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Abstract: Aspergillus, a genus of filamentous fungi, is extensively distributed in nature and plays
crucial roles in the decomposition of organic materials as an important environmental microorganism
as well as in the traditional fermentation and food processing industries. Furthermore, due to their
strong potential to secrete a large variety of hydrolytic enzymes and other natural products by
manipulating gene expression and/or introducing new biosynthetic pathways, several Aspergillus
species have been widely exploited as microbial cell factories. In recent years, with the development
of next-generation genome sequencing technology and genetic engineering methods, the production
and utilization of various homo-/heterologous-proteins and natural products in Aspergillus species
have been well studied. As a newly developed genome editing technology, the clustered regularly
interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system has
been used to edit and modify genes in Aspergilli. So far, the CRISPR/Cas9-based approach has
been widely employed to improve the efficiency of gene modification in the strain type Aspergillus
nidulans and other industrially important and pathogenic Aspergillus species, including Aspergillus
oryzae, Aspergillus niger, and Aspergillus fumigatus. This review highlights the current development
of CRISPR/Cas9-based genome editing technology and its application in basic research and the
production of recombination proteins and natural products in the Aspergillus species.

Keywords: Aspergillus species; genome editing technology; CRISPR/Cas9; cell factory; natural
product production

1. Introduction

Filamentous fungi play a critical role in human health and disease, as well as in indus-
trial and agricultural production. Aspergillus sp. is one of the most widely disseminated
genera of fungi in nature, releasing a large number of conidia and dispersing them across
the environment, including in grain, soil, and organisms. The genus Aspergillus is comprised
of over 300 species based on morphological, physiological, and phylogenetic characteristics
that have a considerable impact on food production, biotechnology, environments, and
human health. [1]. This genus encompasses a large number of species that occupy an essen-
tial ecological niche in natural habitats as decomposers and pathogens. Aspergillus species
has long been recognized as an important environmental microorganism in the breakdown
of organic materials in terrestrial ecosystems [2]. Meanwhile, some species of the genus
Aspergillus play key roles in the traditional fermentation and food processing industries
due to their remarkable ability to produce a huge quantity of hydrolytic enzymes and other
natural products and can thus be employed as microbial cell factories. For example, some
Aspergillus strains, such as Aspergillus niger and Aspergillus oryzae, have been well utilized
to produce a variety of beneficial substances, including citric acid, sake brewing, soy sauce,
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and so on [3–5]. Because of their long-term use in the food industry, both A. oryzae and
A. niger are listed as Generally Recognized as Safe (GRAS) organisms; the non-pathogeny
of A. oryzae is also supported by the Food and Agriculture Organization/World Health
Organization (FAO/WHO) [6].

A. oryzae has a high capacity for secreting huge numbers of hydrolytic enzymes and,
therefore, it has been used as a cell factory in the enzyme industry to produce a variety
of native and heterologous enzyme preparations [7–9]. Furthermore, A. niger is also a
vital industrial production strain, with organic acids and industrial enzyme preparations
being commonly produced [10–12]. Within the genus, Aspergillus nidulans has received
widespread recognition as a model eukaryote in fungal fundamental research because
its morphology, physiology, and growth conditions have been well characterized; in the
meanwhile, it is a potential resource and is frequently employed in the production of in-
dustrial enzymes [13,14]. These Aspergillus strains have the advantages of easy culture, fast
growth, and strong synthetic capacity; therefore, they are also well used in the production
of other valuable natural products [15–20]. In A. nidulans, for example, more than 30 biosyn-
thetic gene clusters have been identified to be associated with specific natural products,
although half of them remain uncharacterized [21]. Aside from these, several Aspergillus
spp. are also involved in human health and disease. For example, Aspergillus flavus pro-
duces aflatoxin, a carcinogen [22,23], and Aspergillus fumigatus causes aspergillosis [24,25].
In studies, these strains have been reported to harm the gut and respiratory organs of
cattle, poultry, and even humans. Globally, Aspergillus is estimated to be responsible for
over 200,000 invasive aspergilloses (IA) cases annually, the majority of which are caused
by A. fumigatus [26]. As the most prevalent airborne fungal pathogenic species found in
nature, A. fumigatus is becoming an increasingly lethal threat to immunocompromised
individuals. Despite the fact that information on the A. fumigatus genome sequencing is
available through online genomics resources, a large number of genes that may be involved
in pathogenicity remain poorly understood. The increasing number of entire genomes
sequenced from various fungal species, including Aspergillus spp., has raised the bar for
genetic modification in the study of filamentous fungi [27–29]. Recent advances in genetic
manipulation techniques, such as the development of various selective markers, improved
transformation efficiency, and improved gene deletion efficiency, among others [30–32],
have greatly facilitated these basic studies and breeding for industrial production [33–35].
However, these genetic manipulation techniques still require a significant amount of la-
bor and time to prepare the host/vector systems for each industrial strain for further
industrial production. Recently, the clustered regularly interspaced short palindromic
repeat (CRISPR)/CRISPR-related nuclease 9 (Cas9) system, a versatile genome-editing
technique that may give more precise gene modification, has been extensively developed
and employed in a wide range of fields of filamentous fungi [36–38]. With its advantages
of simple manipulation, targeted specificity, high-efficiency single/multiple-gene editing,
and a wide range of versatility, the CRISPR/Cas9-based genome editing approach has been
well applied to various Aspergillus species.

