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1.1 Abstract  

Polygenic risk scores (PRS) are summaries of an individual’s personalized genetic risk for a trait 
or disease. However, PRS often perform poorly for phenotype prediction when the ancestry of 
the target population does not match the population in which GWAS effect sizes were 
estimated. For many populations this can be addressed by performing GWAS in the target 
population. However, admixed individuals (whose genomes can be traced to multiple ancestral 
populations) lie on an ancestry continuum and are not easily represented as a discrete 
population.  
 
Here, we propose slaPRS (stacking local ancestry PRS), which incorporates multiple ancestry 
GWAS to alleviate the ancestry dependence of PRS in admixed samples. slaPRS uses 
ensemble learning (stacking) to combine local population specific PRS in regions across the 
genome. We compare slaPRS to single population PRS and a method that combines single 
population PRS globally. In simulations, slaPRS outperformed existing approaches and reduced 
the ancestry dependence of PRS in African Americans. In lipid traits from African British 
individuals (UK Biobank), slaPRS again improved on single population PRS while performing 
comparably to the globally combined PRS. slaPRS provides a data-driven and flexible 
framework to incorporate multiple population-specific GWAS and local ancestry in samples of 
admixed ancestry. 
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1.2 Introduction 

Since the first genome wide association study (GWAS) published in 2005, GWAS have 

successfully implicated thousands of risk variants across a variety of traits1. While a single risk 

variant may only explain a small percent of a trait’s heritability, a sizable proportion of 

phenotypic variation can be explained by summarizing an individual’s genetic risk for a given 

disease or trait in polygenic risk scores2 (PRS). PRS are typically computed as a weighted sum 

of risk alleles using estimated effects from an external GWAS as weights. These PRS have 

been used3,4 to identify individuals at high risk of disease, improve diagnostic accuracy, and 

allow for tailored personalized treatment for disease risk prediction in complex traits including 

coronary artery disease5,6, type 1 and 2 diabetes7,8, breast cancer9,10, and more11. However, 

PRS fail to capture the full variability expected from heritability estimates while also being 

susceptible to environmental confounding and indirect genetic effects such as assortative 

mating12–14. 

 

Furthermore, performance of a PRS in predicting a phenotype for a target sample can be 

ancestry dependent. In particular, PRS prediction performance decays as genetic divergence 

increases between the target sample of interest and external GWAS15,16. This performance 

decay can mainly be attributable to 1) differences in allele frequencies and 2) differences in both 

marginal and causal effect sizes of variants across populations17. Causal effect sizes 

themselves can differ across populations due to unique environments and demography, though 

recent work in admixed individuals has suggested causal effect sizes are shared across 

populations18. However, even when causal effects are shared, marginal estimated GWAS effect 

sizes can still differ due to differences in linkage disequilibrium (LD) tagging the true causal 

variant. The extent in how LD differs across populations varies along the genome19, prompting 

work in the transferability of PRS across diverse populations to often consider a local approach 
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in combining genetic evidence20,21. Specifically, approaches often model local population-

specific LD patterns in regions to better identify true local risk variants and increase effective 

sample size21.      

 

The ancestry dependence of PRS is further exacerbated in the context of admixed individuals. 

Historically, genetic studies group admixed individuals of varying ancestry proportions into a 

single discrete ancestral label such as “African American” or “Hispanic”. However, the genetic 

ancestry in an admixed sample varies across both individuals and regions prompting a recent 

push to consider ancestry on a continuum rather than as discrete ancestral groups22. In 

admixed individuals, Bitarello and Mathieson showed predictive accuracy of a PRS for height 

using European summary statistics increased linearly with global European ancestry proportion 

across various datasets23. Similarly, Cavazos and Witte showed in simulations a similar linear 

relationship with both European and African summary statistics performing better as the 

proportion of European and African ancestry respectively increased across admixed samples24. 

Such ancestry dependence of PRS in admixed individuals is problematic even if all ancestral 

groups have predictive PRS, as admixed individuals that have most of their genetic ancestry 

from one parental group will benefit more from potential downstream clinical utility of PRS than 

groups with equal contribution from both ancestries. Even developing PRS specifically for the 

admixed group will not ameliorate this problem as such a PRS will only work well for admixed 

individuals with admixture proportions similar to the group mean. While the field of genetics has 

acknowledged and begun making strides in addressing inequity in genomic research25,26, 

development of methods to construct well-performing PRS free of ancestry dependence in 

admixed samples is needed. 

 

To overcome the ancestry dependence of PRS performance using a single population GWAS in 

admixed samples, recent work has proposed methods that leverage GWAS summary statistics 
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from the multiple ancestral populations of an admixed sample. Incorporating GWAS effect sizes 

from multiple populations provides many benefits, including identifying population specific risk 

variants and boosting sample size if risk variants are shared. In admixed African Americans, 

methods have been proposed that 1) consider local ancestry by matching chosen risk variants 

with an individual’s local ancestry at that position23,27 and 2) ignore local ancestry and construct 

a joint PRS as a linear combination of global European and African PRS28. In simulations, 

Cavazos and Witte conducted a comprehensive review of both approaches24. While the first 

approach, deconvoluting ancestry and matching risk variants on population-specific GWAS 

effect sizes, was initially suggested to perform well27, this result failed to consistently replicate 

as shown in Cavazos’ simulations and Bitarello’s real data application24,27,28. Surprisingly, the 

second approach ignoring local ancestry information (linear combination of global European and 

African PRS) was found to efficiently optimize prediction across a range of European ancestry 

quantiles in admixed African American individuals. However, use of global population specific 

PRS ignores the unique local admixture present in any given region within a sample of admixed 

individuals, missing potential population specific risk variants in a region or local GxG 

interactions on a specific ancestral background. Thus, it is possible that performance of local 

population specific PRS (i.e., a PRS using only risk variants in a genomic region and a specific 

population GWAS effect sizes) will vary across admixed individuals.  

