$V = 1912.61 (14) \text{ Å}^3$

 $0.19 \times 0.16 \times 0.11~\rm{mm}$

2 standard reflections

frequency: 60 min

intensity decay: none

H atoms treated by a mixture of

independent and constrained

2577 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 0.46 \text{ mm}^{-1}$

Z = 4

T = 293 K

 $R_{\rm int} = 0.014$

refinement $\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.22~{\rm e}~{\rm \AA}^{-3}$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(2,4-Dichlorophenyl)-9-phenyl-2,3-dihydrothieno[3,2-b]quinoline

K. Balamurugan,^a D. Narmadha,^b J. Suresh,^b S. Perumal^a and P. L. Nilantha Lakshman^{c*}

^aSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, ^bDepartment of Physics, The Madura College, Madurai 625 011, India, and ^cDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka Correspondence e-mail: nilanthalakshman@yahoo.co.uk

Received 7 May 2009; accepted 1 July 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.032; wR factor = 0.091; data-to-parameter ratio = 11.8

In the title compound, $C_{23}H_{15}Cl_2NS$, the quinoline system is almost planar [r.m.s. deviation = 0.013(2) Å]. The phenyl group is disordered over two positions with site occupancies of 0.55 and 0.45, and is oriented in a nearly perpendicular configuration to the quinoline ring [the dihedral angles between the quinoline ring and the major and minor disordered components of the phenyl ring are 81.8 (2) and $71.6(2)^{\circ}$, respectively]. The dihydrothiene ring adopts an envelope conformation. The dihedral angle between the chlorophenyl ring and the quinoline system is 79.32 (1)°. In the crystal weak $C-H \cdot \cdot \pi$ interactions occur.

Related literature

For the biological activity of quinoline derivatives, see: Kalluraya & Sreenivasa (1998); Maguire et al. (1994); Doube et al. (1998). For ring puckering analysis, see: Cremer & Pople (1975).

Experimental

Crystal data

C23H15Cl2NS
$M_r = 408.32$
Monoclinic, $P2_1/c$
a = 11.8860 (5) Å
b = 11.5040 (5) Å
c = 14.0270 (6) Å
$\beta = 94.297 \ (9)^{\circ}$

Data collection

Nonius MACH-3 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.917, \ T_{\max} = 0.951$ 3917 measured reflections 3363 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	
$wR(F^2) = 0.091$	
S = 1.02	
3363 reflections	
284 parameters	
18 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \hline C8-H8\cdots Cg2^{i} \\ C21-H21\cdots Cg3^{ii} \end{array}$	0.93	2.92	3.818 (2)	162
	0.93	2.71	3.636 (2)	172

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$. Cg2 and Cg3 are the centroids of the N1/C2-C6 and C2/C3/C7-C10 rings, respectively.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

JS and DN thank the Management of The Madura College, Madurai, for their constant support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2782).

References

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Doube, D., Blouin, M., Brideau, C., Chan, C., Desmarais, S., Eithier, D., Falgueyert, J. P., Friesen, R. W., Girrard, M., Girrard, J., Tagari, P. & Yang, R. N. (1998). Bioorg. Med. Chem. Lett. 8, 1255-1260.

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399-404.

Maguire, M. P., Sheets, K. R., Mevety, K., Spada, A. P. & Ziberstein, A. (1994). J. Med. Chem. 37, 2129-2137.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2009). E65, o1783 [doi:10.1107/S1600536809025380]

2-(2,4-Dichlorophenyl)-9-phenyl-2,3-dihydrothieno[3,2-b]quinoline

K. Balamurugan, D. Narmadha, J. Suresh, S. Perumal and P. L. N. Lakshman

Comment

Quinoline exists as backbone in many natural products and pharmacologically important compounds. Their widerange of biological activities include antimalarial, antiasthmatic, antiinflamatory, antibacterial, antihypertensive and tyrosine kinase PDGF-RTK inhibiting agents (Kalluraya & Sreenivasa, 1998; Doube *et al.*, 1998; Maguire *et al.*, 1994). We report herein the synthesis and crystal structure of the title compound (I).