In this review, the overall technological advancements of CRISPR/Cas9-based genome
editing strategies and their applications in basic research and the production of recombinant
proteins and natural products in Aspergillus spp. are outlined and explored.

2. CRISPR/Cas9-Based Genome Editing in Aspergillus Species

From prokaryotes to eukaryotes, the CRISPR/Cas system has been proven to effec-
tively modify genes in virtually all species [37,39,40]. The CRISPR/Cas system could be
classified into two categories and six major types [41,42]. Currently, as a simpler CRISPR
system, the type II CRISPR/Cas9 system has been widely used in different species. The type
II system is comprised of nuclease (Cas9), mature CRISPR RNA (crRNA), trans-activating
crRNA (tracrRNA), and RNaseIII. In addition, the crRNA can combine with the tracrRNA
to generate a single-guide RNA (sgRNA) complex [43], which may effectively induce the
Cas9 nuclease to cleave the target sequences.
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DNA double-strand breaks (DSBs) in eukaryotes can be repaired by two DNA self-
repair mechanisms: the non-homologous end-joining (NHEJ) and homologous directed
repair (HDR) pathways. When DSBs occur, the genomic DNA initiates its repair process,
and as the dominant repair pathway, the NHEJ can lead to genomic alteration by causing
random loss, insertion, and replacement of bases at DSB locations. The HDR pathway, on
the other hand, allows for precise editing of target genes with the use of exogenous donor
DNA [36,44].

CRISPR/Cas9-based genome editing technology is currently being employed exten-
sively in filamentous fungi, including numerous vital genera, such as Neurospora, Tricho-
derma, Penicillium, and Aspergillus [45–48]. This genome editing strategy and its application
have been well established, particularly in Aspergilli.

2.1. Cas9 Expression

The CRISPR/Cas9 system was first discovered as an immunological defense system
in bacteria and archaea. With a total length of approximately 1400 amino acids, the Cas9
protein originating from the bacteria Streptococcus pyogenes is a critical component of this
genome editing machinery that functions as a nuclease [49]. When CRISPR/Cas9-based
genome editing is applied to filamentous fungi, the Cas9-encoding gene usually needs to be
codon-optimized and fused with a nuclear localization signal for its correct expression and
localization [48,50]. An identified SV40 nuclear localization sequence (NLS; PKKKRKV)
has been effectively exploited to guide the nuclear localization of Cas9 in many filamentous
fungi, such as the genus Aspergillus [48,51].

Furthermore, another major factor determining the expression efficiency of the cas9
heterologous gene is the promoter employed for Cas9 protein production. Therefore,
choosing the right promoters is crucial for the CRISPR/Cas9 system to work properly.
Several commonly used promoters have been successfully applied to drive the expression
of Cas9 protein in Aspergillus species, such as the promoters of tef1 (translation elongation
factor 1-alpha gene), gpdA (glyceraldehyde-3-phosphate dehydrogenase gene), amyB (α-
amylase gene), and glaA (glucoamylase gene) [48,50,52–54] (Table 1). In addition to these
typical promoters, PpkiA, PcoxA, and other promoters have also been effectively employed
to express Cas9 in Aspergillus species [52,55]. Cas mutants and their fusion with other
functional proteins may be able to extend genome editing capabilities even further. Previous
research has demonstrated that, in mammalian cells, a unique approach called “base editor”
has been developed that avoids DNA damage during genome editing and does not require
the provision of an HDR donor template [56]. It has been confirmed that a catalytic mutant
of SpCas9 (D10A nickase) may facilitate gene editing via HDR without NHEJ-induced
insertion-deletion formation [49]. The Cas9 mutant (D10A nickase) is used in combination
with a rat cytidine deaminase and uracil glycosylase inhibitor to convert cytidine (C) to
uridine (U) at the target sites. This base editing technique has been successfully applied in
Aspergillus, where it can directly edit single nucleotides and cause high-frequency C→T
replacement [57].