 

In this work we propose slaPRS (stacking local ancestry PRS), a novel stacking framework to 

construct admixed PRS for quantitative traits that combines local population specific PRS 

constructed using population specific effect sizes in local genomic regions. Stacking is an 

ensemble machine learning method that aims to optimize prediction accuracy by combining 

separate prediction models29,30. In target samples of a single ancestry, Prive et al successfully 

used stacking to optimize the commonly used clumping and thresholding (C+T) PRS method 

through deriving a linear combination of PRS across all possible parameters, rather than 
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learning a single set of optimal parameters31. Outside of PRS construction, stacking has been 

used in other genetic methods such as the recent REGENIE method for GWAS that improved 

computational efficiency through orders of magnitude by conditioning on the predicted individual 

trait values from combining local polygenic risk predictors32. In our approach, we first divide the 

genome into windows of a predetermined size and in each local window compute population 

specific local PRS using the respective population specific GWAS effect sizes via C+T. In 

training data, we then fit a penalized regression model to combine local population specific PRS 

across the genome to determine unique weights that are used to predict the phenotype in 

testing data. We show in extensive simulations and real data application of admixed African 

Americans and African British that slaPRS removes the ancestry dependence of PRS 

performance present in traditional single-population GWAS PRS and outperforms or compares 

similarly to existing methods in an efficient data-driven process.  
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1.3 Methods 

Consider a sample of N admixed individuals with ancestral contributions from population A and 

B (slaPRS is not restricted to two-way genetic admixture but is assumed here for notational 

simplicity). Let X be the ��� admixed genotype matrix (M is the total number of variants 

genome wide) and Y the ��1 phenotype vector. Let ��� be an ��� matrix denoting the 

haplotype-level local ancestry (����, ����.) of individual � at marker 	. We assume the phenotype 

can be expressed as: 

�� � 
 ��������
, ���

, �����

�	


� �� 

Where ��� is the genotype dosage for individual � at marker 	, and ���
, ���

 are effects for marker 

	 on the phenotype in populations A and B respectively. Here, �����
, ���

, ���� is a weighted 

average of population specific GWAS effect sizes and local ancestry (see supplementary for 

derivation):  

� ����
, ���

, ���� � ���
���,
��

� ��,���

��� ���� � ���
���,
��

� ��,���

��� ���� 

Where ��,
��
and ��,���

���  (and similarly for population B) are weights for population A effect sizes 

���
 and local ancestry interaction in each genomic region � that are learned via ensemble 

learning (stacking) in the slaPRS framework (see details below). 

 

1.3.1 slaPRS Framework 

We developed slaPRS for constructing admixed PRS using three main features: 1) a local 

window approach 2) local population specific PRS and 3) an ensemble stacking framework to 

combine local population specific PRS. For slaPRS, we assume existence of GWAS effect size 

estimates for each ancestral population in an admixed population. We first partition the admixed 
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genotype matrix into K non-overlapping genotype blocks � � ���, �� , … , ��� with blocks 

predefined by physical distance. In our analysis we considered blocks spanning 1Mb and 5Mb 

of physical distance, each with �� SNPs such that ∑ ��
�	� �

� �. 

 

Level 0 Local Population-Specific PRS and Ancestry 

In the training set of admixed individuals, in each block �� across the genome (using the �� 

SNPs in the block) we first separately computed vectors of local population A PRS ( �� and 

local population B PRS (!�) using clumping and thresholding (C+T). While C+T was used in 

slaPRS, any PRS construction method could be used in our framework. In this step, each 

block’s C+T optimized ancestry PRS can be viewed as a level 0 model prediction to be stacked 

in our stacking framework (Figure 1). Clumping first removes variants in strong LD with others 

using in-sample LD for that region, while greedily retaining the most significant variants33. 

Varying p-value thresholds " � �5$ % 2,5$ % 4,5$ % 6, 5$ % 8� were considered (cross validation 

in Level 1 stacking model used to select optimal " to use in testing set) to construct ancestry-

specific local PRS in each block using the respective population’s estimated effect sizes. In this 

step, we make no assumption on whether risk variants are shared across ancestral populations, 

and thus local PRS  � and !� can have varying risk variants.  
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Figure 1. Diagram of local window and level 0 population specific PRS model predictions. 
Admixed genomes split into 5Mb windows and in each window a local population A and B PRS 
are computed using population-specific effect sizes. Local ancestry further computed to form 
covariate vector for level 1 stacking model. 

 

For each sample, we computed the  vector of local ancestries in block  as the % of 

population A ancestry. We constructed interaction terms  and  to allow for the

effect of the local population PRS  and  to vary by a given ancestry. Following completion 

of level 0 in our framework, block has the covariates (Figure 1):  

 

After aggregating the B total local block covariates across the genome, let C be the N  

matrix: 

 

 

Level 1 Elastic Net Stacking Model 

We then trained an elastic net34 penalized regression model to stack the local level 0 predictions 

(local population-specific PRS and ancestry) across the genome. The population’s GWAS that 

optimizes the local PRS can vary across the genome (see introduction) in an admixed sample, 

and stacking provides a data driven approach to inform which population’s local PRS should be 

 

he 

ns 
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upweighted or shrunk. We used elastic net, which combines ridge regression35 and LASSO36, 

because the genetic architecture of a trait is unknown a priori (unknown which local blocks 

harbor causal risk variants and the distribution of local block heritability). When most local 

windows are weakly informative, ridge tends to have higher prediction accuracy while LASSO 

would likely outperform when only a small number of local windows are highly informative. 

Elastic net allows a data-adaptive approach to inform the amount of shrinkage and whether 

shrinkage patterns should favor ridge or LASSO to best accommodate a trait’s genetic 

architecture.  

 

To determine which aspects of our stacking framework drives increases in PRS performance, 

we considered three level 1 elastic net stacking models that vary in the covariates included from 

block !�:  

1) Local population A PRS only 

*��
� � �� 

2) Local population A and B PRS only 

*��
� � � , !�� 

3) Local population A and B PRS, Ancestry and Interactions 

*��
� � � , !� ,  +,� ,  �� +,� , !�� +,�� 

Model 1 considered only local population A PRS  � to investigate how stacking local PRS alone 

improves compared to a global population A PRS. Model 2 added local population B PRS !� to 

assess the benefit of adding population B GWAS information, while Model 3 further included 

ancestry and interaction terms to allow for the effect of a local population specific PRS to vary 

based on ancestral background. Total covariates in each proposed level 1 model aggregate 

covariates *��
 across all blocks genome wide.  
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For each considered model, we fit a level 1 elastic net model34 to combine the level 0 ancestry-

specific PRS and additional covariates across the genome.  

