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Abstract: Superhydrophilic coatings have been widely used for the surface modification of membranes
or biomedical devices owing to their excellent antifouling properties. However, simplifying the
modification processes of such materials remains challenging. In this study, we developed a simple and
rapid one-step co-deposition process using an oxidant trigger to fabricate superhydrophilic surfaces
based on dopamine chemistry with sulfobetaine methacrylate (SBMA). We studied the effect of different
oxidants and SBMA concentrations on surface modification in detail using UV–VIS spectrophotometry,
dynamic light scattering, atomic force microscopy, X-ray photoelectron spectroscopy, and surface
plasmon resonance. We found that NaIO4 could trigger the rate of polymerization and the optimum
ratio of dopamine to SBMA is 1:25 by weight. This makes the surface superhydrophilic (water
contact angle < 10◦) and antifouling. The superhydrophilic coating, when introduced to polyester
membranes, showed great potential for oil/water separation. Our study provides a complete
description of the simple and fast preparation of superhydrophilic coatings for surface modification
based on mussel-inspired chemistry.
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1. Introduction

The surface modification of polymeric materials is the primary step for improving their surface
properties to extend their utility [1–4]. Although plastic substrates offer many advantages, such as light
weight, flexibility, transparency, excellent mechanical properties, and electrical and thermal insulation,
the water contact angle of most plastic materials lies between hydrophobicity and hydrophilicity
(10◦ < θw < 90◦), which can be inadequate for several applications. Thus, the modification of the
surface property of polymeric materials into superhydrophobic or superhydrophilic and maintaining
their bulk properties is an important field of investigation. A superhydrophilic surface generally
exhibits a water contact angle lower than 10◦ [5–7]. On such a surface, water droplets spread rapidly
and flow down the surface at a considerable velocity [5]. The resulting thin water film can prevent
staining by oil-based pollutants and provide anti-fouling properties [8–10]. Thus, superhydrophilic
surfaces have significant potential for practical applications in wastewater treatment, separation of oily
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water, optical devices, and biomedical devices. Various synthetic and natural polymers have been
used in the past to produce hydrophilic surfaces.

Among them, zwitterionic polymers are attractive materials for superhydrophilic coatings [11,12].
Polysulfobetaine is a type of zwitterionic polymer. Its pendant groups, which have a quaternary
ammonium cation and sulfonate anion, can retain a net neutral charge and form a strong hydration via
ionic solvation [13,14]. Despite many efforts for preparing superhydrophilic surfaces using different
strategies, including surface coating, surface grafting, and layer-by-layer assembly [15–18], an effective
method for producing superhydrophilic surfaces is yet to be discovered, owing to the absence of
functional groups in the plastic molecular skeleton.

Dopamine is an organic compound containing a catechol group and side-chain amine. It
readily forms insoluble polydopamine (PDA) in alkaline solutions (tris-base, pH 8.5) via oxidative
polymerization and non-covalent aggregation and then deposits on the surface targeting widespread
applications, such as oil separation [19], drug release [20], sensing [21], shielding [22], membranes [23].
However, the synthesis of PDA coatings is usually time-consuming. Substrates are usually immersed
in an alkaline dopamine solution for up to 12–18 h to deposit an adherent layer of PDA on the
surface [24,25]. In the quest for a simple procedure, Kim et al. found that the alkaline dopamine
oxidation reaction rate could be significantly increased under a pure O2 environment compared to
the analogous reaction under ambient air [26]. Pozio et al. found that the oxidant employed, sodium
periodate (NaIO4), could apparently complete the conversion of dopamine to o-quinone within a few
minutes and accelerate the formation of thick PDA films [27]. Tahroudi et al. reported that the oxidative
action of NaIO4 enhanced the coating speed by over 200 times [22]. Similarly, CuSO4/H2O2 can also
enormously enhance the deposition rate of PDA coatings on substrates within 10 min compared to
conventional processes [28].