The specific cleavage site of Cas protein in the genome depends on both the guide
RNA (gRNA) and the protospacer adjacent motif (PAM). At present, the PAM sequence of
SpCas9 from S. pyogenes commonly used in Aspergillus is 5′-NGG-3′ [49]. Unlike bacteria,
most filamentous fungi lack native extra chromosome replicating DNA elements, such
as plasmids. However, studies have shown that AMA1 (autonomously maintained in
Aspergillus) derived from A. nidulans can be used to construct autonomous replicating
plasmids, which are often employed to express Cas9 and sgRNA. Multiple copies of AMA1-
carrying plasmids within a cell may lead to increased expression of Cas9 and sgRNA,
thus boosting the mutation efficiency of CRISPR/Cas9-mediated genome editing [52,58].
Furthermore, when the plasmid also carried a pyrG selective marker, the AMA1-based
plasmid may be easily removed in the presence of 5-fluoroorotic acid and uridine, allowing
the pyrG and Cas9 components to be recycled [59]
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2.2. Guide RNA Expression

The CRISPR/Cas9 system is an RNA-guided nuclease system that can efficiently
execute sequence-specific DNA cleavage. The gRNA in the natural CRISPR/Cas system
of bacteria or archaea consists of two regions: a CRISPR RNA (crRNA) harboring a target
recognition sequence of 20-nucleotide at the 5′-end and a trans-activating crRNA (tracrRNA)
for Cas9 engagement. In the presence of endogenous RNase III, the tracrRNA guides the
precursor crRNA to be processed into mature crRNA [60]. To generate genetic mutations
through CRISPR, the gRNA can provide sequence specificity to the target DNA, which
forms an RNA/DNA hybridization and recruits the Cas9 nuclease to cause DSB at the
target genomic locus.

gRNA is often driven by endogenous RNA polymerase III U6 promoters in most
organisms, and these promoters exhibit base-preference and persistence in the transcrip-
tional process [61]. The U6 is known to be the most highly conserved small nuclear RNA
(snRNA), and its promoter has been exploited for gRNA transcription in filamentous fun-
gus, including Aspergillus [48,51]. Another RNA polymerase III U3 promoter was also
successfully used for gRNA transcription in A. nidulans [50,62]. In addition, the transfer
ribonucleic acid gene (tRNA) promoters have also been well used for gRNA expression [55];
however, unlike the U6 promoter, the genome-editing efficiency driven by different tRNA
promoters varies greatly between strains. In addition to these, a high-efficiency promoter
of the 5S rRNA gene, which is highly conserved and efficiently expressed in eukaryotes,
was discovered and exploited as a gRNA promoter for CRISPR/Cas9 genome editing
in A. niger [54]. This study used the 5S rRNA gene combined with its 338-bp upstream
sequence as a promoter to fuse with gRNA sequence for gRNA expression. The results
demonstrated that the 5S rRNA promoter has a greater gene disruption efficiency than
those of U6 and other promoters, and the CRISPR/Cas9 system based on the endogenous
5S rRNA promoter showed a gene disruption efficiency of nearly 96%. Recently, using
the ribozyme self-processing capacity, the RNA polymerase II promoter was exploited
for sgRNA expression through a ribozyme-gRNA-ribozyme gene system to synthesize
mature sgRNA. According to this, a powerful constitutive gpdA promoter (PgpdA) from A.
nidulans was used to construct a gRNA expression cassette, which was successfully applied
to Aspergillus species [50,63].

Thus far, two kinds of CRISPR/Cas9 systems have been exploited for use in Aspergillus
genetic engineering. The first is a plasmid vector expressing system, which contains the
elements for expressing the Cas9 and gRNA in vivo, as previously stated; the second is
a plasmid-free CRISPR/CAS9 approach, which has also recently been developed and is
well adapted for genetic alteration [11,64,65]. In the plasmid-free CRISPR/Cas9 system,
the Cas9 protein and sgRNA can be assembled in vitro to generate a stable Cas9/sgRNA
ribonucleoprotein (RNP) complex, and then transferred into fungal protoplasts for genome
editing via PEG or other transformation methods. The RNP-based method accurately
controls the concentrations of the purified Cas9 protein and synthetic gRNA for in vitro
assembly, thereby reducing the risk of off-target events. However, although RNP complexes
may be utilized directly for genome editing, the approach lacks a selective marker for
fungal transformation. Therefore, in some cases, an additional vector harboring a selective
marker gene needs to be provided [11]. Recently, the RNP-based CRISPR/Cas9 system
was successfully applied to Aspergillus, resulting in a marked increase in succinic acid
production in the A. niger-engineered strain [11].