� � �� � -
*��
� -�*��

� . � -�*��  

Where -
, -�, … , -� are vectors of regression coefficients from the covariates in *��
. Estimates 

of -� in the above model given the genome wide covariate matrix are obtained by minimizing 

the penalized objective function with respect to �: 

��/�0 � 123��+��4∑ �5� % *� ���6 � 4/�7 ∑ 8��8 � �1 % 7� ∑ ��
��

�	� 6��
�	�

�
�	�   

Parameter / determines the amount of shrinkage in model coefficients while 7 9 40,16 balances 

the L1 and L2 penalty from ridge regression (7 � 0� and LASSO (7 � 1�. To optimize all 

parameters including the p-value threshold " � �5$ % 4,5$ % 6, 5$ % 8� used in constructing level 

0 local ancestry PRS via C+T, 7 � �0, 0.1, 0.2, … , 1�, and / = {10��, … , 10��, we employed K-fold 

cross validation with 10 folds and selected the set of ", 7, and / that produced the lowest 

adjusted ;�.  

 

Estimates of -� for each block across the genome can be used (see supplementary for 

derivation) to express the weight for each variant in PRS construction to be a linear combination 

of population A (���
� and B (���

� GWAS effect sizes and learned block weights: 

�� � 
 ��������
, ���

, �����

�	


� �� 

� ����
, ���

, ���� � ���
���,
��

� ��,���

��� ���� � ���
���,
��

� ��,���

��� ���� 

Where ��,
��
 and ��,���

���  (and similarly for population B) are weights for population A specific 

local PRS  � and its local ancestry interaction term.  
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Once weights from the level 1 elastic net stacking models had been estimated from the training 

data, in testing data we then computed the same level 0 model predictions and covariates in 

each block and aggregated genome wide:  

* � 4*��
, *��

, … , *��
6 

Where *��
 is defined as one of the three considered level 1 models. We then predicted trait 

values using estimated weights from the elastic net model: 

<;=> � *�? 
The estimated PRS is then tested against simulated phenotypes or trait values in real data.  

 

Genotype, Phenotype, and Population-Specific GWAS Simulation  

For our simulations and real data applications we focused on admixed African Americans/British 

with European and African ancestral backgrounds. To simulate genotype and phenotype data 

for an African and European population with realistic allele frequencies and linkage 

disequilibrium patterns, we used the coalescent-based pipeline as described by Martin et al16 

and Cavazos et al16,24. Using msprime37 with an out-of-Africa demographic mode modeling 

HapMap38 chromosome 20 haplotypes, we simulated n=10,000 European samples and varying 

African sample sizes n={2000, 5000, 10,000}. Simulated population specific genotypes were 

then used to estimate marginal variant effect sizes.  

 

We then simulated quantitative trait phenotypes using the simulated genotypes. We first 

assumed complete transethnic sharing of genetic architecture across African and European 

populations, in which true causal variants, causal effect sizes, and overall heritability are 

consistent across populations. Under this scenario, performance of estimated PRS should vary 

only because of differences in allele frequency and LD across population. We subset variants 

with minor allele frequency > 5% in both populations and randomly sampled m={100, 500} 
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shared causal variants. True causal effect sizes were drawn from a normal distribution 

�~��0, ��

�
� where A� � �0.10,0.30� is the SNP-based heritability. In results, we focused on the 

most realistic simulation scenario consisting of A� � 0.10 and � � 100. We then considered the 

simulation scenario in which genetic architecture differs across ancestral populations by 

assuming true causal variant locations and overall heritability are shared, but now simulating 

causal effects C~�D��E, F ��

�

���

�

���

�

���

�

G varying transethnic genetic correlation 

H � �0.20, 0.50, 0.80�.  
 

In both simulation scenarios, the true genetic score � was then defined as the product of 

sampled causal genotypes and their respective simulated effect sizes (3 � ∑ �� ��
�
�	� �, 

standardized to ensure total heritability of A�: � � ���� 

��
I A� . We then simulated the 

environmental effect from a normal distribution with variance comprising the remaining 

phenotype variance J~��0,1 % A�� and similarly standardized: K �  ��


� 

I �1 % A��. We defined 

phenotype data Y for both populations as the sum of the standardized true genetic score and 

environmental effect � � � � K. We then estimated effect sizes �? for each variant genome wide 

using a linear model � � �! � J, using each population’s respective simulated phenotype and 

genotype data.  

 

We additionally simulated n=1,000 European and n=1,000 African founder samples to simulate 

n=10,000 admixed African Americans genotypes via RFMix39 with s=12 generations of 

admixture for training and testing slaPRS. Simulated admixed genotypes had known phase and 

known local ancestry. We followed the same pipeline described above to generate the 

phenotype given the simulated genotypes. In the scenario where causal effects differed across 
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populations, we considered haploid chromosomes L���  and L���(corresponding haplotype 1 and 

2 for individual � at variant 	� and matched the population specific effect sizes on the local 

ancestry of a variant’s haplotype background to derive the true genetic component: �� �
∑ ��,�!" ML���N����� �  O;� � L���N����� �  O;�P � ��,#$"ML���NQ���� � KR;S � L�������� ��

�	�

KR;�P. To prevent issues of overfitting, we split our sample into testing and training data using a 

70:30 split, resulting in n=7000 and n=3000 admixed samples in the training and testing data 

splits. The outlined simulation procedure was repeated 150 times to evaluate slaPRS and 

perform method comparisons. 

 

1.3.2 Comparison of Methods: 

Clumping and Thresholding (C+T) 

We first compared the proposed slaPRS method against global single population PRS, <;=#$" 

and <;=�!", constructed using clumping and thresholding (C+T) with GWAS effect sizes from 

the respective population separately. In the C+T algorithm, we first clumped SNPs using each 

population’s GWAS effect sizes with a window size of 250Kb and linkage threshold 2� =0.10 

and then optimized the threshold parameter in the 70% training set with % log���"� p value 

thresholds including {1, 2, … , 8}. The threshold that optimized PRS performance was then used 

in the 30% testing set to retain clumped risk variants to include in the PRS construction.  