Recently, dopamine was found to generate radicals in an oxidative state, which can act as initiators
for the free radical polymerization of (methyl) acrylic monomers [29,30]. Sheng et al. indicated that
the PDA layer on a surface can act as a photo-initiating layer to initiate the radical polymerization of a
variety of (methyl) acrylic/styrene monomers under exposure to sunlight. Sunlight brings PDA to the
photo-excited state to generate reactive radicals, which initiate the polymerization of monomers through
a radical chain propagation mechanism [29]. Similarly, Zhang et al. proposed a reasonable mechanism
for the dopamine-triggered polymerization of acrylate monomers. Under alkaline conditions, dopamine
is first oxidized into dopaminoquinone and then transferred into semi-quinone radical species via
a single-electron exchange reaction. These radicals act as reactive species initiating the free-radical
polymerization of acrylate monomers to form polymers [30]. Zhang et al. prepared an anti-fouling
surface via co-deposition of dopamine and sulfobetaine methacrylate (SBMA). However, the formation
of PDA/poly (SBMA) requires 8 h, which is not effective in industrial practice.

To overcome this limitation, we used UV light and an oxidant trigger to accelerate co-deposition.
In our study, the operating temperature, dopamine concentration, and deposition time were fixed
at 25 ◦C, 2 mg/mL, and 2 h, respectively. We investigated the influence of using UV light and
NaIO4 as a trigger and the effects of the amounts of SBMA on the surface modification in detail
via UV–VIS spectrophotometry, dynamic light scattering (DLS), atomic force microscopy (AFM),
X-Ray photoelectron spectroscopy (XPS), and surface plasmon resonance (SPR). Moreover, the surface
wettability and antifouling performance of the modified co-depositions were also investigated. Finally,
co-deposition was introduced to polyester membranes for oil/water separation applications.

2. Materials and Methods

2.1. Materials

Polyethylene terephthalate (PET) plates (Far Eastern New Century Corporation, Taipei, Taiwan)
and polyester filter papers (Steritech CAT No. 1300014, Kent, WA, USA), with a diameter of 4.7 cm and
pore size of 0.2 µm, were employed. Dopamine (99%) and tris(hydroxymethyl)aminomethane
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(Tris, 99.8%) was purchased from ACROS Organics™. SBMA was purchased from Hopax Fine
Chemicals (min. 98%). All other chemicals were purchased from Sigma-Aldrich unless
mentioned otherwise.

Phosphate-buffered saline (PBS) contained 137 mM NaCl (Shimakyu’s Pure Chemicals, 99.8%),
2.7 mM KCl (SHOWA, min. 99.5%), 10 mM Na2HPO4 (SHOWA, 99%), and 1.8 mM
KH2PO4 (SHOWA, min. 99.5%) at pH 7.4. Trypticase soy agar contained 15 g/L agar (BD,
Franklin Lakes, NJ, USA), with 15 g/L tryptone (Cyrusbioscience, Taipei, Taiwan), 5 g/L soy peptone
(Cyrusbioscience, Taipei, Taiwan), and 5 g/L NaCl. The bacterial suspension buffer was prepared using
0.85% NaCl at pH 7.

2.2. Surface Coating of PDA/SBMA

In Table 1, we provide a detailed description of the deposition of PDA/SBMA on the substrates.
The 1 × 1 cm2 PET plates were first cleaned with deionized (DI) water and then soaked in 1 N NaOH
for 60 min. The substrates were put on the 12 well plate and then immersed in a 2 mL of reaction
solution containing dopamine (2 mg/mL) and SBMA in a series of mass ratios of dopamine to SBMA
from 1:0 to 1:10, 1:15, 1:25, 1:40, and 1:60 in tris buffer solution (pH = 8.5, 10 mM) for 2 h. Exposure to
UV light and 5 mM NaIO4 also triggered the reaction. After the reaction, the substrates were removed,
rinsed with deionized water (DI) water, dried, and stored at room temperature.

Table 1. Formula, roughness, and element composition of the PDA/SBMA coatings. PDA,
polydopamine; SBMA, sulfobetaine methacrylate.