2.3. Donor DNA

Cas9-induced DSBs can either be directly subjected to NHEJ-mediated repair that
generates insertion/deletion mutagenesis or can be repaired by HDR by providing a DNA
repair template (donor DNA) to the target site for homologous recombination (HR). The
NHEJ repair pathway is completely distinct from the HDR repair system in that it can
introduce non-specific insertions or deletions at the cleavage site by directly connecting
the ends of DNA DSBs, whereas the HDR pathway allows a precise gene editing that only
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occurs during DNA replication. During DNA damage repair, the provision of homologous
DNA fragments might greatly improve gene targeting and repair efficiency via HR. In
addition, the Ku70, Ku80, and LigD proteins are known to play essential roles in the NHEJ
repair pathway, and the deletion of genes encoding these proteins leads to dramatically
improved HR efficiency [30,66,67]. This has been well combined with CRISPR/Cas9-based
genome editing technology, which can significantly raise the efficiency of gene targeting
when a donor DNA fragment is provided [48,68]. In Aspergillus, co-transformation of
fungal cells with the genome editing plasmid and circular/linear donor DNA fragments
enabled marker-free multiplex gene deletion or integration. Selectable markers or drug
resistance markers added into the donor DNA, on the other hand, can further improve
the effectiveness of CRISPR/Cas9-mediated Aspergillus genome engineering [26,53]. In
summary, the CRISPR/Cas9 system allows precise gene editing via the HDR pathway
by providing donor DNA, such as introducing a specific point mutation or precisely
replacing a target sequence with a desired one by inserting a designed sequence into target
sites [50,53,58].

2.4. Off-Target Effects in CRISPR/Cas9-Based Genome Editing

CRISPR/Cas9-mediated genome editing technology has been successfully used in
a variety of biological studies due to its high specificity, relatively simple manipulation,
and high efficiency, but its off-target effects have also attracted widespread attention. In
general, the off-target effect of the CRISPR/Cas9 system is mostly due to the recognition
specificity of Cas9/sgRNA complex to target genes on the genome. Cas9 nucleases, for
example, can recognize and cleave the mismatched base of an untargeted sequence, causing
serious off-target effects. The RNA-guided Cas9 nucleases could be highly active, even with
imperfectly matched RNA-DNA interfaces in human cells [69], and the detected off-target
sites harbored up to five mismatches for each gRNA. Therefore, how to reduce the off-target
effects is a major concern in genome editing. Screening and exploiting Cas mutants with
high recognition specificity, rational design, selection of sgRNAs, regulation of Cas protein
and sgRNA expression level, and other ways, are currently being used to limit off-target
effects. Firstly, an S. pyogenes Cas9 mutant (SPCas9-HF1) with high recognition specificity
was constructed to avoid genome-wide off-targets. This mutant is designed to significantly
reduce the non-specific DNA contacts with mismatched sequences while retaining on-target
activities, thus reducing the risk of off-target [70]. Second, sgRNA design tools or off-target
risk prediction software can be used to assess the specificity of the target sequence in the
genome. For instance, sgRNAcas9, a software package, is available (www.biootools.com,
accessed on 1 April 2022) for predicting the potential off-target cleavage sites and designing
sgRNA to improve CRISPR-Cas9 specificity for targeted genome editing [71]. Previous
studies also showed that high concentrations of Cas9/gRNA complexes could trigger
off-target effects. Therefore, thirdly, studies attempted to regulate the expression levels
of sgRNA and Cas proteins. Down-regulating the transcription and translation levels of
sgRNA and Cas proteins in cells has been found to significantly reduce the risk of off-
targets [72]. Recently, a CRISPR/Cas9 system designed exclusively for transient expression
was further developed [73]. When the Cas9 protein and sgRNA are assembled in vitro
to form a stable RNP complex and subsequently transform into the fungal cells, the off-
target effects can also be reduced due to their instantaneous existence. In addition, RNP
transformation minimizes the likelihood of genetic material being integrated into non-
target regions of the genome. These strategies provide effective schemes for decreasing the
off-target effects of genome editing, thereby improving the specificity of the CRISPR/Cas9
system in Aspergillus species.

3. Development and Application of CRISPR/Cas9-Based Genome Editing Technology
in Several Aspergillus Species

Aspergillus fungus serves a critical role in the production of secreted proteins and the
decomposition of organic matter, making them popular in the food fermentation industries

www.biootools.com
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and for recombinant protein production. Recently, they have also been widely used as
hosts for the production of industrially valuable secondary metabolites. Despite the fact
that the Aspergillus spp. have been used to manufacture a range of critical enzymes and/or
natural metabolites, wild-type strains are often unable to produce the desired products
at the industrial level. Therefore, genetic engineering techniques are utilized to further
boost the productivity of these industrial strains, whereas traditional genetic manipulation
approaches are time-consuming and laborious.