 

Linear Combination of Global Population Specific PRS 

The second approach compared against was the method proposed by Marquez-Luna et al28 

which constructed a PRS as a linear combination of two global population-specific PRS: 

<;=%&'()*+ � 7#$"<;=#$" � 7�!"<;=�!" 
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Here, <;=#$" and <;=�!" are the same global PRS constructed using C+T and the respective 

population GWAS as described above. To estimate the mixing weights (7#$", 7�!") and global 

polygenic risk scores (<;=#$" , <;=�!"�, we followed proposed guidelines and used cross 

validation. The 70% training set of admixed samples was first split in half, where the first half 

was used to estimate the thresholding parameter in the C+T algorithm. In the second half we 

constructed <;=#$" and <;=�!"  using the optimal p-value threshold from the European GWAS 

(as is typically larger), as done by Marquez-Luna et al. In this same second half of the training 

set, we then estimated 7#$" and 7�!" by finding the least squares estimates to: 

� � 7#$"<;=#$" � 7�!"<;=�!" 

With the optimal p-value threshold and mixing weights 7#$" and 7�!" derived from training data, 

we then constructed <;=%&'()*+ as the weighted sum of <;=#$"  and <;=�!".   

 

1.3.3 Quantifying Performance of Estimated PRS 

To quantify and compare performance of each PRS across methods, we computed the 

proportion of variance explained (adjusted ;�) of the simulated quantitative phenotype with the 

estimated PRS adjusting for % European ancestry. Because one of our main objectives is to 

create a PRS with performance independent of the global ancestry of an admixed individual, we 

further stratified our adjusted ;�
 performance metric by European ancestry quantiles [0-20%, 

20-40%, 40-60% and 60-80%, 80-100%]. We also compared the mean simulated phenotype 

value in the top 10% PRS quantile with the bottom 10% PRS quantile to assess the PRS’ ability 

to identify high-risk and low-risk individuals.   

 

1.3.4 Real Data Application 
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We evaluated slaPRS in real data applications using n=20,262 admixed African British 

individuals in the UK Biobank40. To choose samples, we selected admixed samples falling on 

the diagonal between the European and African corners of the PC plot (Supplementary Figure 

1). We used autosomal imputed genotypes in constructing polygenic risk scores. Phenotype 

data included the lipid biomarkers LDL, HDL, and total cholesterol. Lipid biomarker phenotypes 

were chosen because the Global Lipids Genetic Consortium41 had collected large sample 

(excluding UK Biobank samples) ancestry specific GWAS in Europeans (n=1.32 million) and 

Admixed African or Africans (N=99.4k). For all 20,262 samples we inferred local ancestry with 

genotypes first phased using BEAGLE 5.042. We used RFMix39 to infer local ancestry using 

phased haplotypes from European and African subpopulations from 1000 Genomes43 

individuals as references. From inferred local ancestry, we further computed global ancestry 

using tract lengths for sample stratification. We split the admixed dataset into 70% training and 

30% testing for model training and method comparison. 

 

Because the true PRS is unknown in real data, to quantify PRS performance across methods 

we computed the proportion of variance explained (adjusted ;�) between the estimated PRS 

and phenotypic value (instead of true genetic score) from the model including the first 4 principal 

components:  

� � �� � �,"-<;= � �,.�
<*� � . � �,.�

<*/ 

Similar to simulations, we computed adjusted ;� across the entire testing sample and then also 

stratified by European ancestry quantiles. We also compared the mean simulated phenotype 

value in the top 10% PRS quantile with the bottom 10% PRS quantile. Performance metrics 

were computed with the median reported over 50 folds.  
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1.4 Results: 

1.4.1 Comparison of PRS Performance Assuming Shared Genetic Architecture across 

Ancestral Populations 

To evaluate the performance of slaPRS, we first conducted simulations with complete sharing of 

genetic architecture across ancestral populations (i.e., true effect sizes and risk variants are 

shared across European and African populations) for various disease architectures (see 

methods). Under this setup, differences in GWAS estimated effect sizes across ancestral 

populations are a function of solely LD. We constructed our stacked PRS using simulated 

European and African GWAS effect sizes for simulated admixed African Americans of varying 

ancestry proportions. The distribution of overall European ancestry in our simulated admixed 

African Americans was approximately normally distributed with a mean of around 50% 

(Supplementary Figure 2).  

 

We focus first on the full level 1 model with 5Mb windows using the local African and European 

PRS and local ancestry information in each block (*��
� � � , K� ,  +,� ,  �� +,� , K�� +,� �) with 

heritability A� � 0.10, number of causal variants � � 100, and equal size European and African 

GWAS sample size + � 10,000. Across simulations, our stacked PRS generally had an 

increased adjusted ;� with the simulated phenotype compared to the existing approaches. 

slaPRS had a 5.93% median adjusted ;� for the true PRS across all admixed individuals in the 

testing set compared to C+T <;=#$" (3.17%) and <;=�!" (3.18) and <;=%&'()*+ (3.39%) that 

globally combines <;=#$" and <;=�!" . Comparing individuals in the top vs bottom 10% of the 

PRS distribution, slaPRS had higher trait stratification ability with larger mean differences (0.84 

vs 0.62, 0.64, 0.64 for <;=#$", <;=�!", and <;=%&'()*+ respectively). We further stratified 

testing samples by quantiles of European ancestry and found our stacking approach using the 

full model explained more variance of the phenotype compared to both <;=#$", <;=�!" and 
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. Across all ancestry quantiles the percent increase in median adjusted for slaPRS 

compared to the other methods ranged from 38.46% to 120.61% (Figure 2). Most notably, 

slaPRS strongly reduced the ancestry dependence of PRS performance as compared to 

 and . When quantified through a simple linear model, the adjusted  for slaPRS 

increased by 0.0009 for every European ancestry quantile increase ranging from 5.69% (0-20% 

European ancestry) to 5.91% (80-100% European ancestry). On the other hand, single 

population  and  had larger changes in  of 0.004 (2.60% to 4.22 %) and -0.001 

(4.11%-3.60%) respectively for every quantile increase. compared similarly to 

slaPRS with an  increase of 0.0008 for every quantile increase, ranging from 3.46% to 3.91%.