PDA/SBMA
Coating

Dopamine
(mg/mL)

SBMA
(mg/mL)

Roughness
(Rs, nm)

Atomic Composition (%)

C1s O1s N1s S2p

PET - - 3.95 73.0 27 <0.1 <0.1
1:0 2 0 8.22 73.5 19.3 7.2 <0.1
1:10 2 20 6.14 71.8 21.0 6.3 0.9
1:25 2 50 4.32 69.1 22.3 6.7 1.8
1:40 2 80 3.47 68.8 22.9 6.6 1.6
1:60 2 120 5.43 70.3 22.9 5.1 1.6

2.3. Characterization

The reaction solution at 2 h was studied using a UV-Vis spectrophotometer (ChromTech CT-2800,
Taipei, TaiWan) in the wavelength range of 200–700 nm. The polymer particle size after 2 h of
oxidation was characterized using DLS (90Plus Particle Size Analyzer, Brookhaven Instruments,
Holtsville, NY, USA).

An SPR-T200 (Sensby Biotech Co., Ltd., Wenzhou, China) instrument was used to study the
coverage of PDA/SBMA on the gold sensor slides. It was equipped with a 632.8 nm light source and an
optical range of 20–80◦ internal reflection. All measurements were acquired on the same spot, enabling
the determination of the angular variation during the measurement. Surface roughness was analyzed
using AFM in tapping mode (NaioAFM, Nanosurf AG, Liestal, Switzerland).

The surface composition was measured using XPS (PHI VersaProbe, Chanhassen, MN, USA).
The X-ray source was monochromatic Al-Kα (hν = 1486.6 eV) with a take-off angle of 45◦.
The high-resolution spectra were deconvoluted by mixing Gaussian–Lorentzian functions using
the free software program, XPSPEAK. Elemental quantification was performed on the peak areas of
the C1s, O1s, N1s, and S2p multiplex.

The wettability of the coating surfaces was evaluated by static water contact angle (WCA)
measurements (OSA60SS, CHAO-DEES SCIENCE CO., LTD., Kaohsiung, Taiwan) with deionized
water. At least six droplets (20 µL) were measured for each sample. The coatings on the surface were
immersed in 0.1 M NaCl for 24 h and 7 d to test their stability. After rinsing with water and drying,
the change in coating was monitored by WCA measurements.
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The morphology of the membranes was examined by field emission scanning electron microscopy
(FESEM, JEOL JSM-6701F, Peabody, MA, USA). Based on the SEM images (10,000×), the surface
porosity of the membranes was determined using ImageJ software.

2.4. Non-Fouling Properties

The non-fouling properties of the surface coatings were evaluated by bacterial attachment. The test
was challenged with Escherichia coli. The bacteria were suspended in sterilized saline at pH 7 to a final
concentration of approximately 106 CFU/mL. Subsequently, 1 mL of the bacterial suspension was added
to the samples and incubated at 37 ◦C for 1 h. The samples were then rinsed with sterilized saline.
The surviving bacteria on the surfaces were stained with SYTO 9 (S34854, Invitrogen, Shanghai, China)
to determine bacterial attachment. After washing, live (green) bacteria on the surfaces were observed
using a fluorescence microscope (Zeiss, Oberkochen, Germany). The photographs were further
analyzed using Image J to quantify fluorescence intensity and evaluate bacterial attachment.

2.5. Water Flux

The water fluxes were calculated by measuring the time required for the flow of a constant volume
of feed solutions. To describe briefly, a piece of wetted filter paper (4.7 cm in diameter) by DI water
was placed in a Büchner funnel on a suction filtration setup. The height of the feed solution was fixed
at 5 cm and kept flowing for 30 min to ensure the setup was in a steady state. Then, the time required
was recorded by collecting 50 mL of permeate. Water flux was calculated according to the Equation:

J = Q/AT

where J is the permeation flux (L/m2 h), Q is the permeation volume of the testing solution (L), A is the
effective area of the tested membrane (m2), and T is based on the time (h) of permeate water collected
within a given volume.