More recently, the CRISPR/Cas9-based genome editing technique has been well
applied in the basic research and manufacturing applications of natural products and
recombinant proteins in the genus Aspergillus (Table 1) [74,75].

3.1. Aspergillus Nidulans

The Aspergillus species is considered as a suitable host for industrial enzyme produc-
tion because of its high secretion capacity and safety. A. nidulans, as a type strain in the
genus Aspergillus, plays a key role in basic fungal research; meanwhile, it has also been
widely applied in the production of industrial enzymes and natural products [13,21]. The
CRISPR/Cas9 system was first established for genetic engineering in Aspergilli, including A.
nidulans, A. niger, A. aculeatus, and others, by Nodvig et al. [63]. In this study, mutations in
the yA gene, which can change the color of spores, were utilized to investigate the efficiency
of this genome editing. Following that, Cpf1, a new tool originating from Lachnospiraceae
bacterium, was employed to replace the Cas9 nuclease in the fungal CRISPR technology [62].
The codon-optimized Lb_cpf1 nuclease mediated CRISPR experiments have shown that
Cpf1 can be used effectively for gene editing in Aspergilli. Recent studies have also shown
that CRISPR-mediated transcriptional activation of fungal biosynthetic gene clusters could
accelerate the discovery of genomics-driven bioactive natural products [76]. Using the
established strategy, the enhanced production of the compound microperfuranone was
achieved by targeting the native nonribosomal peptide synthetase-like (NRPS-like) gene
micA in A. nidulans.

3.2. Aspergillus Niger

A. niger is a well-established industrial cell factory that can produce organic acids and a
variety of industrial enzymes. Its extraordinary tolerance to extremely acidic environments
and ability to hydrolyze a wide range of polymeric substances make it a suitable cell factory
for diverse biotechnological applications. The development of CRISPR/Cas9-based genome
editing techniques, including multi-gene editing, traceless gene editing, and fine regulation
of gene expression, provides a powerful tool for studying gene function and constructing
and optimizing cell factories in A. niger. Recently, the CRISPR/Cas9 method combined
with synthesized sgRNA in vitro was used to disrupt genes involved in galactaric acid
catabolism, allowing for efficient galactaric acid production in A. niger [53]. This was the
first time that CRISPR/Cas9 technology was successfully used for metabolic engineering
in A. niger. Subsequently, using the same CRISPR/Cas9 strategy, the effective deletion
of gluD, which encodes an NADPH requiring 2-keto-L-gulonate reductase involved in
D-glucuronic acid catabolism, resulted in the accumulation of 2-keto-L-gulonate in the
liquid cultivation [77]. Likewise, Kuivanen et al. [78] also demonstrated that the disruption
of the gluF gene by CRISPR/Cas9 in A. niger caused the strain to lose its ability to catabolize
D-glucuronate. These findings suggest that the CRISPR/Cas9-mediated genome editing
approach has been successfully used to investigate unexplored metabolic pathways and
functional genes in A. niger. On this basis, an optimized CRISPR/Cas9 method based on
Cas9/gRNA RNP complexes assembled in vitro was further developed, which achieved
100% targeting efficiency for single genome editing [64,79]. This approach has also been
proven to be suitable for metabolic engineering application of multiplexed genome edit-
ing with two or three genomic targets, resulting in increased galactarate production in A.
niger [64]. In A. niger, a Cas9 mutant (D10A nickase), fused with a rat cytidine deaminase,
has been exploited for single-base editing, which might result in high-frequency CT substi-



