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Although previous studies have shown the successful use of pressure-induced reactive hyperemia as a tool for the assessment of
endothelial function, its sensitivity remains questionable. This study aims to investigate the feasibility and sensitivity of a novel
multiscale entropy index (MEI) in detecting subtle vascular abnormalities in healthy and diabetic subjects. Basic anthropometric
and hemodynamic parameters, serum lipid profiles, and glycosylated hemoglobin levels were recorded. Arterial pulse wave signals
were acquired from the wrist with an air pressure sensing system (APSS), followed by MEI and dilatation index (DI) analyses. MEI
succeeded in detecting significant differences among the four groups of subjects: healthy young individuals, healthy middle-aged
or elderly individuals, well-controlled diabetic individuals, and poorly controlled diabetic individuals. A reduction in multiscale
entropy reflected age- and diabetes-related vascular changes and may serve as a more sensitive indicator of subtle vascular
abnormalities compared with DI in the setting of diabetes.

1. Introduction

Endothelial dysfunction (ED) has been documented as a
sign of the imminent onset of cardiovascular disease (CVD)
including atherosclerosis and CVD-related disorders (i.e.,
diabetes, hypertension) [1–3]. The commonly used noninva-
sive means of assessing ED include flow-mediated dilatation
(FMD) [4–6] and reactive hyperemia peripheral arterial
tonometry (RH-PAT) [7–9]. The principle underlying the
measurement is the induction of transient ischemia through
increased cuff pressure over the upper arm, followed by a
release of pressure. The reperfusion thus produced elicits
reactive hyperemia (RH) in the distal blood vessels through

the release of nitric oxide (NO), which is an indicator of
endothelial integrity [10–12].

Although FMD provides direct information about the
changes in blood vessel diameter, it requires an experienced
operator and expensive equipment. On the other hand,
RH-PAT acquires arterial pulse signals of the index finger
through tonometry and compares them before and after RH
induction. The popularity of its clinical use, however, is also
hampered by the need for experienced personnel and its
costly disposable accessories. As a result, no well-designed
study has investigated ED in elderly and diabetic subjects who
are at high risk of CVD.The importance of early detection of
ED in diabetic patients is further underscored by the finding
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that ED occurs within 10 years of full-fledged diabetes. Early
detection of ED and timely intervention, therefore, are of
utmost importance in the prevention of diabetes and its
associated complications [13–15].

This study was designed to test the sensitivity and validity
of applying a novel multiscale entropy index (MEI) in
evaluating the degree of ED in subjects at risk of CVD. This
was performed by analyzing the dynamical complexity of
arterial pulse waveform signals, obtained through the wrist
before and after induction of RH from 4 different subject
populations using multiscale entropy analysis of biological
signals [16–19].

2. Materials and Methods

2.1. Study Population and Grouping. A total of 70 subjects
were recruited from the diabetes outpatient clinic of Hualin
Hospital between December 2009 and October 2010. In
addition, there were 70 healthy controls recruited from a
health examination program at the same hospital. The 140
study subjects were categorized into the following 4 groups:
group 1, which included healthy young individuals aged
20–30 years, with no known history of CVD, glycosylated
hemoglobin (HbA1c) levels of less than 6%, and fasting blood
sugar levels of less than 126mg/dL; group 2, which included
healthy middle-aged or elderly individuals aged 40–70 years,
with no known history of CVD, HbA1c levels of less than
6%, fasting blood sugar levels of less than 126mg/dL, and
absence of metabolic syndrome according to the ATP III
report [20]; group 3, which included well-controlled diabetic
individuals aged 50–80 years, with an established diagnosis
of type 2 diabetes (i.e., HbA1c levels > 6.5% and fasting sugar
levels > 126mg/dL) [20], HbA1c levels between 6.5% and 8%
and fasting blood sugar levels of more than 126mg/dL at the
time of the present study; group 4, which included poorly
controlled diabetic individuals aged 50–80 years, who fit the
criteria of diabetes with HbA1c levels of more than 8% and
fasting sugar levels of more than 126mg/dL.