2.6. Oil/Water Separation Test

The n-hexane-in-water emulsion was prepared by dissolving 0.5 g of sodium dodecyl sulfate
(SDS) in 990 mL of water. Subsequently, n-hexane was added to the above mixture at a volume
ratio of 1:99 for overnight stirring. The oil/water separation experiments were performed using
a suction filtration setup. The membranes were pre-compacted for 5–10 min with DI water until
their permeation flux stabilized. Next, the emulsion was poured onto the membrane and permeated
through it. The separation results were recorded using a digital camera and optical microscopy
(Zeiss, Oberkochen, Germany). The droplet sizes in the collected filtrate were measured using DLS.

3. Results and Discussion

3.1. Effect of Oxidant Triggers

The color of the solution containing PDA in tris-base with UV and NaIO4 triggers is shown in
Figure 1A. When dopamine was dissolved in tris-base, the solution was transparent at first and then
gradually turned brown after 2 h of reaction. The brown color of the PDA, which results from its
melanin-like structure, indicates successful dopamine self-polymerization [31]. At the same reaction
time, the color of the PDA solution with an additional UV trigger becomes darker compared to the PDA
solution without a UV trigger. This result implies that UV irradiation can trigger the polymerization of
PDA. A previous study reported that UV irradiation can generate reactive oxygen species, such as
singlet superoxide radicals (O2−) and hydroxyl radicals (OH), which act as oxidants required to
enhance the rate of dopamine polymerization [32]. This explains the darker color of the PDA solution
under UV irradiation.
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Figure 1. (A) Color changes of the various PDA/SBMA solutions in tris-base solution (pH = 8.5) with
UV light and NaIO4 trigger. (B) Particle size and (C) UV-VIS spectra of PDA (2 mg/mL) solution
at 2 h with UV light and NaIO4 trigger. (D) Water contact angles (WCAs) of the PDA coating on a
polyethylene terephthalate (PET) substrate with UV light and NaIO4 trigger.

The NaIO4-triggered PDA solution turned dark gray immediately and maintained the color
until 2 h. According to the DLS results shown in Figure 1B, the particle sizes of PDA in the tris-base
solutions without trigger, with UV trigger, and with NaIO4 trigger were 1206, 1613, and 2021 nm,
respectively. In addition, spectrophotometry revealed the formation of o-quinone at around 305 nm
under all reaction conditions at 2 h. However, only the NaIO4-triggered PDA solution exhibited an
obvious band at 410 nm, indicating the formation of dopaminochrome (Figure 1C) [33]. This means
that NaIO4-triggered solution undergoes the fastest oxidation polymerization of dopamine, followed
by the UV-triggered solution, whereas that without a trigger is the slowest.

Generally, dopamine in an alkaline solution, polymerized for several hours, deposits a PDA layer
in the presence of substrates, which is extremely long for practical applications. The above tests show
that NaIO4 could trigger the polymerization of dopamine. We tried to understand the effect of UV and
NaIO4 on the 2 h deposition of PDA. We evaluated the surface wettability of the PDA coating using
WCA and the results are shown in Figure 1D. For nascent PET, the WCA was almost 69.5◦. In only the
tris-base solution, the WCA of the PDA-modified surfaces declined to 61.0◦, which was attributed to
the intrinsic hydrophilicity of PDA. Under additional UV exposure, the WCA of the PDA-modified
surfaces further declined to 50.5◦, indicating that UV can trigger fast oxidation polymerization and
deposition. It is worth noting that NaIO4 can trigger rapid aggregation of polymeric products and
deposition. The WCA of the PDA-modified surfaces with NaIO4 trigger is 19.5◦. The observed value of
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WCA is lower than that of a previous study in which a 16 h coating on a poly(l-lactide-co-caprolactone)
film changed the WCA from 74.4◦ to 40.3◦ [24].