J. Fungi 2022, 8, 467 7 of 16

tution at the target sites. This Cas9 mutant is an inactivated nuclease that does not generate
DNA DSBs, thus preventing unnecessary deletion or insertion. This newly developed base
editing system provides a more convenient tool for studying gene function through targeted
genetic alteration [57]. A. niger, as a cell factory, is used to produce a variety of proteins and
organic acids, and protein secretion is commonly linked to mycelial growth. CRISPR-based
genome editing was used to examine the association between protein secretion and fila-
mentous growth by placing the inducible Tet-on conditional expression system upstream
of related genes such as ageB, secG, and geaB in studies [80]. The Tet-on system, which
employs sophisticated conditional gene expression, can reawaken the biosynthesis of natu-
ral products in A. niger. The CRISPR/cas9 genome editing strategy, in combination with
the Tet-on system, may provide a new approach to enhance protein and organic acid pro-
duction. As mentioned above, using the CRISPR/Cas9-based genome editing techniques,
more experiments on the production and research of enzyme preparations (e.g., pectinases,
trehalase, etc.) [75,81,82] and natural metabolites (e.g., citric acid, succinic acid, etc.) [11,83]
were conducted in A. niger. For example, A. niger naturally secretes pectinases to degrade
pectin, one of the main carbon sources for filamentous fungi, and W361R mutation in the
transcriptional activator GaaR caused by CRISPR/Cas9 leads to constitutive production of
pectinases [81]. In another study, Myceliophthora thermophila thermostable trehalase (MthT),
which can catalyze the hydrolysis of the non-reducing disaccharide trehalose, was heterol-
ogously high-expressed in A. niger using a CRISPR/Cas9-mediated multi-copy knock-in
expression strategy, with the yield reaching 1698.83 U/mL. The addition of the recombinant
MthT into 30% starch saccharification liquid greatly boosted the ethanol conversion rate in
ethanol fermentation [75]. In experiments with natural metabolite production, the genome
editing method disrupted pyrG, which encodes the orotidine-5-decarboxylase, resulting
in a 2.17-fold increase in citric acid production compared to the control, suggesting that
inhibition of uridine/pyrimidine synthesis could promote citric acid overproduction [83].
In addition, the well-established RNP-based CRISPR/Cas9 system has been successfully
used in A. niger genetic engineering, and significantly improved the succinic acid produc-
tion by disrupting and overexpressing multiple relevant genes in the engineered strain [11].
Recently, with the improvement of CRISPR/Cas9-based genome editing strategies, an in-
creasing number of studies on gene function and metabolic regulation have been completed
in A. niger [84,85].

3.3. Aspergillus Oryzae

A. oryzae, as an important strain in the traditional fermentation and food processing
industries, has been well studied and utilized. A. oryzae has been known to have a strong
ability to secrete large amounts of hydrolytic enzymes, and this property has been widely
exploited in the production of recombinant proteins and secondary metabolites [86]. In
recent years, the CRISPR/Cas9 system, a versatile genomic editing technology, has been
rapidly developed in A. oryzae to better adapt to its application in industrial production [87].
Katayama et al. [48] were the first to establish CRISPR/Cas9-based genome editing in
A. oryzae successfully. In this study, they constructed the plasmids expressing the codon-
optimized cas9, in which an SV40 nuclear localization sequence was fused to both the N-
and C-terminus of the cas9 gene. The resulting transformed strains have a mutation rate
of 10–20%, with most of the mutations being 1-bp deletion or insertion. On this basis,
by examining the deletion effect of an ecdR gene linked with sclerotial formation [88], it
was demonstrated that mutation of ligD, a DNA ligase gene involved in NHEJ, signifi-
cantly enhanced the targeting efficiency of the CRISPR/Cas9 system in A. oryzae industrial
strains [68]. In addition, an improved A. oryzae CRISPR/Cas9 approach, which allows for
effective multiple gene deletion or introduction, was well established by recycling AMA1-
based genome editing plasmids bearing the drug resistance marker ptrA [58]. When a
circular donor DNA is provided, this approach greatly boosts HDR-mediated genome edit-
ing efficiency. In addition, an instantaneous genome editing technique based on cas9-gRNA
RNP complex assembled in vitro has also been successful established in A. oryzae [89].
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Using these developed genome editing techniques, a variety of basic and production
application research was further attempted in A. oryzae industrial strains. For instance,
adalimumab, a human anti-TNFα antibody, was produced by fusing it with AmyB, a
α-amylase. Then, CRISPR/Cas9-based genome editing was used to delete the Aooch1 en-
coding a key enzyme of hyper-mannosylation process, to assess the recombinant antibody’s
capacity to bind to FcγRIIIa [90]. This genome editing system was used to investigate
the functional characterization of glycerol dehydrogenase, revealing that AoGld3, a glyc-
erol dehydrogenase, is involved in the production of the secondary metabolite kojic acid
by influencing the expression of kojA (an enzyme gene) and kojR (a transcription factor
gene) involved in the kojic acid biosynthesis [91]. Moreover, using the CRISPR/Cas9
technology, single and double gene disruption of two intracellular triacylglycerol lipases,
AoTgla and AoTglb, revealed that disfunction of either AoTgla or AoTglb improved total
lipid contents, particularly in the triacylglycerol (TAG) fraction [92]. The biosynthesis of
oligopeptides with functional activities has become a research hotspot. In a recent study,
promoter exchange of the ACV synthetase (a non-ribosomal peptide synthase (NRPS)) gene
(acv), was implemented by CRISPR/Cas9-based genome editing for bioactive oligopeptide
production in A. oryzae [93].