In the molecule of (I), (Fig. 1), the quinoline ring is planar and is oriented to the disordered phenyl ring in nearly perpendicular configuration. The dihendral angle between the major and minor components of the disordered phenyl rings is 26.6 (4)°. The dihydrothieno ring adopts envelope conformation with C18 being the flap atom. The puckering parameters are $q_2 = 0.333$ (2) Å and $\varphi_2 = 319.7$ (3)° (Cremer & Pople, 1975). The dihedral angle between the chlorophenyl ring and the quinoline ring is 79.32 (1)°.

In the crystal structure, there is no classical hydrogen bonds. The crystal packing is stabilized by two weak C—H··· π interactions (Table 1; *Cg2* and *Cg3* refer to ring centroids of N1/C2–C6 and C2/C3/C7–C10, respectively).

Experimental

A mixture of 5-(2,4-dichlorophenyl)dihydrothiophen-3(2*H*)-one, (1 mmol), 2-aminobenzophenone (1 mmol) and trifluroaceticacid (1.5 mmol) was taken in a 10 ml quartz vial and placed in the Biotage microwave oven. The vial was sealed and subjected to microwave irradiation. The irradiation was programmed at (273 K, 25 W, 0 bar, Absorption level: very high) for 30 min. (After a period of 1–2 min, the temperature reached a plateau, 273 K, and remained constant). After N₂ gas jet cooling to room temperature (3 min), the reaction mixture was neutralized with NaHCO₃ and extracted in CH₂Cl₂ (2 *X* 5 ml), dried over MgSO₄ and concentrated *in vacuo* to give the crude product which was further purified either by a short column chromatography (silica gel, EtOAc-petroleumether, 2:8) to afford the corresponding pure quinoline derivative [melting point: 437–438 K, yield: 75%].

Refinement

The disorder in the phenyl ring is identified as 'rotation disorder'. The phenyl ring is disordered over two orientations and it was resolved completely and their major and minor componenets have the site occupancies of 0.55 and 0.45. The bond distances in the ring is constrained using *DFIX* command. The bond distances and angles of the disordered ring are in agreement with normal phenyl rings. All H atoms of the disordered phenyl group were located in a difference Fourier map. The remaining H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C—H = 0.93-0.98Å and $U_{iso} = 1.2U_{eq}$ (C) for CH,CH₂ groups.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The two disorder components of the phenyl ring of the molecule are shown, the minor component is labeled with the suffix '. the disorder parts

2-(2,4-Dichlorophenyl)-9-phenyl-2,3-dihydrothieno[3,2-b]quinoline

$C_{23}H_{15}Cl_2NS$	$F_{000} = 840$
$M_r = 408.32$	$D_{\rm x} = 1.418 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71069$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 11.8860 (5) Å	$\theta = 2-25^{\circ}$
b = 11.5040 (5) Å	$\mu = 0.46 \text{ mm}^{-1}$
c = 14.0270 (6) Å	T = 293 K
$\beta = 94.297 \ (9)^{\circ}$	Block, colourless
$V = 1912.61 (14) \text{ Å}^3$	$0.19\times0.16\times0.11~mm$
Z = 4	