3.2. Effect of the Dopamine-to-SBMA Ratio

After understanding that the additional NaIO4 can promote PDA polymerization and deposition,
we further investigated the effect of the dopamine/SBMA ratio on the color of the solution (Figure 1A).
With the dopamine solution with SBMA in the tris-base for 2 h of polymerization, we observed that the
color of the solution color gradually faded as the concentration of SBMA increased. When the mass
ratio of dopamine to SBMA was 1:50, the solution was almost transparent, implying that excess SBMA
probably inhibits the aggregation of the polymerized products [30]. Similarly, the color of the solution
gradually fades with the increase in SBMA concentration under UV-triggered conditions. Overall,
the color of the solution exposed to UV was darker than that without the UV trigger. In contrast, the
color of the solution for all mass ratios of dopamine to SBMA immediately turns dark gray when
triggered by NaIO4 trigger. Since we cannot discern the depth of color with the naked eye, DLS
was applied to characterize the particle sizes of the polymeric products. The results show a gradual
decrease in particle size with an increase in SBMA concentration (Figure S1). The results confirmed
that excess SBMA inhibits the aggregation of the polymerized products, while NaIO4 can also promote
dopamine and SBMA polymerization.

We further investigated the deposition of PDA/SBMA via a NaIO4 trigger. The surface topographies
of the PDA/SBMA coatings were analyzed using AFM (Figure 2). The original PET is smooth and its
root mean square (Rs) value is 3.95 nm. After coating with PDA/SBMA, we observe the deposition of
polymer particles on the surfaces, which increase the Rs value. The Rs values of 1:0, 1:10, 1:25, 1:40, and
1:60 were 8.22, 6.14, 4.32, 3.47, and 5.43 nm, respectively. The increased Rs value means the surfaces
became much rougher, which confirms that the PDA/SBMA was successfully bound to the surface.
In order to evaluate the amount of the various PDA/SBMA coatings deposited on the gold surfaces,
the full angular scans of the reflectivity spectra were acquired using SPR in PBS solution. In Figure 3,
we show the SPR curves before and after the exposure of the Au slides to PDA/SBMA. We observe
changes in the angles of the SPR curves, as well as the contrast of reflected intensities, for different
PDA/SBMA. The angular shifts first increase and then decrease as the concentration of SBMA increases.
The general trend shows that the SPR angle increases with increasing thickness of the thin film [34,35].
The largest angular shift is 1:25, which implies that the ratio has a higher packing density on the gold
surface. The smallest angular shift is 1:60, which implies a thin coating.

XPS analysis was used to study the composition of the NaIO4 triggered PDA/SBMA coatings.
The elemental compositions of carbon (C), oxygen (O), nitrogen (N), and sulfur (S) were surveyed by
scanning the bonding energy from 0 to 1200 eV. First, C1s and O1s peaks were detected in the XPS
spectrum of the original PET substrates (Figure 4A,B). After coating with PDA (1:0), the N1s signals
appeared and the atomic percentage of nitrogen increased from 0% to 7.2%, which is attributed to
the elemental nitrogen in the PDA layer (Figure 4C). SBMA contains sulfur, whereas naked PET and
PDA do not; therefore, the S2p signal at 168 eV appears in the XPS spectra of the 1:10, 1:25, 1:40, and
1:60 coatings (Figure 4D). The results confirm the presence of sulfobetaine moieties on the surface.
The atomic percentages of sulfur in the 1:0, 1:10, 1:25, 1:40, and 1:60 coatings were 0%, 0.9%, 1.8%, 1.6%,
and 1.6%, respectively (Table 1); this indicates that, when the mass ratio of dopamine to SBMA is 1:25,
a larger amount of SBMA is present.

The surface wettability of the PDA/SBMA was further evaluated by WCA, and the results are
presented in Figure 5A. The pristine PET has a WCA of approximately 70◦. After PDA/SBMA coating
via the NaIO4 trigger, the WCA of the modified surfaces declined significantly. In the 1:0 coating,
the WCA declined to 19.5◦, which was attributed to the intrinsic hydrophilicity of PDA. Next, the WCA
first decreases and then increases with the increase in SBMA concentration. It reaches the lowest
value of 7.5◦, indicating super hydrophilicity when the mass ratio of dopamine to SBMA is 1:25.
The super hydrophilicity could be attributed to the presence of the most sulfobetaine moieties on the
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1:25 surface (XPS data), which enabled a high hydration by electrostatic interaction with water [36,37].
Subsequently, the WCA further increases to 30.0◦ when the mass ratio of dopamine to SBMA is 1:60.
The PDA/SBMA coatings were further immersed in a saltwater bath for one week. We found the WCA
kept on original value after the coatings were immersed in a saltwater bath for a long time, meaning
the coatings did not peel off from the substrates (Figure 5B). The results indicated the PDA/SBMA
coatings were quite stable in the high salt environment.

