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Abstract: Nanotechnology is an emerging area of research that deals with the production, manipula-
tion, and application of nanoscale materials. Bio-assisted synthesis is of particular interest nowadays,
to overcome the limitations associated with the physical and chemical means. The aim of this study
was to synthesize ZnO nanoparticles (NPs) for the first time, utilizing the seed extract of Lepidium
sativum. The synthesized NPs were confirmed through various spectroscopy and imagining tech-
niques, such as XRD, FTIR, HPLC, and SEM. The characterized NPs were then examined for various
in vitro biological assays. Crystalline, hexagonal-structured NPs with an average particle size of
25.6 nm were obtained. Biosynthesized ZnO NPs exhibited potent antioxidant activities, effective
α-amylase inhibition, moderate urease inhibition (56%), high lipase-inhibition (71%) activities, mod-
erate cytotoxic potential, and significant antibacterial activity. Gene expression of caspase in HepG2
cells was enhanced along with elevated production of ROS/RNS, while membrane integrity was
disturbed upon the exposure of NPs. Overall results indicated that bio-assisted ZnO NPs exhibit
excellent biological potential and could be exploited for future biomedical applications. particularly
in antimicrobial and cancer therapeutics. Moreover, this is the first comprehensive study on Lepidium
sativum-mediated synthesis of ZnO nanoparticles and evaluation of their biological activities.

Keywords: bio-assisted synthesis; ZnO NPs; phytochemicals; antioxidant activity; cytotoxicity;
anticancer activity

1. Introduction

Nanotechnology has been recently exploited as a tool to investigate unilluminated
approaches in many ways, such as artificial implants, imaging, targeted drug delivery, sens-
ing and gene-delivery systems [1]. Generally, nanoparticles [2] constitute 20–15,000 atoms,
their size is smaller than 100 nanometers, and they exist in a realm that bestrides the
Newtonian and quantum scales. Nanoparticles can be generated from various materials
in numerous shapes, such as wires, spheres, tubes, and rods [3,4]. Biological synthesis of
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nanoparticles has several benefits over chemical synthesis, including economic feasibility,
simplicity, being free of harmful waste materials, being ecofriendly, and the availability of
plant metabolites as capping and stabilizing agents [5]. NPs derived from plants are more
diverse and show consistency in size and shape, in contrast to those synthesized by other
organisms [6].

Zinc oxide (ZnO) has fascinated several researchers from different disciplines of sci-
ences due to its wide applications and unique characteristics [7]. ZnO is referred as a
wide-band-gap semiconductor (3.36 eV and has possessed great consideration in striking
electronic applications because of its unique chemical, optical, and electrical features [8].
Nanostructure availability at a wide range results in ZnO being an ideal material for biotech-
nology, for nanoscale optoelectronics, and for piezoelectric nanogenerators. The ZnO NPs
size, surface area, crystallinity, and band gap are strongly linked with activities, i.e., high
conductivity [9], good electric and thermal ability, significant antimicrobial potential, long
stability, and higher photocatalytic properties [10]. ZnO NPs exhibits strong resistance
against microorganisms [11]. Studies revealed that CaO, ZnO, and MgO possessed strong
antibacterial activity [12], which is linked with reactive-oxygen-species formation on the
surface of oxides and is studied by the conductometric method [11], as shown in Figure 1.
It is also employed as an effective drug-delivery system [13].