Data collection

Nonius MACH-3 diffractometer	$R_{\rm int} = 0.014$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.3^{\circ}$
T = 293 K	$h = 0 \rightarrow 14$
ω -2 θ scans	$k = -1 \rightarrow 13$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -16 \rightarrow 16$
$T_{\min} = 0.917, \ T_{\max} = 0.951$	2 standard reflections
3917 measured reflections	every 60 min
3363 independent reflections	intensity decay: none
2577 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.091$	$w = 1/[\sigma^2(F_0^2) + (0.0458P)^2 + 0.5943P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
3363 reflections	$\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$
284 parameters	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
18 restraints	Extinction correction: SHELXL97 (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Drimory store site location, structure inversiont direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0047 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	z	Uiso*/Ueq	Occ. (<1)
C2	0.11979 (16)	0.26004 (19)	0.25210 (14)	0.0464 (5)	
C3	0.14508 (15)	0.30797 (18)	0.34454 (13)	0.0428 (4)	
C4	0.21084 (15)	0.41146 (17)	0.35382 (12)	0.0405 (4)	
C5	0.24702 (14)	0.45739 (17)	0.27087 (12)	0.0395 (4)	
C6	0.21560 (15)	0.40461 (18)	0.18138 (12)	0.0428 (4)	
C7	0.05703 (19)	0.1566 (2)	0.24282 (17)	0.0629 (6)	
H7	0.0407	0.1247	0.1825	0.075*	
C8	0.01978 (19)	0.1025 (2)	0.3209 (2)	0.0701 (7)	
H8	-0.0219	0.0343	0.3134	0.084*	
С9	0.04406 (18)	0.1493 (2)	0.41213 (18)	0.0632 (6)	
Н9	0.0185	0.1117	0.4651	0.076*	
C10	0.10473 (17)	0.2492 (2)	0.42434 (15)	0.0521 (5)	
H10	0.1199	0.2793	0.4855	0.063*	
C17	0.25242 (17)	0.4742 (2)	0.09826 (14)	0.0523 (5)	
H17A	0.1912	0.5235	0.0727	0.063*	
H17B	0.2735	0.4225	0.0479	0.063*	
C18	0.35345 (17)	0.54856 (19)	0.13425 (13)	0.0478 (5)	
H18	0.3512	0.6213	0.0977	0.057*	
C19	0.46829 (16)	0.49449 (17)	0.12880 (12)	0.0446 (5)	
C20	0.56613 (17)	0.55995 (18)	0.14608 (14)	0.0472 (5)	
C21	0.67332 (18)	0.5143 (2)	0.14224 (14)	0.0528 (5)	
H21	0.7369	0.5605	0.1549	0.063*	
C22	0.68341 (19)	0.3986 (2)	0.11907 (14)	0.0553 (5)	
C23	0.5893 (2)	0.3301 (2)	0.10080 (15)	0.0588 (6)	

H23	0.5971	0.2523	0.0847	0.071*	
C24	0.48327 (19)	0.37731 (19)	0.10646 (14)	0.0524 (5)	
H24	0.4202	0.3300	0.0951	0.063*	
N1	0.15524 (13)	0.31025 (16)	0.17022 (11)	0.0487 (4)	
C11	0.55600 (5)	0.70657 (5)	0.17491 (5)	0.0697 (2)	
Cl2	0.81734 (6)	0.33969 (7)	0.11513 (6)	0.0859 (3)	
S1	0.32820 (5)	0.58301 (5)	0.26012 (4)	0.05025 (17)	
C11	0.23924 (16)	0.46862 (18)	0.44796 (13)	0.0453 (5)	
C14	0.2954 (3)	0.5830 (3)	0.61987 (18)	0.0854 (9)	
H14	0.312 (2)	0.624 (3)	0.678 (2)	0.102*	
C12	0.1794 (7)	0.5609 (6)	0.4804 (6)	0.067 (2)	0.55
H12	0.1176	0.5866	0.4415	0.080*	0.55
C13	0.2032 (7)	0.6189 (8)	0.5661 (6)	0.085 (3)	0.55
H13	0.1581	0.6792	0.5854	0.102*	0.55
C15	0.3566 (7)	0.4863 (7)	0.5933 (7)	0.094 (3)	0.55
H15	0.4163	0.4594	0.6340	0.112*	0.55
C16	0.3298 (6)	0.4293 (8)	0.5068 (6)	0.076 (3)	0.55
H16	0.3722	0.3660	0.4890	0.091*	0.55
C12'	0.1533 (9)	0.5268 (6)	0.4904 (7)	0.055 (2)	0.45
H12'	0.0794	0.5282	0.4637	0.066*	0.45
C13'	0.1868 (8)	0.5831 (8)	0.5765 (7)	0.075 (3)	0.45
H13'	0.1319	0.6236	0.6068	0.090*	0.45
C15'	0.3783 (9)	0.5283 (9)	0.5745 (8)	0.083 (3)	0.45
H15'	0.4527	0.5289	0.6004	0.099*	0.45
C16'	0.3486 (7)	0.4717 (9)	0.4887 (7)	0.064 (3)	0.45
H16'	0.4048	0.4344	0.4574	0.077*	0.45