3.4. Aspergillus Fumigatus and Other Aspergillus Species

This CRISPR/Cas9 approach has been successfully applied not only to metabolic
engineering of the above industrial fermentation strains, but also to the gene manipulation
of human pathogenic fungus A. fumigatus and other Aspergillus species. In A. fumigatus,
the pksP gene, which is required for melanin production, was used as a case study to
initially validate the genome editing efficiency of the CRISPR/Cas9 system [94]. On this
foundation, a high-efficiency CRISPR genome editing method was established, which
carries out precise in-frame integration with an accuracy of 95–100% using an extremely
short (about 35-bp) homologous arm (microhomology-mediated end joining, MMEJ) [26].
Using the MMEJ-mediated approach, an exogenous GFP, pksP (a conidial melanin gene),
and cnaA (a catalytic subunit of calcineurin gene) were precisely integrated and edited at
multiple expected sites. Trypacidin is one of the natural components of the opportunistic
human pathogens produced by A. fumigatus. Cas9-mediated gene editing was successfully
exploited for the functional reconstitution of tynC, encoding a polyketide synthase of
the trypacidin biosynthetic pathway in a nonproducing A. fumigatus strain [95]. Triazole
antifungal drugs are indispensable in the clinical treatment of invasive aspergillosis, and
triazole-resistant A. fumigatus is recognized as a global health issue. Generally, triazole
resistance generated by Cyp51A specific amino acid substitution exhibits a typical pattern
depending on the mutation site. In a recent study, Cyp51A and Hmg1 mutations that
contribute to atypical triazole resistance were assessed using the established RNP-based
CRISPR/Cas9 approach in A. fumigatus [96,97]. Then, in another study of antifungal drugs,
researchers used the RNP-based CRISPR/Cas9 system to disrupt genes encoding putative
protein kinases in A. fumigatus to identify the genes required for fungal survival under the
stress of echinocandin, an antifungal with a limited effect on invasive aspergillosis [98].
Surprisingly, the identified protein kinases were found to be necessary for both hyphal
septation and A. fumigatus’s capacity to invade lung tissue. In addition to these industrially
important strains and pathogenic strains, this versatile genetic manipulation tool has
also been successfully established and applied to other Aspergillus species, including A.
carbonarius, A. novofumigatus, and A. terreus, among others [99–102]. More studies on the
development and utilization of the CRISPR/Cas9 genome editing technology in Aspergillus
are summarized in Table 1.
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Table 1. The development and application of the CRISPR/Cas9-based genome editing system in
Aspergillus species.

Species
Cas9 Expression gRNA

Expression Delivery
Method

DNA Repair
System Gene Editing Type Efficiency References

(Selection Marker,
Promoter) (Promoter)

Aspergilli pyrG/argB/hph/ble, tef1 gpdA PMT NHEJ 1–84 bp deletion or
insertion Success [63]

Aspergilli argB/pyrG, gpdA U6, U3 PMT HDR Multiple-gene
disruption 10–100% [50]

Aspergilli pyrG, tef1 U3 PMT HDR gene disruption 80% [62]

A. nidulans pyrG, gpdA U3 PMT HDR gene activation (gene
replacement) Success [76]

A. niger pyrG/hph, tef1 in vitro
transcription PMT HDR gene disruption 37.5–100% [53]

A. niger hph, tef1 in vitro
transcription PMT HDR gene disruption Success [77]

A. niger hph, tef1 gpdA PMT HDR insertion-deletion
mutation 100% [52]

A. niger hph, tef1 gpdA PMT NHEJ short insertions or
deletions Success [78]

A. niger amdS, glaA U6 PMT NHEL/HDR gene disruption 79% [51]

A. niger pyrG, pkiA tRNA
promoter PMT NHEJ/HDR

gene
disruption/gene

replacement
13–97% [55]

A. niger hph, tef1 in vitro
transcription PMT HDR gene knock-in Success [80]

A. niger hph, tef1 in vitro
transcription PMT HDR gene knock-in Success [103]

A. niger hph, tef1 tRNA
promoter PMT HDR single/multiple gene

knock-out 38–100% [104]

A. niger hph, tef1 in vitro
transcription PMT HDR gene knock-out 100% [105]

A. niger hph, tef1 in vitro
synthesis PMT HDR gene knock-in (base

editing) Success [81]

A. niger RNP PMT HDR single/multiple gene
knock-out 100% [64]

A. niger (rAPOBEC1-nCas9D10A)
hph, tef1 U6 PMT NHEJ single base editing 47.4–100% [57]

A. niger amdS, glaA 5S rRNA PMT NHEJ/HDR gene disruption 100% [54]

A. niger pyrG, glaA U6 PMT HDR gene
knock-out/knock-in 13.5–54.5% [59]

A. niger hph, glaA 5S rRNA PMT HDR gene disruption 100% [83]

A. niger hph, tef1 U6 PMT HDR gene
knock-out/knock-in Success [75]

A. niger RNP PMT NHEJ/HDR gene
knock-out/knock-in 8.3–37.5% [11]

A. niger RNP PMT NHEJ gene disruption Success [106]

A. niger pyrG, pkiA tRNAPro1 PMT HDR base editing Success [107]

A. niger hph, tef1 U6 PMT HDR gene knock-in Success [82]

A. niger hph, tef1 glutamine
(gln) tRNA

Shock
wave
/PMT

NHEJ/HDR
gene

disruption/gene
knock-in

Success [74]

