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Adenylyl cyclase (AC)-cyclic adenosine monophosphate (cAMP)-cAMP-dependent protein kinase A (PKA) cascade is considered
to be associated with the pathogenesis and treatment of depression. The present study was conducted to explore the role of the
cAMP cascade in antidepressant action of electroacupuncture (EA) treatment for chronic mild stress (CMS)-induced depression
model rats. The results showed that EA improved significantly behavior symptoms in depression and dysfunction of AC-cAMP-
PKA signal transduction pathway induced by CMS, which was as effective as fluoxetine. Moreover, the antidepressant effects
of EA rather than Fluoxetine were completely abolished by H89, a specific PKA inhibitor. Consequently, EA has a significant
antidepressant treatment in CMS-induced depression model rats, and AC-cAMP-PKA signal transduction pathway is crucial for
it.

1. Introduction

Depression is a common and disabling illness affecting a
rising percentage of the world’s population. Among the most
prevalent forms of mental illness, depression is a severe,
recurrent, and life-threatening illness, with about 15% of
depressed patients committing suicide [1]. Although signif-
icant progress has been made in pharmacological treatment
for depression over the past several decades, currently availa-
ble chemical antidepressants, which exhibit 60–70% effective
rate only [2], have severe side effects [3] and call for alterna-
tive treatment [4]. Acupuncture has been applied in the clinic
to treat depression for a long time, and Siguan acupoints,
including LI4 (Hegu) and LR3 (Taichong) acupoints, are clas-
sic acupoints in the antidepressant treatment of acupuncture.
Recently, evidence from clinical and experimental studies
have indicated that acupuncture may alleviate the symptoms
of depression [5–7]. However, the underlying mechanism
remains unknown.

Cyclic adenosine monophosphate (cAMP) cascade, as the
second messenger cascade, is considered to be associated
with the pathophysiology and treatment of depression,

which is a common target for several types of antidepres-
sants. Dysfunction of the AC-cAMP-PKA cascade, including
decreased G protein and cAMP level, reduced AC and
PKA activity and altered PKA-mediated phosphorylation,
has been observed in depressed patients [8–10]. Simultane-
ously, several lines of evidence clearly indicate that chronic
antidepressant treatment upregulate the cAMP postreceptor
signal transduction pathway at several levels. Antidepressant
treatment enhanced AC/G protein coupling, expression of
AC and GTP, forskolin-stimulated cAMP accumulation and
levels, and activity of PKA [11–14].

In the present study, we investigate the antidepressant
effect of electroacupuncture (EA) treatment in chronic mild
stress (CMS)-induced depression model rats and the role of
AC-cAMP-PKA postreceptor signal transduction pathway.

2. Methods

2.1. Animals. Male adult Sprague-Dawley (Experimental
Animal Center, Guangdong provincial hospital of TCM,
Guangzhou, China) rats, weighing 200–250 g, were used in
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the experiment. Upon arrival, animals were given 1 week to
adjust to the new environment (20 ± 3◦C, 45–60% 60–70%
humidity, white noise (40 ± 10) db and 12/12 h light/dark
cycle with the light from 6:00 AM to 6:00 PM), with food
and water available freely prior to experimental procedures.
All experimental procedures were performed during the light
cycle. For all experiments, mice were randomly assigned to
experimental and control groups and tested in a counterbal-
anced order. The animal care procedures were carried out in
accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals. Every effort was
made to minimize their suffering.

2.2. Experimental Procedure. Before stress, all rats were
screened out by the openfield test in which the total scores
between 70 and 120 for all experiments and then were
randomly divided into the following four groups (n = 8 per
group): (1) control group (normal control with no stress);
(2) CMS group (only received stress); (3) CMS plus EA group
(received stress and EA); (4) fluoxetine group (received stress
and Fluoxetine). To identify the role of cAMP cascade in the
antidepression effect of EA treatment, a further 24 rats (8
in each group) were divided into three groups: (5) normal
saline (NS) plus EA group; (6) H89 plus EA group; (7) H89
plus Fluoxetine group. Rats in the control group did not
receive any stimulation. In the CMS group, rats were exposed
to chronic mild unpredictable mild stress for 6 weeks. In the
EA group, rats receive CMS treatment and EA stimulation
at Siguan points (bilateral Hegu (LI4) and Taichong (LR3))
once every other day for 3 weeks after CMS exposure. In
the Fluoxetine group, rats receive the same treatment as
the CMS group and Fluoxetine treatment everyday for 3
weeks after CMS. The groups plus H89 were conditioned
with the same as the EA or Fluoxetine group except for the
intracerebroventricular injection of H89 between CMS and
EA/Fluoxetine delivery. The design of the experiment was
shown in Figure 1.