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0389 (10)	0.0567 (12)	0.0433 (10)	-0.0048 (9)	-0.0001 (8)	0.0028 (9)
C3	0.0359 (9)	0.0532 (12)	0.0393 (10)	0.0020 (9)	0.0028 (7)	0.0059 (9)
C4	0.0377 (9)	0.0506 (11)	0.0334 (9)	0.0059 (9)	0.0035 (7)	0.0029 (8)
C5	0.0373 (9)	0.0471 (10)	0.0340 (9)	0.0011 (8)	0.0030 (7)	0.0011 (8)
C6	0.0387 (9)	0.0563 (12)	0.0332 (9)	-0.0003 (9)	0.0017 (7)	0.0014 (9)
C7	0.0544 (13)	0.0730 (16)	0.0599 (13)	-0.0185 (12)	-0.0042 (10)	-0.0018 (12)
C8	0.0527 (13)	0.0715 (16)	0.0858 (18)	-0.0230 (12)	0.0033 (12)	0.0093 (14)
C9	0.0502 (12)	0.0736 (16)	0.0670 (15)	-0.0064 (12)	0.0114 (11)	0.0221 (12)
C10	0.0467 (11)	0.0646 (13)	0.0459 (11)	0.0017 (10)	0.0092 (9)	0.0101 (10)
C17	0.0532 (11)	0.0699 (14)	0.0339 (9)	-0.0036 (11)	0.0038 (8)	0.0064 (10)
C18	0.0537 (11)	0.0552 (12)	0.0353 (9)	-0.0033 (10)	0.0087 (8)	0.0079 (9)
C19	0.0540 (11)	0.0492 (11)	0.0314 (9)	-0.0030 (9)	0.0089 (8)	0.0074 (8)
C20	0.0554 (12)	0.0465 (11)	0.0410 (10)	-0.0023 (9)	0.0124 (9)	0.0054 (8)
C21	0.0524 (12)	0.0611 (14)	0.0461 (11)	-0.0019 (10)	0.0118 (9)	0.0094 (10)
C22	0.0631 (13)	0.0604 (14)	0.0443 (11)	0.0125 (11)	0.0168 (10)	0.0137 (10)
C23	0.0842 (17)	0.0479 (12)	0.0456 (11)	0.0063 (12)	0.0138 (11)	0.0070 (10)
C24	0.0649 (13)	0.0514 (12)	0.0416 (10)	-0.0075 (10)	0.0077 (9)	0.0049 (9)
N1	0.0466 (9)	0.0625 (11)	0.0364 (8)	-0.0067 (8)	-0.0004 (7)	-0.0022 (8)

Cl1	0.0660 (4)	0.0495 (3)	0.0953 (5)	-0.0083 (3)	0.0177 (3)	-0.0065 (3)
Cl2	0.0773 (4)	0.0853 (5)	0.0990 (5)	0.0299 (4)	0.0315 (4)	0.0238 (4)
S1	0.0578 (3)	0.0512 (3)	0.0430 (3)	-0.0080 (2)	0.0117 (2)	-0.0035 (2)
C11	0.0528 (11)	0.0530 (12)	0.0303 (9)	-0.0003 (10)	0.0046 (8)	0.0038 (9)
C14	0.132 (3)	0.085 (2)	0.0384 (13)	-0.019 (2)	0.0008 (16)	-0.0091 (14)
C12	0.086 (5)	0.047 (4)	0.064 (4)	0.013 (3)	-0.018 (3)	-0.007 (3)
C13	0.148 (7)	0.041 (5)	0.062 (5)	0.015 (4)	-0.022 (4)	-0.009 (3)
C15	0.076 (5)	0.158 (9)	0.043 (4)	0.005 (5)	-0.016 (3)	-0.007 (5)
C16	0.070 (4)	0.112 (7)	0.044 (3)	0.031 (4)	-0.003 (3)	-0.009 (4)
C12'	0.077 (5)	0.048 (5)	0.042 (3)	0.002 (4)	0.012 (3)	0.000 (3)
C13'	0.144 (8)	0.033 (5)	0.050 (4)	0.024 (4)	0.028 (5)	0.001 (3)
C15'	0.083 (5)	0.113 (7)	0.051 (6)	-0.027 (5)	-0.005 (4)	-0.012 (5)
C16'	0.060 (4)	0.088 (7)	0.044 (5)	-0.007 (4)	-0.001 (3)	-0.010 (4)