2.2. Experimental Procedure. Before initiating the study,
subjects were required to fill out a questionnaire on basic
demographic and anthropometric data as well as information
on lifestyle and personal/family history of CVD. Physicians
also obtained blood samples after 8 hours of fasting for deter-
mination of serum high-density lipoprotein (HDL), low-
density lipoprotein (LDL), triglyceride (TG), fasting blood
sugar, andHbA1c levels. Informed consentwas obtained from
all subjects.

The study subjects were allowed to assume a supine
position and rest in a quiet, temperature-controlled (25∘C)
room for 5 minutes before measurement. Blood pressure was
obtained once over the left armof the supine patients using an
automated oscillometric device (BP3AG1, Microlife, Taiwan)
with a cuff of appropriate size. One pressure cuff of the air
pressure sensing system (APSS) was then put around the left
arm, whereas the other cuff was applied on the left wrist [21,
22].The pressure of the cuff around the wrist was maintained

at 40mmHg throughout the process of measurement, which
took 17 minutes for each subject.

2.3. Dilatation Index (DI) Computation. The structure and
principles of operation of the APSS have been previously
reported [21]. In brief, the APSS system consists of two sets
of pressure cuffs, a piezoresistive sensor, and an endothelial
functionmeasurementmodule board.Thefirst set of pressure
cuffs is placed over the upper arm and triggers the endothelial
function, whereas the second set is placed over the wrist
for data acquisition. The piezoresistive sensor, which is
connected to the second set of pressure cuffs, is used to
detect the pulse wave and record the arterial waveform in
the system. The endothelial function measurement module
board amplifies and filters the captured arterial waveform.
The pressure detected by the piezoresistive sensor was thus
converted into electrical signals which were then amplified
and filtered to obtain the analog signals. The analog signals
were digitized with an analog-to-digital converter (Model
MSP430F449, Texas Instruments, TX, USA) at a sampling
rate of 500Hz and stored in a computer for later analysis
[22]. The total duration of signal acquisition was 17 minutes
(Figure 1), which consisted of 5 minutes of data recording at
a wrist cuff pressure of 40mmHg with the arm cuff deflated
(i.e., the baseline), 3 minutes of blood flow occlusion by
increasing the cuff pressure of the upper arm to 200mmHg
(i.e., the occlusion phase), and 9 minutes of data acquisition
after complete deflation of the pressure cuff over the upper
arm with the pressure of the wrist cuff being maintained
at 40mmHg throughout (i.e., the hyperemic phase). The
amplitude of the signals during the hyperemic phase varied
with the subject’s age and disease status (see Figure 1). The
mean amplitude of signals within a representative one-
minute period between the fifth and tenth minute after
the beginning of data collection was selected from the
baseline and hyperemic phases, respectively, and labeled as
AmpBaseline and AmpRH (see Figure 1). The dilatation index
(DI) [8, 21] of the forearm blood vessel is defined as

DIAmp =
AmpRH

AmpBaseline
× 100%. (1)

In agreement with the results of previous studies [8, 9,
22], our finding (see Figure 1) showed that the value of DI
decreases with advancing age and increasing severity of dia-
betes. In contrast with the calculation of DI, which adopted
1 minute of signals from both the baseline and reactive
hyperemic phases, the present study attempted to utilize the
entire 14 minutes of signals (except for the occlusion phase)
in the calculation of the multiscale entropy index (MEI).This
was performed to provide a sensitive tool for detecting subtle
vascular abnormalities in the elderly and diabetic patients.

2.4. Multiscale Entropy Index (MEI). After deleting the 3
minutes of arterial pulse signal acquired during the occlusion
phase, signals of the baseline and hyperemic phases were
connected for analysis. The footpoint of each waveform
was first marked, followed by the identification of the peak
between two footpoints [23]. The amplitude of the waveform
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(a) A subject in group 1, DIAmp = 110.45%