2.3. CMS Procedure. The CMS protocol, as described by
Willner et al. [15], consists of the sequential application
of a variety of mild stresses: 24-h water deprivation, 24 h
food deprivation, 30 min cage rotation, 5 min forced swim,
reversal of the light/dark cycle, 5 min hot environment
(40◦C), a cage tilt of 45◦C, white noise (100 dB), and wet
bedding (100 mL of water per individual cage). The stressors
were done in a random order to maximize the unpredictable
nature of the stressors. The CMS procedure was carried out
in stressed animals once per day for 3 weeks.

2.4. Open-Field Test. The open-field test was performed as
previously described [15] and was carried out before stress
(day 0), 3 weeks after stress (day 22), and 4, 5, and 6 weeks
after stress. In the openfield test, rats were placed at the center
rectangular arena side walls, which was a four-sided 100 ×
100 × 40 cm3 wooden box with the walls painted black. The
floor of the box was divided into 16 squares. The room was
in a dimly lit with a video camera above the center of the
floor. Each animal was placed in the center of the box and
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Figure 1: Experimental procedure.

was allowed to explore freely for 3 min. During the test time
the number of crossings (defined as at least three paws in
a quadrant) and rearings (defined as the animal standing
upright on its hind legs) was measured. After the test of each
animal, the test box was cleaned with a 10% ethanol solution
and water to remove any olfactory cues.

2.5. Sucrose Intake Test. The sucrose intake test was per-
formed on days 0, 22, and 43. Prior to the start of the test,
animals were trained to consume 1% sucrose solution. They
were habituated for 48 hours to two bottles: one with 1%
sucrose (Sigma), the other with tap water, followed by a
period of 24 h without any food and water available, and a 1-
h exposure to the two identical bottles again for testing fluid
consumption. In order to have concordance measure for all
groups, each rat in control group was randomly selected out
and kept housed individually at the beginning of this test.
Two-bottle tests for each cage were adopted throughout the
procedure. Sucrose solution consumption was recorded by
calculating volume of test solution.

2.6. Measurement of Body Weight. Body weight in all rats was
measured every week throughout the experiment.

2.7. EA and Drug Treatment. For EA stimulation, the rat was
slightly immobilized in a small cylindrical container so that
the movement of the rat’s head restrained while the body
could move freely. EA at Siguan acupoints, bilateral Hegu
(LI4), and Taichong (LR3) were performed for 30 min once
every other day. Location of the acupoints was determined
by comparative anatomy. LI4 is located on the dorsum of
the forelimb, between the 1st and 2nd metacarpal bones,
approximately in the middle of the 2nd metacarpal bone
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on the radial side and LR3 is located on the dorsum of the
claw of the hindlimb, proximal to the first metatarsal space.
Stainless-steel needles of 0.18 mm diameter and 15 mm
length were inserted into the acupoints. The electrical stim-
ulation was from a medical EA apparatus (model G6805-
2, Shanghai, China). The stimulation parameters were of
frequency 2 and 20 Hz, alternatively, strong enough to only
elicit slight twitches of the limbs. In order to exclude the
possibility of stress induced by animal fixation, all groups
were slightly immobilized in the same container for 30 min.
For the Fluoxetine treatment, animals were given Fluoxetine
(Eli Lilly, USA) at a dose of 1.8 mg/kg i.g. (dissolved in sterile
0.9% physiological saline) daily prior to the immobilized
period.