Geometric parameters (Å, °)

C2—N1	1.379 (2)	C21—C22	1.378 (3)
C2—C7	1.405 (3)	C21—H21	0.9300
C2—C3	1.420 (3)	C22—C23	1.376 (3)
C3—C10	1.421 (3)	C22—Cl2	1.735 (2)
C3—C4	1.425 (3)	C23—C24	1.380 (3)
C4—C5	1.376 (2)	С23—Н23	0.9300
C4—C11	1.491 (3)	C24—H24	0.9300
C5—C6	1.419 (3)	C11—C12	1.374 (7)
C5—S1	1.7505 (19)	C11—C16'	1.381 (8)
C6—N1	1.304 (2)	C11—C16	1.383 (7)
C6—C17	1.506 (3)	C11—C12'	1.391 (8)
С7—С8	1.362 (3)	C14—C13	1.348 (7)
С7—Н7	0.9300	C14—C15'	1.366 (8)
C8—C9	1.399 (4)	C14—C13'	1.385 (8)
С8—Н8	0.9300	C14—C15	1.395 (7)
C9—C10	1.361 (3)	C14—H14	0.95 (3)
С9—Н9	0.9300	C12—C13	1.385 (7)
C10—H10	0.9300	C12—H12	0.9300
C17—C18	1.529 (3)	С13—Н13	0.9300
C17—H17A	0.9700	C15—C16	1.395 (7)
С17—Н17В	0.9700	C15—H15	0.9300
C18—C19	1.507 (3)	С16—Н16	0.9300
C18—S1	1.8557 (19)	C12'—C13'	1.401 (8)
C18—H18	0.9800	C12'—H12'	0.9300
C19—C20	1.391 (3)	C13'—H13'	0.9300
C19—C24	1.398 (3)	C15'—C16'	1.391 (8)
C20—C21	1.383 (3)	C15'—H15'	0.9300
C20—Cl1	1.741 (2)	C16'—H16'	0.9300
N1—C2—C7	118.08 (18)	С22—С23—Н23	120.1
N1—C2—C3	122.72 (18)	С24—С23—Н23	120.1
C7—C2—C3	119.20 (18)	C23—C24—C19	121.6 (2)
C2—C3—C10	118.26 (19)	C23—C24—H24	119.2
C2—C3—C4	119.01 (16)	C19—C24—H24	119.2

