the critical questions of off-target effects

and dilution of effective vector dose from uptake by non-target

cells unanswered.
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Novel models to combat hurdles of
AAV gene therapy

Although animals and humanized animals provide invaluable

model systems for preclinical evaluation of gene therapy-based

treatments, their failure to accurately recapitulate the myriad

nuances of human responses to gene therapy has often led to

unexpected outcomes, with respect to both efficacy and safety,

during clinical trials. These shortcomings highlight the need to

develop novel preclinical models that can more accurately

recapitulate human physiology and genetics to replace, or at

least supplement, existing models in preclinical studies,

providing information of direct human relevance. A similar

concern exists in the pharmaceutical world, where even the best

animal surrogates often fail to accurately predict efficacy and

toxicity of new drugs (80–83). To overcome the inherent problems

with extrapolating animal data to humans, the WFIRM-led

X.C.E.L. program created an integrated microfluidic human

“body-on-a-chip” (hBOAC) platform, in which up to 12

different human 3D organoids retain normal physiology/

functionality for weeks to months, that can be used to screen

new drugs, define effects of environmental toxins/stressors, and

test countermeasures (84–94). This novel system was able to

predict toxicities of former FDA-approved drugs that were

recalled due to unexpected human toxicities, sometimes only

years after market release (84, 85, 94), demonstrating the

immense potential of individual 3D human organoids and the

integrated hBOAC platform to provide information that is

otherwise not attainable with current animal models, and thus

fill this critical knowledge gap and enable more direct translation

of preclinical findings with new pharmaceuticals into clinical

success. In the following sections, we will discuss how we

envision this promising platform being adopted for use in gene

therapy studies to enable more accurate predictions of the human

response to gene therapy with respect to transduction efficiency,

tissue and cellular tropism, and immunogenicity, as well as serving

as a model in which to study the incidence and genomic location

of AAV vector integration events in the context of an all-

human system.
3D organoids

Organoids, while fairly new to the fields of biomedical and

pharmaceutical research, originated several decades ago in the

developmental sciences, born from the need for a model that

could allow the study of the complex process of organogenesis

(95). Organoids are three-dimensional (3D) structures derived

from tissue-specific cells that self-organize and undergo

spatially-restricted lineage commitment to recapitulate the

structural characteristics, cytoarchitecture, and functional

properties of the organ/tissue from which they are derived (96,
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97). For example, human intestinal organoids have been shown

to carry out key functions of the gastrointestinal tract including

establishment and maintenance of an appropriate epithelial

barrier, mucus production, absorption, and secretion of

biomolecules (98). As detailed in the informative review by

Hofer et al. (97), organoids have now been developed,

representing all of the major human tissues. A critical

scientific advance that greatly facilitated the fabrication of

various organoids possible was the advent of induced

pluripotent stem cells (iPSCs), which allowed generation of

various highly-specialized cell types (99) which would

otherwise be inaccessible. The availability of these tissue-

specific cells allowed fabrication of more complex organoids

that more closely replicate the anatomy and physiology of the

native tissue. Moreover, iPSC technology has made possible the

generation of patient-specific and disease-specific organoids,

opening whole new avenues in research and drug testing.

Aside from iPSCs, cells used to fabricate organoids include

embryonic stem cells, cell lines, and adult stem/progenitor

cells, and tissue-specific primary cells derived from tissue

samples. To create organoids, cells are usually combined

together in physiologically relevant percentages within a

protein-rich medium that resembles the composition of the

natural extracellular matrix (ECM) of the specific tissue to be

modeled. The organoids can either be formed through self-

aggregation to yield spheroids or by immobilizing the cells

within a hydrogel matrix. The architectural complexity can be

further increased by fabricating in a system that allows

stratification, e.g., including a membrane to create an

air-liquid interface in the case of lung organoids.
Microphysiological systems (MPS) and
organ-on-a-chip