2.8. Intracerebroventricular Injection. Rats were anesthetized
with 10% hloralhydrate (350 mg/kg, i.p.) and placed in a
rat brain stereotaxic apparatus (Narishige, Japan). After a
midline scalp incision, the head position was adjusted to
place bregma and lambda in the same horizontal plane. A
small hole (0.8 mm posterior to bregma, 1.5 mm lateral to
midline) was drilled on the skull. A stainless-steel guide
cannula (22 gauge, ID 0.58 mm, and OD 0.90 mm) was
placed unilaterally in the lateral cerebral ventricle at a
depth of 4.0 mm and fixed with dental cement onto the
skull, serving as a guide for the accurate insertion of a
Internals cannula (extending 0.5 mm below the tip of the
guide cannula). To prevent clogging or infection of the brain
tissue, a dummy cannula (OD 0.56 mm) was always placed
in the guide cannula as a cap for covering the guide cannula
except the duration of injection. The rats were given about
3 days to recover completely from the surgery. The animals
with implanted cannula were placed in transparent plastic
cages and were freely moving throughout the perfusion. The
Osmotic mini pump filled with either H89 or normal saline
(NS) was connected through a PE tube (150 mm length) to
the internal cannula. H89 (dissolved in sterile saline, 10 µM,
5 µL) or NS (0.9%, 5 µL ) was microinjected into the lateral
cerebral ventricle through the cannula at a flow rate of
1uL/min. EA or Fluoxetine was applied at least 30 min after
the perfusion procedures.

2.9. Assay of AC Activity. The dissected hippocampus was
homogenized (1 : 40 (w/v)) in ice-cold buffer (320 mM su-
crose, 1.6 mM EGTA, and 2 mM Tris pH 7.4) using 10 strokes
with a Teflon tissue grinder and centrifuged (1000 rpm,
10 min, 4◦C), and the supernatant was centrifuged again (20,
000 rpm, 20 min, 4◦C). The pellet was resuspended in ice-
cold assay buffer. The AC assay was performed after 10 min
preincubation at 30◦C in a reaction mixture (final volume,
500 µL) containing 80 mM Tris pH 7.4, 2 mM EGTA, 3 mM
MgCl2, 0.5 mM IBMX, and 5 µM forskolin. The reaction
was initiated by addition of ATP to a final concentration of
200 µM and then incubated (10 min at 30◦C) and stopped by
boiling for 3 min. The samples were centrifuged (3000 rpm,
10 min), and cAMP accumulation was quantified in 50 µL
supernatant aliquots by using the [3H] cAMP assay kit
(China Institute of Atomic Energy, China).

2.10. Assay of cAMP Level. Hippocampus was homogenized
in 1 : 40 (w/v) in ice-cold buffer and centrifuged (1000 rpm,
10 min, and 4◦C) as described above. The supernatants
were incubated by boiling for 5 min and then centrifuged
(15,000 rpm, 10 min). cAMP accumulation was quantified in
50 uL supernatant aliquots by using a [3H] cAMP assay kit
(China institute of atomic energy, China).

2.11. Assay of PKA Activity. PKA activity was assayed using
radioactive PKA assay kit (Promega, USA) following the
manufacturer’s instructions. Protein/sample (50 mg) was
used for kinase activity.

2.12. Statistical Analysis. Data were presented as mean ±
standard error of the mean (SEM). Differences between
groups were considered to be statistically significant for P <
0.05. The significance of differences was determined using
the one-way ANOVA followed by least significant difference
(LSD) as post hoc multiple comparisons test. When two
factors were assessed, the significance of differences was
determined using two-way ANOVAs.

3. Results

3.1. Openfield Test. All stress groups began to show behavior
deficit in the 3rd week, indicating obvious difference with the
control group. However, there was no remarkable difference
among all stress groups. In the sixth week, EA (46.25± 7.03,
P < 0.01) and Fluoxetine (51.62 ± 2.41, P < 0.01) as well as
EA + NS (46.5± 3.86, P < 0.01) treatment leaded to increase
in the number of crossing, indicating significant difference
with CMS group (25.25 ± 4.42). Enhanced effects induced
by EA or Fluoxetine were reversed by H89 pretreatment,
respectively (18.0 ± 3.32 versus 46.25 ± 7.03, P < 0.01;
34.0 ± 4.03 versus 51.62 ± 2.41, P < 0.01, resp.) (Figure 2).
Changes in the number of rearing were similar to the crossing
(Figure 3).