A. niger RNP PMT HDR gene disruption 100% [79]
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Table 1. Cont.

Species
Cas9 Expression gRNA

Expression Delivery
Method

DNA Repair
System Gene Editing Type Efficiency References

(Selection Marker,
Promoter) (Promoter)

A. niger pyrG, pkiA tRNAPro1 PMT HDR gene knock-out Success [108]

A. niger RNP PMT HDR gene replacement >90% [109]

A. niger RNP PMT NHEJ/HDR gene knock-out Success [84]

A. niger hph, tef1 in vitro
transcription PMT HDR gene knock-in Success [110]

A. niger hph, tef1 tRNA
promoter PMT HDR gene knock-out Success [85]

A. oryzae niaD, amyB U6 PMT NHEJ 1–22 bp deletion or
insertion 10–20% [48]

A. oryzae niaD, amyB U6 PMT NHEJ 1–23 bp deletion 100% [68]

A. oryzae ptrA, amyB/tef1 U6 PMT HDR Single/double-gene
disruption 50–100% [58]

A. oryzae niaD, amyB U6 PMT HDR gene disruption Success [90]

A. oryzae pyrG, TEF1 U6 PMT HDR gene disruption Success [92]

A. oryzae RNP PMT HDR gene disruption 56–100% [89]

A. oryzae pyrG, TEF1 U6 PMT HDR Promoter exchange Success [93]

A. fumigatus hph, tef1 snr52 PMT NHEJ/HDR gene disruption 25–53% [94]

A. fumigatus pyr4, niiA/gpdA

U6-1/2/3
promoters or

in vitro
transcription

PMT HDR Single/double-gene
disruption 95–100% [26]

A. fumigatus pyrG/hph, tetON gpdA PMT NHEJ/HDR
gene

disruption/gene
replacement

Success [95]

A. fumigatus RNP PMT HDR gene disruption 97% [65]

A. fumigatus hph, tef1 gpdA PMT HDR base editing Success [111]

A. fumigatus RNP PMT HDR gene knock-in Success [97]

A. fumigatus RNP PMT HDR
gene

disruption/gene
replacement

93%;
10–20% [112]

A. fumigatus RNP PMT HDR gene replacement Success [96]

A. fumigatus RNP PMT HDR gene disruption 90% [98]

A. carbonarius hph, tef1 AMT NHEJ/HDR Single-gene
disruption 27% [99]

A. carbonarius RNP PMT HDR gene disruption Success [100]

A. novofumi-
gatus pyrG, tef1 gpdA PMT HDR gene disruption Success [101]

A. terreus pyrG, gpdA 5S rRNA
promoter PMT HDR gene disruption 71% [113]

A. lentulus RNP PMT HDR gene knock-in Success [102]

RNP, in vitro-assembled Cas9 and gRNA ribonucleoprotein complexes; PMT, a polyethylene glycol (PEG)/CaCl2-
mediated protoplast transformation system; AMT, Agrobacterium tumefaciens-mediated transformation system.

4. Conclusions

The CRISPR/Cas9 system is a powerful genome editing tool that has been used on a
variety of industrially important and pathogenic Aspergillus species, including A. nidulans,
A. oryzae, A. niger, and A. fumigatus. However, in order to create effective CRISPR/Cas9-
mediated genome editing strategies for Aspergillus species, various restrictions and hurdles
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must be overcome. Off-target effects generated by Cas9’s non-targeted nuclease activity are
a key barrier in genome editing of Aspergillus employing CRISPR technology.

As a result, a variety of strategies are employed to reduce the likelihood of off-target
effects. The sgRNA sequence, which is crucial for Cas9 nuclease activity, should be carefully
designed to avoid nucleotide mismatches with non-targeted sites in the genome. After
successful genome editing, the cas9 gene should be regulated by selecting appropriate
promoters to prevent its further expression, or transient expression should be achieved
through Cas9/sgRNA RNP complexes assembled in vitro. As a result, off-target effects
might be reduced in Aspergillus species by limiting Cas9 expression and activity, designing
stable and unique gRNAs. In addition, the efficiency of multi-gene editing in Aspergillus is
determined by the design of multiple sgRNA expression cassettes and the efficacy of co-
transformation. The development of genome editing technology based on the CRISPR/Cas9
system will dramatically simplify genetic manipulation, and substantially improve the
research of functional genes as well as the production of recombinant proteins and natural
products in Aspergillus species.
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