 

 

Figure Error! No text of specified style in document.2. Boxplots comparing performance of 
slaPRS (differing in choice of level 0 predictors from each block), , and single 
population PRS:  &  (see methods) quantified through adjusted . Testing 
samples stratified by overall % of European ancestry. 
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While thus far we only considered the full slaPRS model (*��
�

�K� ,  � ,  +,� ,  �� +,� , K�� +,��, we then considered slaPRS under our alternative level 1 

models that vary predictors from each local window. For the simplest case *��
� �K�� (i.e. only 

European GWAS considered and stacking local European PRS across blocks), slaPRS had 

adjusted ;� ranging from 3.28% for 0-20% European ancestry to 5.45% for 80-100% European 

Ancestry and noticeably outperformed <;=#$". However, slaPRS under *��
� �K�� exhibited the 

strongest ancestry dependence (0.005 increase in adjusted ;� across ancestry quantiles) 

across all methods. For *��
� �K� ,  �� (i.e. integrating European and African GWAS and stacking 

local European and African PRS across blocks), slaPRS further increased performance 

(compared to the single population case *��
� �K��) with adjusted ;� ranging from 5.77% to 

6.27% and had noticeably reduced ancestry dependence (0.001 increase in adjusted ;� across 

ancestry quantiles). The full level 1 model (*��
� �K� ,  � ,  +,� ,  �� +,� , K�� +,�� further added 

local ancestry with interaction terms and performed comparably to the previous model ignoring 

ancestry *��
� �K� ,  ��. Negligible differences in the full model and the model excluding local 

ancestry were present only in simulations of complete sharing of transethnic genetic effects. 

 

Effect of Overall Heritability, Number of Causal Variants, Window Size, and African GWAS 

Sample Size 

We quantified how slaPRS fared against other approaches across different simulation settings 

including: overall heritability A� 9 �0.10, 0.30�, number of causal variants � � �5, 100, 500, 1000�, 
African GWAS sample size + 9 �2000, 5000, 10000�, window sizes 9 �1�W, 5�W� (see 

Supplementary), and training data size 9 �3000, 7000� (see Supplementary) . Across all 

settings, slaPRS generally improved performance as compared to single ancestry PRS: <;=�!" 

and <;=#$" (Supplementary Figure 3).  Two factors had a sizable impact on the performance of 

slaPRS generally and its comparison to <;=%&'()*+. The first major factor impacting PRS 
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performance was the African GWAS sample size. As the African GWAS sample size decreased 

(while fixing , ) the C+T  performed increasingly worse compared to 

other methods (Figure 3). The performance of the full slaPRS model similarly decreased as the 

African GWAS sample size decreased, reflecting less informative contributions about the true 

risk variants from the African cohort. Furthermore, slaPRS exhibited a stronger ancestry 

dependence (converging towards the European only slaPRS model) as the African GWAS 

sample size decreased: For every increase in European ancestry quantile, slaPRS under the full

model had an average change in average adjusted of 0.0009, 0.001 and 0.003 for African 

GWAS sample sizes of n=10000, n=5000, and n=2000 respectively. However, even for the 

smallest African GWAS sample size scenario, slaPRS had the highest adjusted  across 

ancestry quantiles.    

d 

ull 
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Figure 3. Line graph comparing PRS performance across methods (quantified by median 
adjusted ;� between estimated PRS and phenotype value) as the African GWAS sample size 
changes (n=2000, 5000, 10,000). Testing admixed samples stratified by European ancestry 
quantile.  

 

The second factor impacting slaPRS, especially compared to <;=%&'()*+, was polygenicity and 

distribution of per variant effect sizes (Supplementary Figures 3, 4). slaPRS generally had the 

greatest improvement in polygenic (� � 100, 500� simulations with moderate to large per 

variant effect sizes (A� � 0.30, � � 100, 500 and A� � 0.10, � � 100) driving clear genetic 

signals. Under these simulation parameters, the median adjusted ;� of the full slaPRS model 

was 58.1% to 96.7% larger than the median adjusted ;� of  <;=%&'()*+,. In such settings, a 

majority of window’s local ancestry PRS contributing genetic signal to the stacking model. On 

the opposite end, when polygenicity was lower (� � 5 causal variants, A� � 0.10) the median 

adjusted ;� for slaPRS was more similar to <;=%&'()*+ (23.4% increase), as a few large per 

variant effect sizes drive a small number of windows to dominate the genetic signal with 

remaining windows adding noise to the model. slaPRS similarly performed more similar to 

<;=%&'()*+ (21.1% and 27.3% increase in adjusted ;�) in simulations of high polygenicity with 

low per variant effect sizes (� � 500, 1000 and  A� � 0.10�, as most windows are uninformative 

and those with very small genetic signal are likely overly penalized and shrunk.  

 

1.4.2 Comparison of PRS Performance Assuming Differences in Genetic Architecture 

across Ancestral Populations 

We also considered simulations in which the genetic architecture differed across ancestral 

populations (i.e., unique population-specific effect sizes), causing population-specific GWAS to 

vary from both differences in LD and true underlying effects across populations. We computed 

slaPRS using GWAS effect sizes varying the transethnic genetic correlation across risk variants 
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H � �0.2, 0.5, 0.8�. We again focused on our base simulation parameters (heritability A� � 0.10, 

number of causal variants � � 100, and equal size European and African GWAS sample size 

+ � 10,000). For the single population <;=#$" and <;=�!", which do not consider a risk 

variant’s local background, the adjusted ;� from the PRS model was stable in their 

corresponding admixed groups (80-100% European and 0-20% European) across changing 

transethnic genetic correlation. However, when transethnic genetic correlation was low (H �
0.2�, <;=#$"  and <;=�!" notably had an increased decay in PRS performance as the admixed 

ancestry group diverged from the population GWAS (Figure 4): Comparing the shared 

transethnic genetic architecture case vs when H = 0.20, the change in adjusted ;� was 0.005 vs 

