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Abstract: Nitrogen-rich porous networks with additional polarity and basicity may serve as effective
adsorbents for the Lewis electron pairing of iodine molecules. Herein a carbazole-functionalized
porous aromatic framework (PAF) was synthesized through a Sonogashira–Hagihara cross-coupling
polymerization of 1,3,5-triethynylbenzene and 2,7-dibromocarbazole building monomers. The re-
sulting solid with a high nitrogen content incorporated the Lewis electron pairing effect into a
π-conjugated nano-cavity, leading to an ultrahigh binding capability for iodine molecules. The
iodine uptake per specific surface area was ~8 mg m−2 which achieved the highest level among
all reported I2 adsorbents, surpassing that of the pure biphenyl-based PAF sample by ca. 30 times.
Our study illustrated a new possibility for introducing electron-rich building units into the design
and synthesis of porous adsorbents for effective capture and removal of volatile iodine from nuclear
waste and leakage.

Keywords: iodine capture; porous aromatic framework; Lewis electron; pairing effect; Sonogashira-
Hagihara cross-coupling

1. Introduction

To overcome the energy shortages and environmental concerns originated from fossil
fuels, nuclear power, the only mature technology, is considered a possible approach for
providing electricity on a large scale with little greenhouse gases emission [1]. However,
the treatment of nuclear waste and the emergency response for nuclear leakage, cause
consternation in the increasing development of the nuclear industry [2]. The 129I and 131I
atoms originated from the uranium fission are the two main ingredients of nuclear waste,
especially 129I, which has an ultra-long radioactive half-life (t1/2 = 15.7 × 106 years) [3,4].
Because the enrichment and toxic effects in organisms, effective methods for the capture
and removal of radiological iodine aroused strong concerns. To date, several strategies
have been proposed, including dry dedusting [5,6], chemical precipitation [7], and physical
adsorption [8–10]. Among them, the physical adsorption method has specific advantages
of high adsorption efficiency, low cost, simple operation, and high recyclability [11,12].

Porous aromatic frameworks (PAFs) composed of covalently bonded light atoms
(H, B, C, N, and O), have superb thermal and chemical stability, high surface area, and
tunable pore size, which make them ideal candidates for iodine capture from the nuclear
waste stream containing volatile iodine radionuclides [13–16]. In the past few decades,
PAF solids with tunable pore properties including surface area, volume, and size distri-
bution were demonstrated to play important roles for the physical adsorption for guest
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molecules [17–20]. However, pure carbon-based PAFs with a micropore cavity do not show
an excellent capacity and fast kinetics for I2 matter adsorption. For instance, PAF-1 with
an exceptionally high surface area (5600 m2 g−1) and micropore volume (0.89 cm3 g−1)
exhibits a low iodine vapor capture capability with 186 wt% at 298 K per 40 Pa [21]. It is
obvious that the adsorption capacity of the adsorbent for iodine is not only related to the
surface area and pore size, but the effective adsorption sites on the accessible surface may
possess a more important role to interact with volatile iodine gases. A detailed investigation
should be conducted to reveal the relationship between the chemical features of PAFs and
iodine molecules, which provides significant advantages and opportunities of PAFs for the
development of next-generation porous adsorptions.

Based on the polarization effect, active sites transform the speciation of iodine molecules
into multiple oxidation states (−1, 0, +1, +3, +5, and +7), primarily as molecular iodine (I2),
iodide (I−), iodate, or organic iodine (org-I) [22–25]. A nitrogenous fragment possesses
lone pair electrons, thereby revealing highly negative charge to enhance the binding affin-
ity for the polarizable electron cloud of I2 molecules [26]. Herein, 2,7-dibromocarbazole
was adopted as the functional building monomer to prepare a carbazole-containing PAF
network through a one-step Sonogashira-Hagihara coupling reaction. Consequently, the
resulting PAF sample with the electron-rich system exhibits an outstanding performance
for the capture of a volatile iodine with an uptake of 2.10 g g−1. The results of this study
provide useful guidance for the development of new porous adsorbents for the removal of
radioactive iodine.