MPS are microfluidic systems fabricated at a biologically

relevant scale with the application of fluid flow and mechanical

stressors to create a dynamic environment that more accurately

recapitulates the physiology and microenvironment of the native

tissue. The inclusion of these additional makes it possible to

generate biomolecular gradients and to create mechanical cues

such as shear stress and contraction/relaxation, allowing them to

reproduce more of the physiological subtleties that are unique to

each tissue than conventional static cultures. By combining

MPS-based models and organoids, one obtains what are

referred to as an “organ-on-a-chip”; integrating multiple

distinct organ-on-a-chip devices together and enabling tissue-

to-tissue communication via shared circulating media yields

what has been dubbed a “body-on-a-chip”. These systems have

proven to be very powerful preclinical models for testing

pharmaceuticals, reproducing such complex integrated multi-

organ physiologic responses as metabolism of a drug by the liver,

with the resultant metabolites then trafficking to other organs
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and exerting toxicity (84, 93, 94, 100). Their small size/scale

allows for better control of the microenvironment and also

requires minimal resources. The immense promise of these

organ-on-a-chip and body-on-a-chip platforms as preclinical

tools is eloquently stated in the recently published report by

Marx et al. (100), in which the authors detail a roadmap to

regulatory acceptance of organ-on-a-chip models and highlight

the potential for such systems to supplement and, perhaps,

ultimately replace animal models for preclinical testing of drug

efficacy and toxicity. Organ-on-a-chip systems are also being

integrated with artificial intelligence platforms, further

increasing the predictive power of these models and preclinical

data derived from them. It is envisioned that the organ-on-a-

chip platforms will reach the necessary qualification level within

the next decade and will dramatically decrease the use of animal

testing. Currently, the success rate for drugs in clinical

development is a meager 15%, due in large part to the

discrepancies seen between results in an animals and those

observed when the drug moves to clinical trials. It is

anticipated that the adoption of these all-human organ-on-a-

chip models in the preclinical drug development pipeline will

greatly improve this success rate, enabling safer and more

effective drugs to enter the market at a lower cost to patients

who need them. Although originally developed for drug

screening, in the next sections, we will highlight how we

envision the field of AAV gene therapy can also greatly benefit

from implementing these organ-on-a-chip platforms.
Technical considerations for
adapting organ-on-a-chip and
body-on-a-chip models to study
AAV gene therapy

The tremendous progress in biofabrication techniques has

enabled the development of body-on-a-chip platforms and their

use as preclinical models to probe human response to therapies

to advance at an exponential rate in recent years (93, 101–104),

and we foresee it only being a matter of time before these systems

are extensively applied to gene therapy studies, because of their

unique ability to provide answers to critical questions that elude

even the best current models (Figure 1). Looking specifically at

AAV-based gene therapy studies, it is important to identify

technical considerations that are relevant to gene delivery. In

general, a body-on-chip platform consists of 3 key components:

(i) organoids formed with a normal repertoires of cell types in

physiologically relevant frequencies; (ii) a universal media that is

able to support all cell types present in each of the different

organoids; and (iii) microfluidics and microfabrication

techniques that enable physiological interaction of multiple

organ compartments and create the necessary physical/

chemical cues. In addition, it is often desirable to incorporate
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physical, biochemical, and optical sensing modalities to facilitate

the performance of real-time, nondestructive analyses on the

various organoids and their shared “circulation” (97). It is also

important to consider possible interactions of AAV with any of

the materials used to fabricate the device. For example,

polydimethylsiloxane (PDMS) is a widely employed polymer

with many attractive properties for microfluidic device

fabrication, such as biocompatibility, low toxicity, optical

transparency, elastomeric properties, gas permeability, ease of

fabrication, and low manufacturing costs (105, 106).

Unfortunately, it suffers from serious protein adsorption

problems due to its hydrophobic nature (106, 107), a property

that has the potential to result in binding of proteins of the AAV

capsid and thereby interfere with transduction. Therefore, to

adapt existing microfluidic “on-a-chip” platforms for studies

employing AAV, it will likely be necessary to either opt for an

entirely different material or to develop a suitable anti-fouling

surface-treatment to avoid vector adsorption to the PDMS.