3.2. Sucrose Intake. Sucrose intake in all stress groups
decreased significantly in the 3rd week and was much less
than the control group (P < 0.05 or P < 0.01). However,
there was no remarkable difference among all stress groups.
EA (18.09 ± 1.90) or Fluoxetine (18.51 ± 1.30) treatment
leaded to increase in sucrose intake in the sixth week,
however, not indicating significant difference with CMS
group (14.93 ± 1.83). H89 pretreatment inhibited obviously
increase in sucrose intake induced by EA (12.99±1.45 versus
18.09 ± 1.90, P < 0.05), but had no effect on the Fluoxetine
(17.25± 1.61 versus 18.51± 1.30, P > 0.05) (Figure 4).

3.3. Body Weight. Body weight in all groups increased during
the whole experiment. EA (292.75 ± 10.23 versus 318.38 ±
7.38, P < 0.05), and Fluoxetine (295.88±4.74 versus 318.38±
7.38, P < 0.05) group had less body weight than CMS group
at the end of the last week. H89 + EA or H89 + Fluoxetine
group had similar body weight gain to EA or Fluoxetine
group (Figure 5).
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Figure 2: Effect of EA or Fluoxetine on the number of crossing in
openfield test. ∗P < 0.05 and ∗∗P < 0.01 versus control group,
respectively; ##P < 0.01 versus CMS group; ++P < 0.01 versus
Fluoxetine group; −P < 0.05 and −−P < 0.01 versus EA + H89
group, respectively.
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Figure 3: Effect of EA or Fluoxetine on the number of rearing in
openfield test. ∗P < 0.05 and ∗∗P < 0.01 versus control group,
respectively, #P < 0.05 versus CMS group, −P < 0.05 and −−P <
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Figure 4: Effect of EA or Fluoxetine on sucrose intake. ∗P < 0.05,
and ∗∗P < 0.01 versus control group, respectively; −P < 0.05 versus
EA + H89 group.
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3.4. AC-cAMP-PKA Cascade. CMS produced a significant
decrease in the ratio of AC transformation compared with
the control group (0.44± 0.07 versus 1.08± 0.15, P < 0.01),
which was reversed by EA or Fluoxetine treatment (1.08 ±
0.07, 0.86± 0.17, P < 0.01, P < 0.01). Changes in cAMP level
and PKA activity were similar to AC (Figure 6).

4. Discussion

Because of good predictive validity, face validity and con-
struct validity, the CMS model has become the most exten-
sively used animal model of depression [16]. In this study, the
results showed that CMS induced obvious behavior deficits
and decrease in sucrose intake, which were reversed by EA
or fluoxetine, suggesting that EA may be as effective as
antidepressants in treating depression. Simultaneously, we
observed that changes in body weight were different from
behavior and sucrose intake. EA and Fluoxetine treatment
had less body weight than CMS and control group, which
was not reversed by a specific PKA inhibitor H89, suggesting
that EA or Fluoxetine had no effect on body weight in CMS-
induced depression model rats. Body weight has been viewed
as a marker in depression study, and CMS causes about 0–
10% loss of body weight [16]. However, some researches
show that CMS rats have body weight gain and antidepres-
sants, including Fluoxetine and clomipramine, have even less
body weight than CMS and normal control group [7, 17]. A
recent study also shows that EA treatment or EA combined
with clomipramine has similar body weight gain to the CMS
and control group [7]. Michelson et al. observed changes
in weight during a 1-year trial of Fluoxetine and found
that acute therapy during initial 4 weeks with Fluoxetine is
associated with modest weight loss and fluoxetine or placebo
produced weight gain after 50-week therapy [18]. Therefore,

whether body weight measurement is an important marker
in depression study needs more sufficient evidence.