(b) A subject in group 2, DIAmp = 88.75%

(c) A subject in group 3, DIAmp = 57.43%

Baseline Occlusion Hyperemia

Time (minutes)
0 4 5 8 9 10 17

(d) A subject in group 4, DIAmp = 14.71%

Figure 1: Representative arterial pulse signals from the 4 different
groups, showing variations in the dilatation index (DIAmp). Group 1:
healthy young individuals; group 2: healthy middle-aged or elderly
individuals; group 3: well-controlled diabetic individuals; group 4:
poorly controlled diabetic individuals.
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2.4.1. Multiscale Entropy (MSE) Computation. MSE was
calculated in accordance with the procedure reported by
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where 𝜏 denotes the scale factor and 1 ≦ 𝑗 ≦ 1000/𝜏.In
other words, coarse-grained time series for scale factor 𝜏were
acquired by taking the arithmetic average of 𝜏 neighboring
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Figure 2: (a) Identification of the footpoint and peak of each
arterial waveform measured from the wrist of a healthy young
subject (group 1) using the air pressure sensing system (APSS), after
connecting the baseline signals (5min) to those at the hyperemic
phase (9min). (b) Plotting of the amplitudes from 1000 waveforms
against time, giving a nonstationary curve. (c) Final curve after
detrending using Empirical Mode Decomposition (EMD).

original values without overlapping. The length of each
coarse-grained time series is 1000/𝜏. For scale 1, the coarse-
grained time series is just the original time series. Sample
entropy (𝑆

𝐸
) [27] for each of the coarse-grained time series

can be obtained and plotted against the scale factor, 𝜏.

2.4.2. Multiscale Entropy Index (MEI) Computation. The
values of 𝑆

𝐸
were then obtained from a range of scale

factors between 1 and 10 using the MSE data analysis method
described above. The values of 𝑆

𝐸
between scale factors 1

and 5 were defined as small scale, whereas those between
scale factors 6 and 10 were large scale [28, 29]. The sum
of 𝑆
𝐸
values between scale factors 1 and 5 was defined as

MEISS, while the sum of 𝑆
𝐸
values between scale factors

6 and 10 was defined as MEILS [28, 29], see (3) below.
By defining and calculating these two indices of multiscale
entropy, the complexity of signals between different time
scales can be assessed and quantified. Using these 2 indices,
the present study attempted to evaluate the differences in
signal complexity of the hyperemic responses elicited by
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temporary ischemia, an index of endothelial function, in
different subject populations,

MEISS =
5

∑

𝜏=1

𝑆
𝐸
(𝜏) ,

MEILS =
10

∑

𝜏=6

𝑆
𝐸
(𝜏) ,

(3)

where 𝑆
𝐸
(𝜏) is the sample entropy for the respective scale

factor.

2.5. Statistical Analysis. Average values were expressed as
mean ±SD. Statistical Package for the Social Science (SPSS,
version 14.0) was adopted. Independent sample t-test and
Pearson’s correlation were used for the determination of
significance between different groups and assessment of
correlations among different parameters, respectively. A 𝑃
value < 0.05 was considered statistically significant.

3. Results

By recording serial changes in 1,000 arterial waveform ampli-
tudes (between scale factor of 1 and 10) and analyzing their
complexity (i.e., multiscale entropy) in 4 different subject
populations of different ages and disease status, significant
changes in 𝑆

𝐸
with different scale factors in the 4 different

groups of subjects were noted (see Figure 3).

3.1. Changes in Sample Entropy, 𝑆
𝐸
, with Scale Factor. The

values of 𝑆
𝐸
decreased significantly from a scale factor of 6

onward in group 1 (healthy young subjects), group 2 (healthy
middle-aged or elderly subjects), group 3 (well-controlled
diabetics), and group 4 (poorly controlled diabetics) (see
Figure 3). No significant difference in the values of 𝑆

𝐸
at lower

scale factors (i.e., 1 to 5) was noted among the 4 groups.

3.2. Comparison between Healthy Young (Group 1) and
Middle-Aged or Elderly (Group 2) Subjects. Remarkable dif-
ferences were noted between healthy young (group 1) and
middle-aged or elderly (group 2) subjects in terms of age,
body height, HbA1c (𝑃 < 0.001), and serum HDL and LDL
levels (𝑃 < 0.05; Table 1). Significant differences (𝑃 = 0.016)
in DI were also noted between group 1 (201.57% ± 43.42%)
and group 2 (164.88% ± 32.33%). No notable difference in
MEISS was noted between the 2 groups (3.43 ± 1.23 versus
2.92 ± 0.89, 𝑃 = 0.343); however, MEILS was significantly
higher in group 1 than in group 2 (4.22±1.41 versus 3.53±0.99,
resp., 𝑃 = 0.025).