3.3. Antibacterial Properties

E. coli attachment was used to evaluate the non-fouling properties of the coatings. Figure 6
presents the fluorescence photographs reflecting the bacterial attachment on the PDA/SBMA surfaces.
The presence of dense small green dots on the PET surfaces indicated that the surface is highly fouling.
The fluorescence intensity analyzed from the photographs was calculated to be 3.78. After coating
PDA/SBMA in various ratios, the fluorescence intensity was found to depend on the amount of
SBMA. As the dopamine-to-SBMA ratio increased from 1:0 to 1:25, the fluorescence intensity decreased
gradually and reached a minimum value of 0.09 at 1:25. Subsequently, the fluorescence intensity
showed a gradual increase as then SBMA content increased. The fluorescence intensities reached 1.13
and 2.02 at ratios 1:40 and 1:60, respectively. The profile trend between fluorescence intensity and
the dopamine-to-SBMA ratio is consistent with that between WCA and the dopamine-to-SBMA ratio.
The results clarify the role of the hydrophilicity of PDA/SBMA in enhancing the fouling resistance,
especially in superhydrophilic 1:25 coatings.
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3.4. Applications of PDA/SBMA Coatings

The NaIO4 triggered PDA/SBMA coatings on polyester membranes for oil/water separation.
First, the surface morphologies of the PDA/SBMA coatings on the membrane were surveyed by
SEM (Figure 7A). Observations of the pristine membrane reveal a uniform pore distribution with
pore diameters of approximately 0.2 µm, and surface porosity of 26.7%. After the deposition of
PDA/SBMA, the pore size shows a significant decrease owing to the formation of PDA/SBMA layers
on the membranes. Interestingly, the change in surface porosity depends on the dopamine-to-SBMA
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ratio. When the dopamine-to-SBMA ratio increases from 1:0 to 1:60, the surface porosity first appears
to remain constant at 2.7% and then increases as the SBMA concentration increases. The lowest surface
porosity is 2.7% originates from a higher packing density and larger particle size of the polymer on the
surface. The largest surface porosity is 18.7% owing to the smaller size of the PDA/SBMA particles and
low packing density on the membranes when the ratio of SBMA in the polymer solution increases to 60.

Despite the fact that the PDA/SBMA coatings covered the pores, the irregular tortuous porous
structure, and interconnected network of the membrane were well-maintained (amplified SEM pictures).
The water flux of various PDA/SBMA membranes was investigated to confirm the filtration ability of the
PDA/SBMA coatings. Figure 7B shows a comparison of the pure water flux performances of the pristine,
1:0, 1:10, 1:25, 1: 40, and 1:60 coated membranes under vacuum filtration. As expected, the water flux
(approximately 905 L/m2 h) of the pristine PET membrane was the highest, while the water flux of the
PDA/SBMA membranes were lower than that of the untreated pristine membrane. The water flux of
the various PDA/SBMA membranes was found to depend on their pore size. The lowest water flux
was observed for the 1:0 and 1:10 membranes, while the 1:60 membrane exhibited a higher water flux.
It is worth noting that the superhydrophilic property could enhance the water flux despite the small
surface porosity of the 1:25 coated membrane [38].Polymers 2020, 12, x FOR PEER REVIEW 11 of 16 
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Figure 7. (A) SEM images (5000×) and inserts (10,000×) of the various PDA/SBMA coatings on PET
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for various PDA/SBMA modified membranes. Right: performance of various PDA/SBMA modified
membranes in terms of water flux.