0.004 and -0.006 vs -0.001 across ancestry quantiles for <;=#$" and <;=�!" respectively. For 

slaPRS, notably the full level 1 stacking model (*��
� �K� ,  � ,  +,� ,  �� +,� , K�� +,�� modeling 

local ancestry and interactions outperformed the model using only the local ancestry PRS 

(*��
� �K� ,  �� as the transethnic genetic correlation decreased. When genetic effects across 

ancestral populations were similar (H � 0.8�, the percent increase in adjusted ;� between the 

full model and model ignoring local ancestry ranged from 10.9% to 14.3% across ancestry 

quantiles, as compared to 23.4% to 50.5% when transethnic genetic effects are vastly different 

(H � 0.2) (Figure 4). Notably, the overall adjusted ;� of the full level 1 model modeling ancestry 

specific effects dependent on a variant’s ancestral background was stable across values of 

H � �0.2, 0.5, 0.8�: (;� � 5.27%, 5.18%, 5.67%) as compared to the model ignoring local ancestry 

(;� � 3.65%, 4.09%, 5.18%�. 
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Figure 4. Line graph comparing PRS performance as quantified through median adjusted  
between the estimated PRS and phenotype value. Transethnic genetic correlation varies from 

 and testing admixed samples stratified by European ancestry quantile. 

 

1.4.3 Real Data Application 

We conducted a real data application of our stacking method slaPRS using genotype and 

phenotype data from the UK Biobank. We considered three quantitative lipid traits: HDL, LDL, 

and total cholesterol using estimated European and African American GWAS effect sizes from 

the Global Lipids Genetic Consortium (see methods for details). We first compared our 

approach to ,  (C+T using European and African GWAS effect sizes separately), 

and  (combining  and  globally) across all samples. For all three traits, 

slaPRS improved the median adjusted r squared values compared to  and  

 

s, 
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(Table 1). Similarly, slaPRS improved stratification ability as shown in larger mean phenotype 

values comparing individuals in the top and bottom 10% of the PRS distribution: HDL (0.373 vs 

0.365, 0.324), LDL (1.019 vs 0.858, 0.905), TC (1.317 vs 1.028, 1.203). However, slaPRS 

performed similarly to  across all three traits with respect to both metrics, a pattern 

observed in simulation scenarios of lower polygenicity causing fewer windows to contribute to 

trait heritability (Table 1). Across the three traits, only 1.6% (HDL), 6.6% (LDL), and 2.1% (TC) 

of all level 0 local population PRS across the genome had an  > 0.10 with the overall trait 

PRS. For LDL which had the highest signal to noise ratio, there was a minor improvement in 

both  and top vs bottom 10% stratification ability for slaPRS. Furthermore, we found limited 

improvement in slaPRS using the full level 1 stacking model 

(  compared to the reduced model (   

 

a) 

b)  
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Table 1. Performance metrics for lipid phenotypes in UKB. a) Median adjusted  from model 
PHENO ~ PRS + PC1 + PC2 + PC3 + PC4. b) Difference in mean phenotype for individuals in 
top 10% of PRS distribution vs bottom 10%. 

 

We then stratified our testing samples by European ancestry quantile to 1) reassess overall 

PRS performance on admixed individuals in quantiles of 20%-80% European ancestry 

(removing primarily European or African admixed African British) and 2) quantify ancestry 

dependence of PRS performance across all five ancestry quantiles. In the bottom and top 

quantiles of predominantly homogenous African or European admixed African British, using 

single ancestry  and  tended to outperform. However, in the more heterogeneous 

admixed samples (20-80% European ancestry), slaPRS and  had the best median 

adjusted  across all methods with comparable results for the three traits: HDL (0.066 and 

0.070), LDL (0.103 and 0.098), TC (0.079 and 0.081) (Figure 5). Regarding ancestry 

dependence of PRS method, across traits  and  exhibited the strongest ancestry 

dependence, performing better as the proportion of European or African ancestry increased. On 

the other hand, methods using multiple ancestry GWAS had reduced ancestry dependence, 

with slaPRS having the smallest dependence followed by . For HDL, the average 

change in adjusted  for each European quantile increase for slaPRS, , , and 

 

s 
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was 0.004, 0.019, -0.006, and 0.011 respectively. LDL (-0.003, 0.014, -0.016, and 

0.003) and TC (-0.002, 0.012, -0.014, -0.005) had similar patterns across methods.   

  

Figure 5. Line graph comparing PRS Performance for UKB lipid phenotypes. Performance 
quantified through median adjusted  from model PHENO ~ PRS + PC1 + PC2 + PC3 + PC4. 
Testing admixed samples are stratified by European ancestry quantile. 
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1.5 Discussion: 

In this work we proposed a novel stacking framework to locally incorporate GWAS from multiple 

populations into construction of PRS for admixed individuals. Our method, slaPRS, segments 

admixed genomes into local regions of varying ancestry and optimizes a linear combination of 

local population specific PRS, local ancestry, and potential interactions. In simulations, we first 

recapitulated previous findings that traditional PRS constructed using a single population GWAS 

in admixed samples are ancestry dependent. We then showed across a range of genetic 

architectures (varying heritability, number of causal variants, underrepresented GWAS sample 

size, and transethnic genetic correlation across ancestral populations) that slaPRS can 

outperform existing approaches (<;=#$", <;=�!" and <;=%&'()*+� and reduce the ancestry 

dependence compared to <;=#$" and <;=�!". In real data, we leveraged ancestry specific 

GWAS for lipid traits from the Global Lipids Genetic Consortium to compare slaPRS to existing 

PRS methods in admixed African British from the UK Biobank. We found in these lipid traits that 

incorporating multiple ancestry GWAS similarly improved performance and strongly reduced the 

ancestry dependence of PRS performance.  