3.3. Comparison between Healthy Middle-Aged or Elderly
(Group 2) and Well-Controlled Diabetic (Group 3) Sub-
jects. Table 1 summarizes the demographic, anthropometric,
hemodynamic, and biochemical parameters, MEI, and DI
between group 2 and group 3 (HbA1c < 8%) subjects,
showing notably advanced age, larger waist circumference,
elevated HbA1c, and fasting blood sugar levels in the latter
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Figure 3: Changes in sample entropy (𝑆
𝐸

) with different scale factors
in the four groups of subjects. Symbols represent the mean values of
entropy for each group, and bars represent the standard error (𝑆

𝐸

=

SD/√𝑛), where 𝑛 is the number of subjects. Group 1: healthy young
subjects; group 2: healthy middle-aged or elderly subjects; group 3:
well-controlled diabetic subjects; group 4: poorly controlled diabetic
subjects.

(𝑃 < 0.001). Body weight, body mass index, and systolic
blood pressure in group 3 were significantly higher than that
in group 2. On the other hand, serum LDL and HDL levels
in group 3 were significantly lower than that in group 2
(𝑃 < 0.05). Multiscale entropy analysis revealed significantly
higher MEILS in group 2 than that in group 3 (3.53 ± 0.99
versus 3.02 ± 1.48, resp., 𝑃 = 0.037), whereas there was no
notable difference inMEISS between the 2 groups (2.92±0.89
versus 2.78 ± 1.27 for group 2 and group 3, resp., 𝑃 = 0.452).
In terms of DI, no remarkable difference was noted between
group 2 and group 3 (164.88% ± 32.33% versus 162.08% ±
35.34%, resp., 𝑃 = 0.365). Moreover, a significant negative
correlationwas noted betweenMEILS and fasting blood sugar
levels in the 2 groups (𝑅 = −0.274, 𝑃 = 0.015) (see
Figure 4(a)), whereas no notable correlation could be found
between DI and fasting blood sugar levels between these
groups (𝑅 = −0.172, 𝑃 = 0.132) (see Figure 4(b)).

3.4. Comparison between Well-Controlled (Group 3) and
Poorly Controlled Diabetic (Group 4) Subjects. Although the
subjects in group 3 (HbA1c < 8%) were significantly older
than those in group 4 (HbA1c > 8%), the comparison
between the 2 groups revealed significantly higher HbA1c,
LDL, fasting blood sugar, and triglyceride levels in group
4 (Table 1). There was no significant difference in MEISS
between group 3 and group 4 (2.78 ± 1.27 versus 2.37 ± 0.88,
resp., 𝑃 = 0.118); however, MEILS was remarkably higher in
the well-controlled diabetic subjects (group 3) than that in
the poorly controlled diabetic subjects (group 4) (3.02 ± 1.48
versus 2.34±0.96, resp.,𝑃 = 0.024). A notable difference inDI
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Table 1: Comparison of demographic, anthropometric, hemodynamic and biochemical parameters, MEI, and DI between healthy young
subjects (Group 1), healthy middle-aged or elderly subjects (Group 2), well-controlled diabetic subjects (Group 3) and poorly controlled
diabetic subjects (Group 4).

Parameter Group 1 Group 2 Group 3 Group 4
𝑁 30 40 40 30
Age (years) 24.87 ± 2.69 56.59 ± 8.75