C10—C3—C4	122.72 (18)	C6—N1—C2	116.63 (16)
C5—C4—C3	116.60 (16)	C5—S1—C18	92.02 (9)
C5—C4—C11	121.01 (18)	C12—C11—C16'	109.8 (7)
C3—C4—C11	122.39 (16)	C12—C11—C16	117.0 (6)
C4—C5—C6	120.37 (18)	C16'—C11—C16	25.1 (5)
C4—C5—S1	126.81 (15)	C12—C11—C12'	21.9 (5)
C6—C5—S1	112.78 (13)	C16'—C11—C12'	120.6 (7)
N1—C6—C5	124.62 (17)	C16—C11—C12'	117.7 (6)
N1—C6—C17	122.59 (17)	C12—C11—C4	123.0 (4)
C5—C6—C17	112.65 (17)	C16'—C11—C4	121.4 (5)
C8—C7—C2	121.0 (2)	C16—C11—C4	119.9 (4)
С8—С7—Н7	119.5	C12'—C11—C4	117.8 (5)
С2—С7—Н7	119.5	C13—C14—C15'	117.7 (7)
С7—С8—С9	120.2 (2)	C13—C14—C13'	20.3 (6)
С7—С8—Н8	119.9	C15'—C14—C13'	118.5 (7)
С9—С8—Н8	119.9	C13—C14—C15	120.9 (6)
C10—C9—C8	120.7 (2)	C15'—C14—C15	25.8 (6)
С10—С9—Н9	119.6	C13'—C14—C15	111.8 (6)
С8—С9—Н9	119.6	C13—C14—H14	116.3 (19)
C9—C10—C3	120.6 (2)	C15'—C14—H14	120.9 (19)
C9—C10—H10	119.7	C13'—C14—H14	120.5 (19)
C3—C10—H10	119.7	C15—C14—H14	122.7 (19)
C6—C17—C18	107.96 (16)	C11—C12—C13	125.6 (8)
C6—C17—H17A	110.1	С11—С12—Н12	117.2
C18—C17—H17A	110.1	C13—C12—H12	117.2
C6—C17—H17B	110.1	C14—C13—C12	116.3 (8)
С18—С17—Н17В	110.1	C14—C13—H13	121.9
H17A—C17—H17B	108.4	C12—C13—H13	121.9
C19—C18—C17	116.36 (18)	C14—C15—C16	121.2 (8)
C19—C18—S1	110.37 (13)	C14—C15—H15	119.4
C17—C18—S1	104.75 (12)	C16—C15—H15	119.4
C19—C18—H18	108.4	C11—C16—C15	118.8 (8)
C17—C18—H18	108.4	C11—C16—H16	120.6
S1-C18-H18	108.4	С15—С16—Н16	120.6
C20—C19—C24	116.24 (19)	C11—C12'—C13'	114.9 (9)
C20—C19—C18	121.07 (18)	C11—C12'—H12'	122.5
C24—C19—C18	122.69 (18)	C13'—C12'—H12'	122.5
C21—C20—C19	123.2 (2)	C14—C13'—C12'	124.9 (9)
C21—C20—Cl1	117.18 (16)	C14—C13'—H13'	117.5
C19—C20—Cl1	119.57 (16)	C12'—C13'—H13'	117.5
C22—C21—C20	118.2 (2)	C14—C15'—C16'	118.3 (11)
C22—C21—H21	120.9	C14—C15'—H15'	120.9
C20—C21—H21	120.9	C16'—C15'—H15'	120.9
C23—C22—C21	120.9 (2)	C11—C16'—C15'	122.7 (11)
C23—C22—Cl2	120.38 (18)	C11—C16'—H16'	118.7
C21—C22—Cl2	118.75 (19)	C15'—C16'—H16'	118.7
C22—C23—C24	119.8 (2)		
N1—C2—C3—C10	-179.85 (18)	C7—C2—N1—C6	-178.41 (19)
C7—C2—C3—C10	-0.5 (3)	C3—C2—N1—C6	1.0 (3)