Luckily, such treatments are currently an area of very active

investigation (106, 108).

As a completely human system, the organ-on-a-chip and

body-on-a-chip platforms have the potential to accurately

predict transduction efficiency of specific human cell types,

tropism/selectivity of transduction when simultaneously

presented with multiple human tissues/cells, true cell-

specificity of promoters within human tissues/organs, and the

incidence and precise genomic location of AAV insertion events

within the human genome. There are also certain inherent
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design aspects of these platforms that are beneficial for gene

therapy studies. For example, microfluidic devices function at a

very low volume, and therefore, high vector-to-cell ratios/

multiplicity of infection (MOI) can easily be achieved without

the need for large quantities of viral vector. The small size also

allows for high-throughput screening of vectors by connecting

an array of devices, which increases the power of analysis with

minimal resources (109, 110). The compartmentalization/

stratification allows exploration of the impact different routes

of gene delivery, e.g., systemic administration vs. direct injection

into a specific target tissue, has on the efficiency and specificity of

vector delivery to the desired target organ.

Although many sources of cells can be employed to create

the organoids in the body-on-a-chip, iPSCs have some

advantages with respect to gene therapy, as their use not only

allows fabrication of a body-on-chip in which all tissues and all

cells possess an identical genetic makeup, but it also provides the

opportunity for rapid high-throughput screening of a diverse

population (111), and it allows the derivation of patient-specific

cells that can be used for disease modelling and developing

personalized approaches to gene therapy that are optimized for

the specific patient to be treated (103, 112). Due to the inability

to biopsy most tissues in human patients who receive AAV-

based gene therapy, insertion event data is simply not available

for human subjects, with the exception of a single study (57).

Human body-on-a-chip platforms provide the unique

opportunity to define patterns of AAV genome insertion and

answer thew critical question of whether the frequency and
FIGURE 1

Human-relevant Preclinical Model to Accelerate AAV Gene Therapy Studies. Representation of critical components constituting body-on-a-chip
platform that can be used to assess outcome of AAV gene therapy in the context of a human system. Addition of an immune component is
essential to increase the predictive value of a model to study viral gene therapy.
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pattern of genomic integration vary as a function of the

recipient’s age and the tissue that is targeted, as has been

observed in mice (58). The use of patient-derived cells to

create the body-on-a-chip would also make it possible to

assess the specific patient’s risk of insertional mutagenesis. No

other system is currently available that can screen for patient-

specific genotoxic events and provide invaluable data concerning

the underlying molecular mechanisms governing any observed

patient-to-patient differences.