∗∗

64.98 ± 9.26
++

60.03 ± 8.24
𝜀

Body height (cm) 172.63 ± 6.86 161.93 ± 7.44
∗∗

160.55 ± 8.56 163.26 ± 7.16

Body weight (kg) 68.12 ± 10.99 63.31 ± 10.70 68.09 ± 10.28
+

71.41 ± 11.93

Waist circumference (cm) 80.97 ± 9.55 82.11 ± 9.92 93.13 ± 9.37
++

93.06 ± 11.62

BMI (kg/m2) 22.79 ± 3.06 24.11 ± 3.59 26.40 ± 3.39
+

26.98 ± 5.30

SBP (mmHg) 116.18 ± 12.31 118.11 ± 15.19 128.34 ± 17.02
+

126.83 ± 17.66

DBP (mmHg) 71.94 ± 6.18 73.94 ± 10.49 75.04 ± 10.14 74.72 ± 11.19

HbA1c (%) 5.49 ± 0.25 5.67 ± 0.31
∗∗

6.79 ± 0.60
++

9.85 ± 1.81
𝜀𝜀

HDL (mg/dL) 44.81 ± 5.60 52.94 ± 20.64
∗

42.78 ± 16.26
+

43.39 ± 14.65

LDL (mg/dL) 97.0 ± 26.83 122.48 ± 26.78
∗

99.33 ± 25.17
++

117.93 ± 36.23
𝜀

Fasting blood sugar (mg/dL) 92.69 ± 3.19 97.70 ± 15.76 128.06 ± 28.77
++

166.96 ± 59.07
𝜀

Triglyceride (mg/dL) 89.31 ± 60.14 105.09 ± 51.06 110.29 ± 41.71 161.85 ± 53.72
𝜀

Creatinine (mg/dL) 0.92 ± 0.12 0.79 ± 0.22
∗

0.93 ± 0.37 1.24 ± 1.17

Microalbumin (mg/dL) 0.72 ± 0.56 0.64 ± 0.66 16.99 ± 57.99 71.68 ± 222.41

MEISS 3.43 ± 1.23 2.92 ± 0.89 2.78 ± 1.27 2.37 ± 0.88

MEILS 4.22 ± 1.41 3.53 ± 0.99
∗

3.02 ± 1.48
+

2.34 ± 0.96
𝜀

DI (%) 201.57 ± 43.42 164.88 ± 32.33
∗

162.08 ± 35.34 132.72 ± 36.57
𝜀𝜀

Value are expressed as mean ± SD. BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; HbA1c: glycosylated hemoglobin; HDL:
high density lipoprotein; LDL: low density lipoprotein; MEISS: Multiscale Entropy Index with Small Scale; MEILS: Multiscale Entropy Index with Large Scale;
DI: Dilatation Index. ∗𝑃 < 0.05: Group 1 versus Group 2, +𝑃 < 0.05: Group 2 versus Group 3, 𝜀𝑃 < 0.05: Group 3 versus Group 4. ∗∗𝑃 < 0.001: Group 1 versus
Group 2, ++𝑃 < 0.001: Group 2 versus Group 3, 𝜀𝜀𝑃 < 0.001: Group 3 versus Group 4.

Table 2: Correlations of MEILS and DI with anthropometric, hemodynamic, and biochemical parameters.

Parameter DI (𝑁 = 140) MEILS (𝑁 = 140)
Age (years) 𝑅 = −0.168, 𝑃 = 0.062 𝑅 = −0.223, 𝑃 = 0.012

Body height (cm) 𝑅 = 0.113, 𝑃 = 0.144 𝑅 = −0.063, 𝑃 = 0.440

Body weight (kg) 𝑅 = −0.078, 𝑃 = 0.423 𝑅 = −0.127, 𝑃 = 0.147

Waist circumference (cm) 𝑅 = −0.193, 𝑃 = 0.043 𝑅 = −0.143, 𝑃 = 0.117

BMI (kg/m2) 𝑅 = −0.162, 𝑃 = 0.043 𝑅 = −0.092, 𝑃 = 0.309

SBP (mmHg) 𝑅 = −0.183, 𝑃 = 0.054 𝑅 = −0.031, 𝑃 = 0.735

DBP (mmHg) 𝑅 = −0.124, 𝑃 = 0.195 𝑅 = 0.007, 𝑃 = 0.937

HbA1c (%) 𝑅 = −0.223, 𝑃 = 0.013 𝑅 = −0.375, 𝑃 < 0.001

HDL (mg/dL) 𝑅 = 0.034, 𝑃 = 0.730 𝑅 = 0.240, 𝑃 = 0.010

LDL (mg/dL) 𝑅 = −0.070, 𝑃 = 0.478 𝑅 = −0.025, 𝑃 = 0.791

Fasting blood sugar (mg/dL) 𝑅 = −0.169, 𝑃 = 0.074 𝑅 = −0.344, 𝑃 < 0.001

Triglyceride (mg/dL) 𝑅 = −0.165, 𝑃 = 0.091 𝑅 = −0.158, 𝑃 = 0.088

BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; HbA1c: glycosylated hemoglobin; HDL: high density lipoprotein; LDL: low
density lipoprotein.

also existed between group 3 and group 4 (162.08%± 35.34%
versus 132.72% ± 36.57%, resp., 𝑃 < 0.001).