N1—C2—C3—C4	-0.7 (3)	C4—C5—S1—C18		168.69 (17)
C7—C2—C3—C4	178.65 (19)	C6-C5-S1-C18		-13.48 (15)
C2—C3—C4—C5	-0.9 (3)	C19—C18—S1—C5		-99.75 (15)
C10—C3—C4—C5	178.20 (17)	C17—C18—S1—C5		26.24 (15)
C2—C3—C4—C11	178.78 (17)	C5-C4-C11-C12		82.4 (4)
C10-C3-C4-C11	-2.1 (3)	C3—C4—C11—C12		-97.3 (4)
C3—C4—C5—C6	2.2 (3)	C5—C4—C11—C16'		-68.1 (5)
C11—C4—C5—C6	-177.50 (17)	C3—C4—C11—C16'		112.3 (5)
C3—C4—C5—S1	179.84 (14)	C5-C4-C11-C16		-97.3 (5)
C11—C4—C5—S1	0.2 (3)	C3—C4—C11—C16		83.0 (5)
C4—C5—C6—N1	-2.1 (3)	C5—C4—C11—C12'		107.1 (4)
S1—C5—C6—N1	179.96 (16)	C3—C4—C11—C12'		-72.5 (4)
C4—C5—C6—C17	173.78 (17)	C16'—C11—C12—C13		-25.1 (9)
S1—C5—C6—C17	-4.2 (2)	C16-C11-C12-C13		1.1 (9)
N1—C2—C7—C8	179.8 (2)	C12'—C11—C12—C13		99 (2)
C3—C2—C7—C8	0.4 (3)	C4—C11—C12—C13		-178.6 (6)
C2—C7—C8—C9	-0.2 (4)	C15'—C14—C13—C12		24.1 (10)
C7—C8—C9—C10	0.1 (4)	C13'—C14—C13—C12		-74 (2)
C8—C9—C10—C3	-0.2 (3)	C15—C14—C13—C12		-5.3 (10)
C2—C3—C10—C9	0.4 (3)	C11—C12—C13—C14		2.3 (11)
C4—C3—C10—C9	-178.69 (19)	C13—C14—C15—C16		5.1 (12)
N1—C6—C17—C18	-159.49 (18)	C15'—C14—C15—C16		-85 (2)
C5—C6—C17—C18	24.6 (2)	C13'—C14—C15—C16		25.4 (11)
C6—C17—C18—C19	90.0 (2)	C12—C11—C16—C15		-1.5 (10)
C6—C17—C18—S1	-32.2 (2)	C16'—C11—C16—C15		77 (2)
C17—C18—C19—C20	170.37 (17)	C12'—C11—C16—C15		-26.2 (10)
S1-C18-C19-C20	-70.5 (2)	C4-C11-C16-C15		178.2 (6)
C17—C18—C19—C24	-9.6 (3)	C14—C15—C16—C11		-1.4 (12)
S1-C18-C19-C24	109.51 (18)	C12—C11—C12'—C13'		-67 (2)
C24—C19—C20—C21	-0.2 (3)	C16'—C11—C12'—C13'		-1.9 (9)
C18—C19—C20—C21	179.80 (17)	C16—C11—C12'—C13'		26.7 (8)
C24—C19—C20—Cl1	-179.75 (14)	C4—C11—C12'—C13'		-177.2 (5)
C18—C19—C20—Cl1	0.2 (2)	C13—C14—C13'—C12'		96 (3)
C19—C20—C21—C22	0.8 (3)	C15'—C14—C13'—C12'		2.8 (12)
Cl1—C20—C21—C22	-179.67 (15)	C15—C14—C13'—C12'		-24.8 (10)
C20—C21—C22—C23	-0.4 (3)	C11—C12'—C13'—C14		-0.6 (11)
C20—C21—C22—Cl2	-179.36 (15)	C13—C14—C15'—C16'		-25.4 (12)
C21—C22—C23—C24	-0.6 (3)	C13'—C14—C15'—C16'		-2.3 (12)
Cl2—C22—C23—C24	178.41 (15)	C15—C14—C15'—C16'		78.8 (19)
C22—C23—C24—C19	1.2 (3)	C12—C11—C16'—C15'		23.5 (10)
C20—C19—C24—C23	-0.8 (3)	C16—C11—C16'—C15'		-88 (2)
C18—C19—C24—C23	179.23 (18)	C12'—C11—C16'—C15'		2.3 (11)
C5—C6—N1—C2	0.4 (3)	C4—C11—C16'—C15'		177.4 (7)
C17—C6—N1—C2	-175.03 (18)	C14—C15'—C16'—C11		-0.1 (14)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C8—H8···Cg2 ⁱ	0.93	2.92	3.818 (2)	162

C21—H21····Cg3 ⁱⁱ	0.93	2.71	3.636 (2)	172
Symmetry codes: (i) $-x$, $y-1/2$, $-z+1/2$; (ii) $-x$	x+1, y+1/2, -z+1/2.			

Fig. 1