Since pre-existing anti-capsid immunity and the development

of an immune response to the vector and transgene post-gene

delivery are a major hurdle limiting more widespread clinical use

of AAV vectors, the inclusion of an immune component to the

body-on-a-chip would tremendously increase the utility of this

platform and markedly enhance its preclinical value. In order for

an AAV vector to successfully achieve long-term transgene

expression in vivo, key immune-related roadblocks must be

overcome: (i) the presence of pre-existing neutralizing

antibodies (NAbs) against the capsid, the presence of which can

markedly reduce transduction; (ii) triggering of an adaptive

immune response and NAbs by the capsid, which can prevent

future re-administration; (iii) triggering of a cytotoxic T

lymphocyte (CLT)-mediated response by the capsid, which can

lead to the elimination of transduced cells and loss of therapeutic

effect; and (iv) the transgene product can induce B cell- and T cell-

mediated responses that can lead to generation of antibodies and

CTLs against the transgene product (113). While it was initially

supposed that innate immunity would be transient and

inconsequential for AAV-mediated gene therapy, it is now

appreciated that both the innate and adaptive arms of the

immune system pose formidable barriers to successful AAV

(113). Despite their critical role in the human response to gene

therapy and the ultimate success or failure or such treatments,

immune components have thus far not been addressed in any

detail in organ-on-a-chip or body-on-a-chip systems. Being

hematopoietic in nature, all immune cells are derived from

hematopoietic stem/progenitor cells (HSPC) that reside within

the bone marrow. We and others have created human bone

marrow-on-a-chip systems to gain insight into the complex

process of normal and malignant hematopoiesis in an

all-human system (86, 114–119). Despite being very new, these

platforms have already provided an unprecedented view into the

differing interactions of healthy and malignant human HSPC with

specific cells of the various bonemarrow niches, often in real-time,

and molecules involved in these processes. However, they have

not yet been utilized to study immune ontogeny, likely due, at least

in part, to the need for T cell precursors to traffic to and mature

within the thymus to achieve full function, and B cell precursors to

mature within germinal centers in secondary lymphoid organs

such as the lymph nodes, ileal Peyer’s patches, and the spleen. As

such, a platform containing bone marrow, thymus, and one of the

secondary lymphoid tissues would be needed to study T cell and B

cell development and function “on-a-chip” – an accomplishment
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that is likely going to take quite a bit of work tomake a reality. As a

first step towards this goal, Seet et al. described (120) a serum-free,

artificial thymic organoid (ATO) system that supports the efficient

and reproducible in vitro differentiation and positive selection of

conventional human T cells from HSPC. Moreover, they showed

that ATO-derived T cells exhibited mature naive phenotypes, a

diverse T cell receptor (TCR) repertoire and TCR-dependent

function, and that ATOs initiated with TCR-engineered HSPC

produced T cells with antigen-specific cytotoxicity. While these

ATOs provide a robust tool for studying human T cell

differentiation, they have yet to be incorporated into an on-a-

chip platform, precluding their integration with other

hematopoietic tissues. A further major step was very recently

made towards achieving at least part of a functioning human

immune system on-a-chip by Ingber and colleagues (121), who

showed that primary human blood B- and T-lymphocytes

autonomously assemble into ectopic lymphoid follicles (LFs)

when cultured in a 3D extracellular matrix gel, and that B cells

in these germinal center-like LFs exhibit plasma cell differentiation

upon activation. Most excitingly, the authors demonstrated that

when these human LFs-on-a-chip were inoculated with

commercial influenza vaccine, plasma cell formation and

production of anti-hemagglutinin IgG was observed, and a

repertoire of cytokines similar to vaccinated humans was

secreted over clinically relevant timescales.

It is clear that ongoing advances in the organoid field will one

daymake a human immune system-on-a-chip a reality (122). In the

meantime, however, it is important to note that most tissues possess

an intrinsic immune surveillance component in the form of tissue-

resident antigen presenting cells (APC) such as dendritic cells (DC)

and macrophages. One of the first steps in detection of foreign

entities by the innate immune system is the recognition of structural

motifs called pathogen-associated molecular patterns (PAMPs), by

pattern recognition receptors (PRRs) expressed on APC. Thus,

while it is not yet possible to incorporate an entire functioning

immune system, simply including the appropriate APC in a given

organoid/tissue-on-a-chip dramatically improves the predictive

power of these models, as activation of any of the innate

immunity pathways can readily be detected through differential

expression of genes involved in innate immunity. For example, the

liver-on-a-chip platform we developed includes Kupffer cells at a

physiologically appropriate frequency to enable investigation of

immune and inflammatory responses within this system (94).
Current application of 3D organoids
and MPS platforms to study AAV
gene therapy

While organoids and MPS have already been used extensively

in studies focused on drug testing, disease modelling, and

personalized medicine (reviewed in (103)), to-date only a fairly
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limited number of reports have employed organoids to study