3.5. Correlations of MEI
𝐿𝑆

and DI with Anthropometric,
Hemodynamic, and Biochemical Parameters. Attempts were
made to correlate values of DI and MEILS from all subjects
(𝑁 = 140) with their anthropometric, hemodynamic, and
biochemical risk factors of CVD (Table 2).The results showed
that DI was negatively correlated with waist circumference,
bodymass index, andHbA1c levels. On the other hand, while

MEILS was negatively correlated with age, HbA1c, and fasting
blood sugar levels, it was positively correlated with serum
HDL levels.

4. Discussion

The human body consists of physiological systems of dynam-
ical complexity involving a myriad of interactions and
feedback mechanisms [17]. Recent studies [16–19], which
placed strong emphasis on the quantification of dynamical
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Figure 4: Correlations between (a) small-scale multiscale entropy index (MEILS) and fasting blood sugar levels; (b) dilatation index (DI) and
fasting blood sugar levels in healthy middle-aged or elderly (group 2) and well-controlled diabetic (group 3) subjects.

complexity in healthy human subjects and those with cardio-
vascular diseases, have identified a reduction in dynamical
complexity, defined by MSE, as a common characteristic of
the aged and diseased subsets of the population. Previous
applications of dynamical complexity analysis focusedmainly
on the study of R-R interval time series, in an attempt to
investigate various cardiac diseases. For instance, compared
with healthy subjects regardless of age, patients with conges-
tive heart failure (CHF) have a higher 𝑆

𝐸
for scale 1 [16, 17].

In contrast, a lower 𝑆
𝐸
becomes apparent in subjects with

CHF over scale 1. Analysis of R-R interval time series in
normal subjects and in patients with ventricular arrhythmia
and myocardial infarction revealed that 𝑆

𝐸
decreases with

increasing age in both normal and diseased populations [24].
On the other hand, there is no significant difference in 𝑆

𝐸

between the healthy aged subjects and their counterpartswith
cardiac diseases. Moreover, healthy young subjects have the
highest 𝑆

𝐸
at all scales compared with the aged and diseased

groups [24].
The application of MSE in analyzing heart rate (HR) and

systolic and diastolic blood pressure (BP) in 14 young patients
with type 1 diabetes mellitus was first reported by Trunk-
valterova et al. in 2008 [30]. MSE analysis of HR/BP signals
showed a higher 𝑆

𝐸
value in the healthy subjects than that in

the diabetic subjects on scale 3. Using age-matched healthy
young subjects as normal controls, this study proposed that
MSE is useful in detecting subtle vascular pathology in young
diabetic subjects. However, the paradoxical result of MSE
analysis on HR and diastolic BP in that study, which showed
a higher 𝑆

𝐸
in diabetic patients compared with their healthy

counterparts over scale 6, remains unexplained. The choice
of a suitable physiological parameter is, therefore, essential
in the successful application of MSE to the assessment of the
degree of atherosclerosis and the effect of aging on vascular
function.

Although the application of MSE using R-R interval
time series in analyzing the dynamical complexity of cardiac
diseases has been validated, reports on the use of MSE in
assessing atherosclerotic change of blood vessels and the
impact of age on the vascular system are rare.

Not only is endothelial dysfunction believed to precede
microvascular changes of the cardiovascular system [1], it
is also considered an indicator of atherosclerosis [1–4].
Previous studies have proposed a system of reactive RH-
PAT, performed by the analysis of finger arterial pulse waves
before and after applying pressure on the upper arm, in
assessing vascular endothelial function. The popularity of
its use, however, is restricted by the expensive equipment
and the requirement of well-trained personnel for proper
operation.The present study utilized APSS that we previously
proposed to record the signals of arterial pulsations from
the wrist before and after application of pressure on the
upper arm [21]. After calculation of the DI, we attempted to
assess vascular endothelial function by adopting MSE. We
used it in calculating the dynamical complexity of the signals
acquired from subjects belonging to different age groups and
from subjects with different degrees of diabetic control, since
diabetes and aging are both risk factors of atherosclerosis. In
this manner, the two parameters of MEILS and MEILS were
obtained and compared among the different groups.