The performance of the PDA/SBMA-coated membrane was evaluated by separating an oil–water
emulsion. The SDS-stabilized n-hexane-in-water emulsions were prepared and poured into filtration
cells to perform filtration separation. Figure 8 shows the presence of many oil drops with a size of about
3.2 µm in the as-prepared hexane/H2O emulsion. After filtration through the unmodified membranes,
many oil drops were observed. It is worth noting that the amount of oil drops in all collected filtrates
decreased after filtration through the PDA/SBMA membranes. In the 1:25 membranes, almost no oil
drops were observed in the collected filtrate, while only 0.3 µm of particle size was detected by DSL,
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indicating satisfactory separation of the emulsion. The superhydrophilic property of the 1:25 surface
ensures the formation of a layer of water on the surface of the membrane, thereby avoiding direct
contact between the oil and membrane surfaces during oil/water separation. The results clarify the role
of the hydrophilicity of PDA/SBMA in enhancing the oil-fouling resistance and successfully separating
the oil in the emulsion.

Some recent studies have reported facile methods for preparing polySBMA surfaces via
mussel-inspired coatings. For example, Dizon et al. synthesized a novel zwitterionic copolymer
containing a catechol group, which can form a stable coating on various materials [39].
However, the method necessitates the synthesis of monomers and copolymers via a complicated
reaction. Zhang et al. reported the rapid co-deposition of dopamine and polySBMA triggered by
CuSO4/H2O2 [40]. However, this method also requires the prior synthesis of the polymer followed
by the co-deposition with dopamine on the surfaces. Although Ma et al. developed a fast approach
by mixing the oxidant, dopamine, and zwitterionic monomers to immobilize zwitterionic polymers,
the coatings did not exhibit superhydrophilic properties [41]. We compared the existing approach
with other mussel-inspired methods for membrane coatings, as shown in Table 2. In can be seen that
NaIO4 triggered a rapid polymerization as well as obtained the lowest WCA in this study. After 2 h
of polymerization, the reactive products (dopaminochrome) did not change significantly when the
operating time was increased (Figure S2), indicating the stability of the reactive solution. Therefore,
the developed approach has great potential for industrial application.
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Table 2. The deposition conditions via mussel-inspired modification approaches.

Materials Oxidations Coating
Time Substrates Hydrophilicity Approach Ref.

Dopamine,
octadecylamine - 1.5 h + 4 h Cotton fabrics Hydrophobic

(WCA = 167◦) Two-step [42]

Dopamine,
chitosan - 24 h + 10 h Cotton fabrics Water adsorption

in 6 s Two-step [43]

Dopamine,
polyethyleneimine - 6, 12, 24 h Poly(vinylidene

fluoride)
Hydrophilic

(WCA = 12◦~57◦) One-step [44]

Dopamine,
polySBMA CuSO4/H2O2 1 h Polypropylene Hydrophilic

(WCA < 20◦) One-step [40]

Dopamine, SBMA NaIO4 2 h Polyester Hydrophilic
(WCA < 10◦) One-step This
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4. Conclusions

We developed a facile and rapid one-step approach for fabricating superhydrophilic surfaces
by mixing dopamine and SBMA in the presence of NaIO4. After investigations using UV–VIS
spectrophotometry and DLS, we found that only the NaIO4-triggered PDA solution exhibited the
formation of dopaminochrome and the bigger particle sizes of PDA at 2 h of polymerization compared
to the UV-triggered solution and without a triggered solution. AFM, XPS and SPR confirms that the
PDA/SBMA was successfully bound to the surface and revealed that when the ratio of dopamine
to SBMA was 1:25 by weight, one could obtain the most sulfobetaine moieties on the surface,
rendering the surface superhydrophilic (WCA < 10◦) and antifouling of E. coli. The introduction of the
superhydrophilic coating to commercial polyester membranes well-maintained the irregular tortuous
porous structure and the interconnected network of the membrane, which endowed a great potential for
oil/water separation. This one-step modification method using NaIO4 as trigger, which has significant
advantages over the existing ones for preparing antifouling surfaces, can be potentially implemented
in industrial processes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/9/2008/s1,
Figure S1: Particle size of PDA/SBMA solution at 2 h with NaIO4 trigger, Figure S2: UV-VIS spectral change for
PDA/SBMA (1:25) solution without (A) and with NaIO4 (B) trigger against the reaction time. The graph of OD 410
values with respect to the polymerization time. Figure S3: Soybean oil were used for oil/water separation.
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