AAV gene therapy (123–145). Most of the human organoid-based

AAV studies thus far have been performed on retinal organoids

(123–131). The initial focus on organoids designed to model the

human retina can likely be attributed to several factors. The first of

these is the eye’s presumed immune-privileged status, which has

allowed effective in vivo gene transfer to this organ and at least

partial phenotypic correction of several different defects with very

minimal to no immune reactivity in both preclinical and clinical

studies (146–148), although more recent reports have questioned

the true immune-privileged status of the intraocular space and the

lack of an immune response following AAV delivery to the eye

(149). A second factor driving the relatively large number of

studies exploring AAV gene delivery to the retina with human

organoids is the availability of well-established in vitro models,

many of which are comprised of all the major cell types in the eye

and have the ability to build functional synaptic connections and

recapitulate photosensitivity (123–131). A small number of

studies have also been performed with AAV vectors in human

cerebral organoids to determine the optimal capsid for achieving

efficient transduction and transgene expression within the human

brain, to develop novel means of combatting latent HIV infection

within CNS glial cells, and to test the ability of AAV-based

treatment to provide phenotypic correction in the setting of

genetic diseases that impact the CNS (132–136). Lung and gut/

intestinal organoids have also been utilized to successfully identify

AAV serotypes that yield optimal transduction in the respective

tissue, to create and test chimeric AAV/Bocavirus vectors, to test

AAV/RNAi-based treatments for SARS-CoV-2, and to test the

ability of AAV vectors to correct the cystic fibrosis phenotype,

comparing results obtained in human organoids to those in CF

mice (137–140). Organoids of the human kidney have also been

employed to test the ability of a novel synthetic AAV vector to

achieve efficient gene transfer to the mesenchymal cells of this

organ (145). We and others have begun using human liver

organoids to define the basic biology, therapeutic efficacy, and

potential toxicity of liver-directed AAV gene delivery (141–144)

(more detail appears in a subsequent section below). Collectively,

these studies have employed human organoids to answer various

questions regarding AAV biology and behavior in a human

system, and they have provided valuable information regarding

the expression of various AAV receptors and the transduction

efficiency of different AAV serotypes/engineered variants. They

have also begun to define the transduction pattern in organoids

comprised of heterogeneous cell populations (vector tropism) and

the expression profile and localization of transgene product

(thereby testing the true selectivity of various “cell-specific”

promoters), and they have explored some of the mechanisms of

cell attachment of AAV vectors to different cell types within these

human tissues. These studies have also used organoids to validate

animal study outcomes in an all-human setting and to test novel

approaches to gene delivery/editing to target infectious agents

such as HIV and COVID-19 (132, 139). By using iPSCs, either
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editing, to fabricate these organoids, investigators have provided

critical proof-of-concept for the value of using organoids to model

a specific disease, e.g., retinitis pigmentosa (127), CRX-Leber

congenital amaurosis (131), and lysosomal b-galactosidase
deficiency (135), and test the therapeutic effect of AAV-

mediated gene correction, often in a patient-specific, i.e.,

personalized medicine, setting.

Surprisingly, despite the rapid transition from static

organoids to organ-on-a-chip and body-on-a-chip platforms in

drug-based studies, organoid studies investigating AAV gene

delivery have thus far been limited to individual 3D organoids in

static conditions with the notable exception of the recent report

by Achberger et al. (150), in which 3D human iPSC-derived

retinal organoids were incorporated into a dynamic

environment in a microfluidic device to create a retina-on-a-

chip, fabricated with more than seven different essential retinal

cells. The microfluidic device enabled not only the incorporation

of a dynamic environment, but also a dual chamber setup, one

housing the organoids and the other acting as vasculature. These

two chambers were separated by a membrane barrier to protect

the organoids from shear force. The compartmentalization and

vasculature-like perfusion of the system enabled a physiological

subretinal-like injection of the AAV particles and a nutrient

supply via a choroidal-like vasculature. Seven variants of AAV

were characterized for cell tropism and transduction efficiency,

with the optical accessibility of this novel platform providing the

opportunity for in situ live-cell imaging. This study represents

the first time a human iPSC-derived organ-on-a-chip was

utilized to test transduction efficacy of AAV gene therapy

using a highly translational route of administration, and as the

authors convincingly argue, the presesented data demonstrate

the immense potential of human organ-on-a-chip (and

ultimately body-on-a-chip) models as the next generation of

screening platforms for future gene therapeutic studies.