Table 1 shows a notable difference in both MEILS and
DI between healthy young (group 1) and middle-aged or
elderly (group 2) subjects, whereas there was no significant
difference in MEISS between the two groups. On the other
hand, although DI did not differ between healthy middle-
aged or elderly subjects (group 2) andwell-controlled diabetic
subjects (group 3), significant difference in MEILS existed
between the 2 groups (Table 1). These results imply that
MEILS can indicate subtle vascular changes even in well-
controlled diabetic subjects, whose endothelial dysfunction
is maintained at a relatively stable condition through lifestyle
modification and medical control [7]. Further investigation
revealed a negative correlation between fasting blood sugar
levels and MEILS, whereas the correlation between fasting
blood sugar levels and DI failed to reach statistical signif-
icance. In term of HbA1c levels, a better correlation was
noted with MEILS (𝑃 < 0.001) than with DI (𝑃 = 0.013)
(Table 2). Taken together, the findings suggest that MEILS
may serve as a better indicator of subtle diabetes-associated
vascular endothelial dysfunction and sugar control than DI,
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indicating the possible use ofMEILS as a sensitive indicator of
vascular endothelial dysfunction that allows early therapeutic
intervention.

When DI and MEILS were compared in terms of their
correlationswith the risk factors of CVD (Table 2), significant
correlations were noted between DI and waist circumference
(𝑅 = −0.193, 𝑃 = 0.043), body mass index (𝑅 = −0.162,
𝑃 = 0.043), and HbA1c (𝑅 = −0.223, 𝑃 = 0.013), whereas
significant correlations existed between MEILS and age (𝑅 =
−0.223, 𝑃 = 0.012), HbA1c (𝑅 = −0.375, 𝑃 < 0.001),
serum HDL (𝑅 = 0.240, 𝑃 = 0.010), and fasting blood sugar
levels (𝑅 = −0.344, 𝑃 < 0.001). The results further suggest
that MEILS may be a more sensitive indicator of endothelial
dysfunction associated with aging and diabetes than DI. The
superiority of MEILS over DI may be due to the fact that the
latter utilizes two segments of representative 1-minute signals
acquired before and after vascular occlusion, whereas the
former analyzes all 14-minute signals from both the baseline
and hyperemic phases using the MSE technique.

This study has unavoidable limitations. First, since the
computation of MEI requires time-consuming detrending
of signals and extensive MSE analysis, immediate informa-
tion cannot be provided for the examinees. This problem
can probably be solved by the development of appropriate
software for data analysis. Second, the current study only
recruited a relatively small number of subjects and focused
on only a single disease. Further investigation is warranted
to include a larger number of patients with diseases related
to endothelial dysfunction, including stroke, angina, limb
ischemia, and erectile dysfunction. Finally, the requirement
for an occlusion pressure of up to 200mmHg over the upper
arm for 3 minutes may not be tolerated by some study
subjects. This was the situation for 3 of our diabetic patients,
who were subsequently excluded from the present study.

5. Conclusion

Using the method of MSE for nonlinear dynamical analysis
of arterial pulse signals from the wrist, this study successfully
detected subtle differences in dynamical complexity of the
acquired signals from the young, the middle-aged or elderly,
well-controlled, and poorly controlled diabetic subjects using
the novel parameter MEI.
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function and cardiovascular risk factors,”Diabetes Research and
Clinical Practice, vol. 84, no. 1, pp. 1–10, 2009.

[2] P. O. Bonetti, L. O. Lerman, and A. Lerman, “Endothelial
dysfunction: a marker of atherosclerotic risk,” Arteriosclerosis,
Thrombosis, and Vascular Biology, vol. 23, no. 2, pp. 168–175,
2003.

[3] R. M. J. Palmer, A. G. Ferrige, and S. Moncada, “Nitric oxide
release accounts for the biological activity of endothelium-
derived relaxing factor,” Nature, vol. 327, no. 6122, pp. 524–526,
1987.
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