2. Results and Discussion

LNU-13 was synthesized through the Sonogashira-Hagihara coupling of 2,7-dibromo-
carbazole and 1,3,5-triethynylbenzene (Figure 1a). As determined by the Fourier transform
infrared spectroscopy (FTIR, Figure 2a), the C-Br stretching vibration of 2,7-dibromocarbazole
at 495 cm−1 and the C–H stretching vibration of the terminal alkyne (1,3,5-triethynylbenzene)
at 3270 cm−1 disappeared from the IR spectrum of LNU-13, verifying the completeness
of the Sonogashira-Hagihara coupling reaction. The structural integrity of LNU-13 was
further confirmed by 13C NMR (Figure 2b). The main peaks observed in the range of
120–150 ppm were attributed to the substituted carbon of the aromatic ring connected to
the benzene ring; and the resonance around 90 ppm was assigned to the carbons originated
from the –C≡C– group.
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Figure 2. (a) FTIR spectra of 2,7-dibromocarbazole, 1,3,5-triethynylbenzene, and LNU-13; (b) solid-
state 13C NMR spectrum of LUN-13; (c) powder X-ray diffraction pattern of LNU-13. (d) SEM image
of LNU-13; (e)TEM image of LNU-13; (f) TGA plot of LNU-13 at N2 condition with a ramp rate of
5 ◦C min−1; (g) N2 adsorption-desorption isotherm of LNU-13; (h) pore size distribution of LNU-13.
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Powder X-ray diffraction (XRD) pattern of LNU-13 shows a characteristic broad peak,
indicating they are amorphous in nature (Figure 2c). It seems that the formation of the
stacked layer structure by the ordered connection among the building blocks is otherwise
difficult [13,27]. Scanning electron microscopy (SEM) analysis demonstrated the stacked
spherical structures of LNU-13, as shown in Figure 2d. Transmission electron microscopy
(TEM) clearly confirmed the amorphous structure of LNU-13 (Figure 2e). As illustrated by
thermogravimetric analysis (TGA, Figure 2f), the LNU-13 material begins to degrade at
350 ◦C and the weight loss is about 20% at 750 ◦C under a purified nitrogen atmosphere,
indicating that LNU-13 possesses good thermal stability. All the results demonstrate that
LNU-13 retains its intact skeleton under a variety of harsh conditions.

The porosity of the resulting PAF material was probed using N2 adsorption-desorption
isotherms at 77 K up to 1 bar. The adsorption curve combined the features of type-I
and type-IV adsorption isotherms, indicating the co-existence of a micro- and meso-pore
system (Figure 2g). The BET surface area of LNU-13 was determined to be 255 m2 g−1.
LNU-13 possessed wide pore size distribution in the range of 1–6 nm calculated using
a nonlocalized DFT (NL-DFT) (Figure 2h). This hierarchical porous structure made the
PAF solid an excellent scaffold for the access of the I2 guest into the internal space of LNU
particle [28,29].

The iodine uptake measurement of LUN-13 was conducted by placing the PAF powder
into a sealed vessel filled with iodine vapor at 348 K under normal atmosphere. As shown
in Figure 3a, the iodine adsorption capacity increased significantly with the prolonging
of the contact time. In the first 5 h, the adsorption capacity of LNU-13 was very fast
with a value of 1.75 g g−1. No further change in iodine loading was observed after 48 h
exposure, indicating that LNU-13 was basically saturated (2.10 g g−1). A significant color
change in the powder from brown to black was observed (Figure 3a inset). Calculated
by the BET surface area (255 m2 g−1), the iodine uptake per specific surface area was
~ 8 mg m−2 which achieved the highest level among silver-containing zeolite [30], metal-
organic frameworks (MOFs), and conjugated microporous polymers (CMPs), etc., reported
by the same adsorption method, surpassing that of PAF-1 by ca. 30 times (Figure 4).
Moreover, it also has a certain competitiveness compared with other forms of adsorbent,
such as carbon foam, fiber adsorbent, carbon cloth, aerogel, etc., including BN foam
(2.12 g g−1) [31], PE/PP-g-PNVP fibers (1.2378 g g−1) [32], C60-CC-PNP (2.4 g g−1) [33],
CC-PNP (1.02 g g−1) [33], ENTDAT dried gel (1.8 g g−1) [34], G-TP5 (0.67 g g−1) [35] and
G-TP6 (0.58 g g−1) [35].

The adsorption mechanism of iodine vapor in LNU-13 was studied through PXRD,
Raman, and FT-IR spectroscopy. Curve-fitting for the I2 adsorption isotherm was based
on pseudo-second-order kinetics (Figure 3b), a high correlation coefficient (R2 = 0.99993)
suggested the chemical adsorption process of LNU-13. As shown in Figure 5a, there were
no characteristic peaks of I2 crystal diffraction peaks observed in the iodine-loaded LNU-13
(LNU-13@I2). This phenomenon proved the monodispersed iodine species in the form of
molecular or ionic states in the PAF architecture [27]. Raman spectroscopy of LNU-13@I2
presented a series of bands centered at 110 and 170 cm−1 (Figure 5b). The characteristic
bands in the region of 100–120 cm−1 were assigned to the symmetric stretching of the
I3− species, while the band located at 170 cm−1 was ascribed to the higher polyiodide
anions, i.e., I5− [36,37]. Comparing the FTIR spectra of pristine LNU-13 and LNU-13@I2
(Figure 5c,d), the aromatic rings were centered at 1555 cm−1 in LNU-13 vs. 1612 cm−1 in
I2@LNU-13. A similar shift was also observed for the band assigned to vC–N (str) bond
vibration (1234 cm−1 for LNU-13 and 1262 cm−1 for I2@LNU-13). In addition, the peak
at 731 cm−1 belonged to the characteristic signal for iodine molecules. All these results
indicate that the lone pair electron of the carbazole nitrogen polarizes the iodine molecule
into an ionic state, and then achieves the excellent adsorption property for an iodine
guest [38,39].
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Figure 3. (a) I2 adsorption curve of LNU-13 at 348 K. Inset: the photographs reveal the color
change in LNU-13 before and after iodine adsorption; (b) curve-fitting for the I2 adsorption pro-
cess; (c) photographs showing the iodine-adsorbed process in n-hexane; (d) photographs showing
the iodine-released process of LNU-13@I2 in ethanol; (e) I2 release curve of LNU-13@I2 at 398 K;
(f) recycling experiment of LNU-13.
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In order to evaluate the ability of LNU-13 for the capture of elemental iodine from
the solution, LNU-13 powder was immersed into a closed vial containing a pre-prepared
iodine elemental n-hexane solution (300 mg L−1). As depicted in Figure 3c, the color of
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the initial solution originated from iodine elemental substance changed from purple to
colorless over time; after exposure for 24 h, the n-hexane solution containing both LNU-13
and iodine molecules became transparent and colorless, which proved that LNU-13 powder
captured iodine from a n-hexane solution.