 

From our simulations and real data applications, we conclude that slaPRS for PRS in admixed 

individuals is likely optimal (compared to existing approaches) for traits with high heritability and 

polygenicity. slaPRS extends <;=%&'()*+ to combine information locally as opposed to globally 

and comparisons had interesting findings. In simulations, we found the smallest improvements 

were in trait architectures with low polygenicity (few windows meaningfully contribute to trait 

heritability with others add noise to the model) or in highly polygenic settings where per-variant 

effect sizes are small (hard to distinguish signal from noise and genetic signals may be over 

shrunk). In real data applications, we found slaPRS and <;=%&'()*+ performed similarly across 

the three lipid traits, likely driven by their trait genetic architecture. For the lipid traits studied, the 
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former simulation scenario may be most prevalent as only 2-6% of all local PRS across 

windows contributed to the estimated PRS causing most regions to solely add noise to the 

model. As a result, noticeable improvements in slaPRS over <;=%&'()*+ may be observed in 

more heritable and polygenic traits, such as height, in which more local windows across the 

genome will contribute genetic signal. 

 

However, evaluating slaPRS had a surprising finding that explicitly modeling local ancestry in 

the slaPRS model (vs the model excluding local ancestry) had the most improvement when 

there existed at least moderate heterogeneity in true causal variant effect sizes across ancestral 

backgrounds. In simulations, this was shown through the largest increase in PRS performance 

between slaPRS models when transethnic genetic correlation was low (H � 0.20�, with no 

improvements under scenarios of shared transethnic genetic architecture. In lipid traits from the 

UK Biobank, we observed similar findings regarding modeling local ancestry. In such traits, 

modeling local ancestry in the slaPRS model only provided marginal improvements, consistent 

with high estimated transethnic genetic correlations from Million Veteran Program participants 

for HDL (H �0.84) and moderate correlation for the other traits �H 9 40.47, 0.696�41. High 

transethnic genetic correlations for the considered lipid traits are consistent with recent findings 

from Hou et al, that suggest a majority of common traits likely have similar causal effects across 

populations18. Such findings have immediate implications, as slaPRS and other approaches 

considering local ancestry background may find the most improvement in traits with significant 

differences in transethnic genetic architecture. 

 

Historically in genetic studies, individuals are often discretized into ancestral populations and 

treated as homogenous within the group. Ding et al has recently challenged the historical 

paradigm by showing PRS accuracy varies between individuals even within a “homogenous” 

genetic ancestry cluster to ultimately push for treating genetic ancestry on a continuum22. Our 
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method slaPRS is tailored to treat genetic ancestry on a continuum by taking a local approach 

to PRS prediction in admixed samples. As mentioned, <;=%&'()*+ previously combined global 

population specific PRS successfully in admixed individuals, though in doing so uses a single 

weight for population specific effects. Potential heterogeneity in true population specific risk 

variants, estimated population specific GWAS effect sizes, and admixture proportions across 

loci and individuals would cause use of a single weight to be suboptimal. slaPRS extends 

<;=%&'()*+ by combining population specific PRS at the local level instead to 1) allow for 

varying effects of local population specific PRS across the genome and 2) increase overall 

external GWAS sample sizes to improve effect size estimation and identify the true causal 

variants. The first benefit is accomplished through our level 1 elastic net stacking model that 

learns a linear combination of local population specific PRS (and local ancestry with interaction 

effects) to inform which population’s local PRS should be upweighted or shrunk. In the case that 

the true causal effect differs due to ancestral background, slaPRS handles this scenario by 

modeling the local ancestry and interactions with the local population specific PRS, allowing for 

the effect of a local population specific PRS to differ based on its ancestral background. The 

second benefit is accomplished by increasing the overall effective GWAS sample size through 

incorporating information from each population’s GWAS. In the case that the genetic 

architecture is shared across ancestral backgrounds, using information from both GWAS will 

boost power and improve effect size estimation of the shared risk variants and their locations. 

However, when the genetic architecture differs across populations it is unclear whether using 

multiple population GWAS can be viewed in a similar manner.   

 

slaPRS has desirable statistical and computational properties as well. First, similar to other 

machine learning-based PRS methods such as TL-PRS44 in the context of cross population 

prediction incorporating multiple ancestry GWAS, slaPRS avoids the needs for any distributional 
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assumptions on transethnic effect sizes as compared to the cross population PRS methods 

PRS-CSx21 and PolyPred45 (Utilizes BOLT-LMM46 and PRS-CS47 which treat SNP effects as 

random). As a result, our approach makes no assumption on whether a risk variant is shared 

across population, where each local population PRS in a genomic region can include its own set 

of risk variants. Second, slaPRS does not require an external LD reference panel or genotypes 

outside of the admixed genotypes. Third, slaPRS can accommodate any PRS algorithm to 

construct local population PRS (here we use the C+T algorithm for simplicity). For example, 

REGENIE32 uses a ridge regression based approach to construct level 0 local PRS before 

stacking. Lastly, our approach is computationally very efficient, as discretizing the genome into 

local windows facilitates efficient parallel processing of level 0 predictions, with a final level 1 

elastic net model that can be fit very fast with standard statistical packages.  

 

While slaPRS provides a novel stacking approach to combine population specific GWAS 

information locally, it has a few limitations to consider. We assume existence of GWAS from 

each ancestry contributing to a genetic admixture, though high powered GWAS in understudied 

homogenous populations such as Africans are currently limited or non-existent. As a result, our 

real data application was limited to using African American GWAS as proxies for African GWAS, 

with only a handful of lipid traits from the Global Lipids Genetic Consortium having sufficiently 

large GWAS sample sizes. Recent efforts for genomic research in diverse populations such as 

the African biobank48 should help to resolve this issue. Furthermore, we describe our framework 

for continuous value phenotypes, owing to currently limited access to large sample GWAS for 

binary case/control traits in each ancestral population. Extending this framework to case/control 

traits using a logistic regression elastic net and liability threshold model should be 

straightforward. Lastly, while we push to treat admixed individuals on a genetic ancestry 

continuum, our approach assumes the super population groups such as “European” and 

“African” have homogenous genetic architecture with respect to a complex trait across their 
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subpopulations. However, studies have shown a high degree of genetic diversity across the 

African continent49,50 with unique demographic histories driving substantial cultural and ethnic 

differences that may cause treating all African subpopulations as homogenous to be 

problematic22,51. 