Another key area in AAV biology and AAV-mediated gene

transfer for which organoids and tissue-/body-on-a-chip platforms

are ideally suited is the identification of existing AAV serotypes or

the engineering of novel AAV capsid variants that enable passage of

AAV across biological obstacles such as the blood-brain-barrier

(BBB) and the pulmonary epithelial barrier (PEB). As many

diseases could benefit from efficient delivery of AAV vectors to

the brain or the lung, the identification of AAV serotypes/variants

that can efficiently cross the BBB or PEB would have a substantial

clinical impact. Human brain organoids that accurately model the

functionality of the BBB have already been developed and used

extensively to study the ability of therapeutics to access the central

nervous system (89, 151–155), to better understand alterations to

the BBB that occur in various disease settings and during infection

and the neuroinflammation that ensues due to BBB disruption (89,

153, 156–162), to study tumor metastasis (163–168), to examine

receptor-mediated antibody transcytosis (169–171), and to develop

and test novel nanoparticles for their ability to transit the BBB (172,
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173). Similarly, lung organoids have also been used to study

epithelial barrier function under normal homeostasis and in

response to infection, exposure to nanomaterials, environmental

toxicants, and small particulates, as well as for screening of new

pharmaceuticals (174–185). Despite the fairly widespread use of

organoids and tissue-/body-on-a-chip systems to study barrier

function and its impact on health, disease, and pharmacological

intervention, the use of these systems to explore AAV’s ability to

transit these key biological barriers represents a highly promising,

but is as-yet unexplored, avenue of research.

To our knowledge, we are the only group to-date to use

organoids to begin to study the human immune response to

AAV vectors. These studies, which are still in the early stages,

utilized human liver organoids comprised of all major cell types

present in the human liver in physiologically relevant frequencies:

78% human primary hepatocytes, 2% biliary cells, 5% hepatic

stellate cells, and 5% endothelial cells, and included 10% Kupffer

cells, enabling the evaluation of innate immune responses.

Importantly, these liver organoids recapitulate the function of the

native liver – hepatocytes express p450 reductase and secrete serum

albumin, are tightly interwoven with stellate cells expressing

vimentin, and exhibit microvilli, and bile canaliculus-like

structures form within 7 days, demonstrating a rudimentary

biliary system. Moreover, these organoids metabolize drugs,

respond to inflammatory stimuli by initiating fibrosis and

steatosis, and they demonstrate acetaminophen-induced toxicity

that is reversed by its clinical countermeasure N-acetyl cysteine (84,

92–94, 186, 187). Based on the accuracy with which it recapitulates

in vivo biology and function, we hypothesized that these liver

organoids could provide a unique and powerful system in which

to define the cellular, molecular, and functional impacts of

transduction of the human liver with AAV3b and AAV5 to

model ongoing clinical gene therapy trials using these serotypes

of AAV to treat hemophilia A (188, 189), and to determine the true

tropism of these serotypes in this all-human system. Our results to-

date have shown the utility of this human liver organoid platform to

determine the cellular tropism, transduction efficiency, and
Frontiers in Immunology 10
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induce inflammation and innate immune response following liver-

directed gene transfer (142). Studies are currently ongoing to

transition to a body-on-a-chip platform with a simulated

circulatory system to better replicate the systemic in vivo AAV

gene delivery being employed in hemophilia A gene therapy clinical

trials and to incorporate the bone marrow-on-a-chip we have

developed (4) and either the lymphoid follicle (LF)-on-a-chip

described by Goyal et al. (121) or the tonsil organoids Wagar

et al. (190) used to characterize the varying response donors

with differing immune status (vaccination status, age,

immunosuppressive state, etc.) exhibited to influenza, which we

predict will greatly enhance the amount and quality of the data

concerning the immune response to AAV that can be garnered

from this platform.