The recyclability for I2 capture is also a key parameter in practical usage. The iodine-
loaded LNU-13 powder can be activated by both thermal desorption and solvent elution.
The iodine adsorbed in the PAF cavity is easily released in polar organic solvents including
methanol and ethanol. After immersion in an ethanol solution for 72 h, the color of the
mixture gradually changes from colorless to dark brown, correspondingly, the color of the
solid varies from black to brown (Figure 3d). These results manifest that guest iodine is
gradually released from the PAF structure into the organic solvent. As shown in Figure 3e,
the release efficiency of LNU-13@I2 is as high as 97% after the solid is heated in air at 398 K
for 320 min. In addition, the LNU-13 sample withstands multiple adsorption-desorption
cycles, and the adsorption capacity reaches 69% of the initial capacity after five cycles of
iodine adsorption (Figure 3f).

3. Materials and Methods
3.1. Materials

2,7-Dibromocarbazole was purchased from Energy Chemical, Shanghai, China and
1,3,5-triethynylbenzene was received from TCI, Tokyo, Japan. Copper iodide and tetrakis
(triphenylphosphine) palladium were obtained from Sigma-Aldrich, St. Louis, MO, USA.
Other chemicals and solvents were purchased from commercial suppliers and used without
further purification. All reactions were performed under a purified nitrogen atmosphere.

3.2. Synthesis of LNU-13

The 2,7-Dibromocarbazole (649 mg, 1.9976 mmol), 1,3,5-triethynylbenzene (200 mg,
1.3317 mmol), tetrakis (triphenylphosphine) palladium (30 mg), and copper (I) iodide
(10 mg) were added into a round-bottom flask. The mixture was degassed through a N2
bubbling process for 30 min; after that, 20 mL of anhydrous N,N-dimethylformamide
(DMF) and 8 mL of anhydrous triethylamine (TEA) were added into the system. Then,
the reaction mixture was heated to 80 ◦C for 72 h under N2 gas atmosphere. Cooling to
room temperature, the precipitate was washed with each DMF, tetrahydrofuran (THF), and
acetone solvents for several times to obtain a crude product. Further purification of the
product was carried out via Soxhlet extraction with THF, dichloromethane, and methanol
in turns for 72 h. The product was dried in a vacuum for 10 h at 90 ◦C to obtain LNU-13.

3.3. Iodine Adsorption and Release
3.3.1. Iodine Adsorption from Volatile Iodine

The iodine adsorption capacity was analyzed according to the gravimetric measure-
ments. The LNU-13 powder (30.0 mg) was loaded into a small weighing bottle, which
was then placed in a closed system at 348 K (75 ◦C) and ambient pressure, along with
excess non-radioactive solid iodine. After certain time intervals, the bottle was taken out,
cooled down to room temperature and weighted, and then loaded back into the vapor of
iodine to continue iodine adsorption [40,41]. The weight percentage of captured iodine
was calculated using the following formula:

Adsorption capacity =
m2 −m1

m1
× 100% (1)

where m2 and m1 are the masses of PAF powder after and before iodine intake, respectively.

3.3.2. Iodine Adsorption from Solution

To evaluate the adsorption of dissolved iodine in cyclohexane, LNU-13 samples were
immersed in n-hexane solution (300 mg L−1) containing iodine for 24 h, the adsorption
process of iodine was photographed at selected time intervals.
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3.3.3. Iodine Desorption in Solution

Ethanol was used as the extraction solvent to evaluate the reversibility of PAF materials
iodine adsorption. Pouring five milliliters of ethanol to five milligrams of iodine-loaded
polymer, the release process of iodine was photographed at selected time intervals.

4. Conclusions

In summary, a carbazole-based porous aromatic framework was successfully synthe-
sized through a one-step Sonogashira-Hagihara cross-coupling polymerization. Based on
the Lewis electron pairing effect, the resulting solid achieved the highest value of iodine
uptake per specific surface area. The iodine uptake per specific surface area far surpassed
that of silver-containing zeolite, MOFs, and CMPs, etc. Our study firmly demonstrated the
important role of electron-rich units in the open architecture for capture and the removal of
iodine substance, which opened a gate for the design and synthesis of porous adsorbents
for remediation of radioactive iodine to address environmental issues.
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