The benefit of utilizing these inorganic oxides as antimicrobial agents is that they
constitute the mineral elements necessary to humans, and they possess strong activity
when intaken in a minute quantity [14]. ZnO NPs prepared by conventional techniques,
such as laser ablation [15], the sol–gel method, solvothermal, chemical route [16], the
microwave method [17,18], and inert gas condensation. Such methods needs high pressure,
inert gases such as helium, toxic chemicals, and laser radiations, so are costly in contrast
to a green synthesis process [19]. There is a desperate requirement to produce easy, less
expensive, simple to manage, and ecofriendly methods for the preparation of NPs that can
lower the utilization of hazardous chemicals [20]. The characteristics and yield of prepared
ZnO NPs are strongly associated with reaction parameters such as temperature, pH, and
time. A wide range of ZnO NPs synthesized from seeds have been reported in the literature,
such as the stem of Boswellia ovalifoliolata [21], peel of Citrus sinensis (orange) [22], Silybum
marianum (L.) [23], fruit of Rubus coreanus [24], etc. Nowadays, algae [25], yeast [26], fungi,
bacteria [27], wild extracts of plants [28], and in vitro-derived callus and plant extracts [29]
are utilized to produce nanoparticles. It is also suggested that plant-mediated synthesis
of ZnO NPs, when applied on the HepG2 cell line, induce apoptosis by increasing the
level of ROS/RNS that results in the disruption of mitochondrial-membrane integrity,
and biocompatibility analysis on hRBCs showed that ZnO NPs are slightly hemolytic in
nature [16].

The current study aimed to synthesize first-time bio-assisted ZnO NPs from the seed
extract of Lepidium sativum. Generally, Salmonella typhi showed resistant against antibiotics,
but in the current study significant antibacterial activity was examined in contrast to most
potent antibiotic “cefexime”. The genus Lepidium belongs to the family of Brassicaceae: it
is basically an edible herb with length of approximately 50 cm. It originated from Southwest
Asia and Egypt, but now it is cultivated throughout the world. It is utilized widely as an
anti-spasmodic, antioxidant, analgesic hepatoprotective, galactagogue, anti-inflammatory,
diuretic, anti-diarrheal, etc. [30]. Phytochemical studies revealed that L. sativum constitutes
sterols, volatile oil, alkaloids, carotene, fixed oil, and glycosides. In seeds of L. sativum
alkaloids, dimeric Lepidine B, C, D, E, and F as well as semilepidinoside A and B were found.
Sinapin as well as sinapic acid were also obtained from the methanolic extract of defatted
seeds [31]. Characterization of these ZnO NPs was completed by XRD, FTIR, HPLC, and
SEM. Moreover, this study focused on various biological assays, constituting antioxidant,
enzyme-inhibition assays, catalytic activity, cell viability, brine-shrimp-lethality assays,
biocompatibility assays, membrane-integrity analysis, caspase activity, and antibacterial
assays, which were conducted to investigate the potency of bio-assisted NPs.
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Figure 1. (A) Schematic illustration of bio-assisted synthesis of ZnO NPs via green route using
Lepidium sativum seed extract; (B) proposed antibacterial mechanism of action of ZnO NPs. ZnO
NPs interact with cell membrane and result in disruption of membrane integrity, thus leading to
ion-channel leakage that causes imbalance within the cell. ROS production causes an oxidative stress
state in the cell, responsible for protein denaturation, cell-cycle arrest, cellular toxicity, and disruption
of mitochondrial function, so the metabolic activities become impaired and finally cell death occurs.

2. Materials and Methods
2.1. Chemicals

All the reagents utilized in the experimentation were from Sigma-Aldrich and Merck
(Saint Quentin Fallavier, France).
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2.2. Seed Collection and Preparation of Seed Extract

The Lepidium sativum seeds used in this study were collected from Gujranwala District,
Punjab, Pakistan. The wild seeds were taxonomically identified at the Plant Sciences
Department, Quaid-i-Azam University Islamabad, Pakistan. Aqueous extract (1:10) was
prepared by the addition of 30 g of plant-seed powder into 500 mL flasks constituting
300 mL of distilled water. The flasks were placed over a magnetic stirrer for 2 h at 80 ◦C. The
extract was filtered twice with a nylon cloth for the removal of solid plant residues, followed
by filtration three times by utilizing Whatman filter paper to exclude any remaining
residues. Processing of the filtrate was completed for further utilization.