In the present study, the results showed that CMS
induced downregulation of AC-cAMP-PKA cascade, which
was reversed by EA and Fluoxetine treatment. AC-cAMP-
PKA cascade, as the second messenger cascade, has been
implicated in the pathophysiology of depression and antide-
pressant action. Receptor activation induced by ligand (hor-
mones, neurotransmitters and growth factors, etc.) con-
tribute to the generation of cAMP via the stimulation of
AC by the G-protein subtype Gs, which then leads to the
activation of PKA. PKA is responsible for regulatory effects
on cellular functions through the phosphorylation of specific
target proteins. Amongst the substrates of PKA is the cAMP
response element binding protein (CREB), a transcription
factor that mediates the actions of cAMP cascade on
gene expression and exhibits an increase in its ability to
modulate transcriptional activity, in the dephosphorylated
form. Modulation of this transcription factor and its target
genes results in the cellular adaptations underlying the
antidepressant actions [19–21]. Dysfunction of the AC-
cAMP-PKA cascade, including decreased G protein and
cAMP level, reduced AC and PKA activity and altered PKA-
mediated phosphorylation, have been observed in depressed
patients [8–10]. Simultaneously, evidence clearly indicates
that chronic antidepressant treatment upregulates the cAMP
postreceptor signal transduction pathway at several levels.
Antidepressant treatment enhanced AC/G protein coupling,
which contributes to increased AC activity, and expression
of AC and GTP and forskolin-stimulated cAMP accu-
mulation [11–14]. An important evidence about the role
of cAMP cascade in antidepressant action comes from
rolipram, a phosphodiesterase inhibitor, which inhibits the
cAMP metabolism. Rolipram has been reported to have
antidepressant effects in clinical trials and is not in clinical
use because of its side effects [22]. Moreover, Levels and
activity of PKA are enhanced by antidepressant treatment
[14]. An increase of PKA levels is observed in the crude
nuclear fraction following antidepressant administration,
indicating a translocation of PKA into the nucleus [12]. The
nuclear translocation of PKA suggests that antidepressant
treatments may recruit the cAMP cascade to regulate its
target gene expression, such as brain-derived neurotrophic
factor (BDNF). These results are in agreement with the
present study.

Furthermore, an interesting result was observed in
this study. Pretreatment of H89, a specific PKA inhibitor,
abolished completely the antidepressant effect of EA, and the
depressive-like behavior and sucrose intake as well as body
weight in EA + H89 group were all much less than CMS
group, suggesting that PKA activity is crucial for antide-
pressant effect of EA treatment. Furthermore, the dosage of
H89 administration in this study may be sufficient to inhibit
completely the PKA activity in the hippocampus. However,
PKA activity in CMS may partly decrease. So H89 + EA had
even more depressed sign than CMS.

At the same time, H89 did not influence the antide-
pressant action of Fluoxetine, suggesting other signal trans-
duction pathway may be involved in it. Tronson et al.
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find that intrahippocampal injection of PKA inhibitor Rp-
cAMPS has no remarkable effect on depression-like behavior
in mice [23]. Chronic Fluoxetine treatment exerts a more
marked effect on phospho-CREB (pCREB) in hippocampus
and prefrontal/frontal cortex. However, desipramine and
reboxetine, but not Fluoxetine, increase consistently the
activity of nuclear PKA, suggesting that PKA does not seem
to account for increase of pCREB induced by Fluoxetine
[24]. Moreover, various kinds of studies have demonstrated
that, in addition to cAMP-PKA cascade, calcium/calmodulin
(CaM)-dependent kinases (CaMK) and mitogen-activated
protein kinases (MAPK) cascades are involved in the selective
serotonin reuptake inhibitors (SSRIs)-induced antidepres-
sant actions [24, 25]. Consequently, although Fluoxetine may
upregulate the AC-cAMP-PKA cascade, dysfunction of PKA
did not abolish the antidepressant actions.

In conclusion, EA has a significant antidepressant treat-
ment in CMS-induced depression model rats, as effective as
Fluoxetine, and AC-cAMP-PKA postreceptor signal trans-
duction pathway may be crucial for it.
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