Discussion and future directions to
further improve preclinical
AAV studies

The objective of this review has been to provide an overview

of AAV gene therapy, to underscore its immense therapeutic

potential, and to discuss the hurdles that currently limit its more

widespread application to the correction of genetic diseases in a

larger percentage of patients who would benefit from such

intervention (Table 1). We highlighted how the lack of robust

preclinical models that can accurately recapitulate human

biology and thus predict clinical response is one of the main

limitations that needs to be addressed. To progress from this

impasse, we discussed how 3D organoids, MPS, and organ/body-

on-a-chip platforms can sere as powerful alternatives to current

preclinical models and how they have already begun to do so in

the realm of pharmaceuticals. To support this tenet, we provided

examples of successful application of these techniques to answer

questions that animal models have failed to adequately and

accurately address. In addition to the advantages stemming from
TABLE 1 Strategies of studies employing organoids and microphysiological systems to overcome the hurdles of AAV gene therapy.

Hurdles of AAV gene therapy Novel models to overcome AAV gene therapy hurdles (Organoids and
microphysiological systems)

References

Potential Immunogenicity • Gene expression profiling to assess activation of innate immunity pathway (142)

High Seroprevalence • Screening/identification of novel variants using organoid platform (125, 128–130, 132, 134, 137,
138, 144, 150)

Accurate Prediction of Transduction
Efficiency/Tropism

• Physiologically relevant transduction efficiency prediction with models that are entirely
human compared to “humanized” animal models
• Cell-type-specific immunostaining to define tissue/cell tropism

(123–130, 132–140, 142–144,
150)

Genomic Integration • High-throughput integration site analysis to determine frequency/loci of inserts and
clonal dominance

(142)

Toxicity • Viability
• Tissue-specific toxicity assessment
(Liver – ALT/AST, fibrosis, etc.)

(128, 133, 142)
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their being an “all-human” model, we also stressed the ability of

these on-a-chip systems to enable the creation and exploration

of disease-specific and/or patient-specific models for

personalized medicine and the further value such options

brings to these models. We also provided a brief list of

technical considerations to be applied in the context of

assessing gene therapy using organ/body-on-a-chip platforms,

including the need to incorporate a functional immune

component, which would exponentially increase the value of

these models. Despite the many unique advantages that

organoids and tissue-/body-on-a-chip platforms possess

compared to traditional 2D culture systems and animal

models, it is important to acknowledge that they are not

without limitations. The first of these, as we have discussed,

pertains to the need to integrate a more physiologically relevant

and functional immune component to better model the in vivo

setting and accurately predict the potential for an immune

response and/or inflammatory reaction following delivery of a

given AAV vector. Second, while the use of microfluidic allows

the organoids/tissue chips to communicate with one another and

approximates a very primitive circulatory system, to truly model

the human body, it will be necessary to create media that

accurately models the components of human serum and to

devise a means of coating the microfluidic channels with

appropriate endothelial cells to recreate the important

biological effects the reticuloendothelial system exerts on

vectors and other agents that are administered systemically.

The third issue that bears mention is the source of cells used

to create the organoids/tissue-on-a-chip. While iPS cells are

certainly convenient and enable the investigator to generate

essentially any cell type that is needed, one must very carefully

interpret results obtained with iPS-derived cells, as they often

possess a phenotype that is developmentally immature and may

not accurately model an adult patient (191–194). In addition, the

source of cell used to generate the iPS cells can also exert an effect

on the phenotype and function of the subsequently differentiated

tissue-specific cells as a result of the irreversible epigenetic

“memory” each cell type possesses (195–198). Even when the

appropriate cell types are used to create the organoid/tissue-on-

a-chip, the most complex physiological aspects and cell-cell

communication networks of certain tissues (the brain for

example) will likely be almost impossible to recapitulate with

complete accuracy in vitro. As these technologies continue to

mature, however, it is safe to assume that the fidelity with which

these systems mirror their in vivo counterparts will steadily
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improve. With these caveats in mind, we hope this review has

served to highlight the immense potential organ-on-a-chip and

body-on-a-chip platforms have to revolutionize preclinical

testing, and that the examples we have provided have

convinced the reader that these systems represent a powerful

translational model that can provide critical information

regarding transduction efficiency, tropism, potential

immunogenicity, and genotoxicity, thus greatly aid in

translating safer and more effective AAV-based gene therapies

to the clinic to treat/cure a wide array of genetic disorders.
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