   

Despite the limitations, slaPRS provides an efficient data driven framework to constructing 

polygenic risk scores in admixed samples that leverage multiple population GWAS. In providing 

a method that not only performs well in admixed samples, but equally well across varying 

ancestry proportions we strive to improve on the current inequity in genetics research that is fast 

resolving in our community. Furthermore, as sample sizes increase in underrepresented 

populations for more traits, we expect slaPRS to have additional applications. Lastly, while our 

work thus far only considered two-way admixture, our approach can easily accommodate three 

or more ancestral populations and respective external GWAS. In coming years admixture will 

likely extend beyond the historically predominant African American and Latino admixed groups 

as people and cultures from various ancestral backgrounds are brought together geographically. 

As a result, we believe our method’s flexibility to accommodate increasingly complex admixture 

types using information from multiple GWAS will become even more relevant. 
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Data Availability 

This research used genetic and phenotypic data from the UK Biobank Resource under 

Application Number 24460. Data is available for download for approved researchers of the UK 

Biobank. High powered ancestry specific GWAS from the Global Lipids Genetics Consortium 

are publicly available: http://csg.sph.umich.edu/willer/public/glgc-lipids2021/.  

 

Code Availability  

slaPRS and necessary functions has been implemented as an R package and can be installed 

via running devtools::install_github('kliao12/slaPRS') using the devtools library in R. An example 

workflow is available at https://github.com/kliao12/slaPRS  
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1.6 Supplementary 

1.6.1 Derivation of weighted function learned from slaPRS 

We restate our model setup consisting of a sample of N admixed individuals with ancestral 

contributions from population A and B. Let X be the ��� admixed genotype matrix (M is the 

total number of variants genome wide) and Y the ��1 phenotype vector. Let ��� be an ��� 

matrix denoting the haplotype-level local ancestry (����, ����.) of individual � at marker 	. We 

assume the phenotype can be expressed as: 

�� � 
 ��������
, ���

, �����

�	


� �� 

Where ��� is the genotype dosage for individual � at marker 	, and ���
, ���

 are effects for marker 

	 on the phenotype in populations A and B respectively. Here, �����
, ���

, ���� is a weighted 

average of population specific GWAS effect sizes and local ancestry learned via our stacking 

approach.  

 

Following construction of level 0 model predictions in each window *��
across the genome 

(includes local population A PRS  � and local population B PRS !�, local ancestry, and 

interaction terms) we fit the following stacking model:  

� � �� � -
*��
� -�*��

� . � -�*��  

Expanding out terms for the k-th window: 

� �� � M��,��
 � � ��,��

!� � ��,&�0 +, � ��,&�0:��
 +, �  � � ��,&�0:��

 +, � !�P � . 

� �� � 4��,&�0 +, �  �Q��,��
� ��,&�0:��

S � !�Q��,��
� ��,&�0:��

 +,S6 � .  
The stacking procedure learns a linear combination of level 0 model prediction in each window 

*��
 across the genome through estimating the weights ��.  � and !� are themselves weighted 

sum of risk variants using population specific GWAS reducing the form to:  
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� �� � [��,&�0 +, � F
 ������

��

�	�

G Q��,��
� ��,&�0:��

S �  F
 ������

��

�	�

G Q��,��
� ��,&�0:��

S\ � .  
� �� � ]��,&�0 +, � 
 ���

��

�	�

^���
Q��,��

� ��,&�0:��
S �  ���

Q��,��
� ��,&�0:��

S_` � . 

Where ��,��
 and ��,&�0:��

 are weights for population A specific local PRS  � and its local 

ancestry interaction term. Because  � (and likewise for !�� is a function of population A GWAS 

effect sizes that is shared across all variants in the window �, we replace the notation ��,��
 with 

��,
��
and similarly 1+,�  is a function of ��� so we replace ��,&�0:��

 with ��,���

��� . 

� ����
, ���

, ���� � ���
���,
��

� ��,���

��� ���� � ���
���,
��

� ��,���

��� ���� 

 

1.6.2 Effect of window size and training dataset size 

slaPRS takes a sliding local window approach to construct local population-specific polygenic 

risk scores and thus may be sensitive to the size of the window. In simulations under our base 

scenario (A� � 0.10, � � 100� we considered both 1Mb and 5Mb windows. PRS performance 

quantified by adjusted ;� with the phenotype were highly consistent across window sizes 

suggesting slaPRS is robust to window size (Supplementary Figure 5). We further quantified the 

effect of varying the training dataset size of admixed individuals (n = 3000, n = 7000). As 

compared to <;=#$" and <;=�!" , slaPRS uses the training data to weight local population 

specific PRS (and the variants effects themselves) and increased performance should be 

dependent on the training dataset size. In general, slaPRS for training sizes n=3000 and 

n=7000 generally had increased adjusted ;� when the training size was larger compared to 

<;=#$" (77.3%, 84.9%), <;=�!"�35.3%, 66.1%� and <;=%&'()*+  �64.4%, 66.4%�.  
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1.6.3 Supplementary Tables and Figures 

 

 

S Figure 1. Scatterplot of n=20,262 UKB samples containing African ancestry along diagonal of 
PC1. 
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S Figure 2. Histogram of the distribution of overall European ancestry across n=10,000 
simulated admixed African Americans (for a single simulation).  
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S Figure 3. Line graph comparing PRS performance across PRS methods for different 
simulation settings using adjusted  between estimated PRS and simulated phenotype. 
Simulation parameters: heritability ( =0.1,0.3) and number of causal variants (m=100,500) 
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S Figure 4. Line graph comparing PRS performance across PRS methods for different 
simulation settings using adjusted  between estimated PRS and simulated phenotype. 
Simulation parameters: heritability ( =0.1) and number of causal variants (m=5,100,500,1000). 
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S Figure 5. Comparison of PRS performance across methods (quantified by adjusted  
between estimated PRS and phenotype value) as the window size in slaPRS varies (1Mb, 
5Mb). 
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