2.3. Bio-Assisted Synthesis of ZnO Nanoparticles

Bio-assisted ZnO NPs were prepared by the procedure followed by Abbasi et al. (2017).
Briefly, 50 mL of 0.02 M zinc acetate dihydrate solution was prepared and kept in the stirrer
for 2 h at 60 ◦C. After this, 1 mL plant extract was added to the solution, followed by
constant stirring under the continuous dropwise incorporation of 2 M NaOH, until the
pH of the solution was maintained at 12. The solution was kept overnight. After the
appearance of white precipitants, the solution was allowed to settle down the dissolved
precipitate by centrifugation for 10 min at 10,000 rpm. The supernatant was discarded, and
the pellet was washed three times with distilled water. The precipitates were re-dissolved in
distilled water, poured in the clean petri-plate and kept in an incubator for drying at 60 ◦C
for 24 h. The dried nanoparticles were grinded to obtain fine powder of ZnO nanoparticles
and were used for further characterizations and prediction of biological efficacy. Flow chart
of the complete study design is shown in Figure 2.

1 
 

 Figure 2. Flow chart of the study design.
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2.4. Characterization

Various characterization techniques were performed to predict structural, functional
and morphological characteristics along with identification of phytochemicals in bio-
assisted ZnO NPs.

2.4.1. X-ray Diffraction (XRD) Analysis

X-ray Diffractometer (AXS DS Advance, Bruker, Billerica, MA, USA) was exploited
to predict crystalline nature of bio-assisted ZnO NPs. XRD instrument has a cathode ray
emitting X-rays on samples through which X-ray diffraction analysis (XRD) performed.
Composition of zinc oxide NPs was evaluated by powder XRD in the 2θ region, from 0◦ to
80◦. The average particle size of ZnO NPs was obtained by Scherrer equation. The equation
is given as follows:

D =
κλ

β cos θ
(1)

where, k = Shape Factor (0.94), λ = X-rays wavelength (1.5421Å), β = Full width at half
maximum in radians, θ = Bragg’s Angle.

2.4.2. Fourier Transform Infrared Radiation Spectroscopy (FTIR) Analysis

Fourier Transform Infrared Radiation Spectroscopy (FTIR, Bruker, Billerica, MA, USA)
was conducted in the spectral array from 400 to 4000 cm−1 for the prediction of major
functional groups that may act as a capping, reducing or stabilizing agent during bio-
assisted synthesis of ZnO NPs.

2.4.3. High Performance Liquid Chromatography (HPLC) Analysis

The HPLC (Merck, Saint Quentin Fallavier, France) analysis was completed by the
procedure followed by [32]. 5 µm particle size was formed by 250 × 4.6 mm, Hypersil
PEP 300 C18, 10 × 4.1 mm and guard column Alltech was utilized for the purpose of
separation at 35 ◦C. The compounds were analyzed at a wavelength of 320 nm and 520 nm.
Mobile phase constituted two HPLC grade solvents i.e., A = HCOOH/H2O, pH = 2.1 and
B = CH3OH. Composition of the mobile phase alter throughout 1 h each run, with non-linear
gradients as follows: 8% B, 100% B, 33% B, 30% B, 12% B, and 8% B for 36 min, 30–35 min,
28 min, 17 min, 11 min and 0 min at 1 mL/min flow rate. Among each individual run about
10 min re-equilibration time was utilized and quantification was conducted. Experiment
was run thrice and results were presented as µg/mg DW of samples.

2.4.4. Scanning-Electron-Microscopy (SEM) Analysis

Size as well as morphology of prepared ZnO NPs were predicted by utilizing scanning-
electron microscope (SEM, Jeol JSM-6510LV). Preparation of samples were completed by
placing nanoparticles (10 µL) on a cover slip for each micrograph followed by placing
overnight to dry. Then, the samples were evaluated with SEM.

2.5. In Vitro Biological Activities of ZnO NPs

Various biological assays were performed to evaluate bio-assisted ZnO NPs potency.

2.5.1. Antioxidant Assays

The total antioxidant capacity (TAC) of prepared ZnO NPs was determined by a
phosphomolybdenum-based assay utilizing the method of [33]. Initially 100 µL of each frac-
tion, refraction (4 mg/mL extract in DMSO), and positive control (ascorbic acid, 1 mg/mL)
was mixed with reagent (900 µL) constituting 0.6 M sulphuric acid, 28 mM sodium phos-
phate, and 4 mM ammonium molybdate. The reaction mixture was kept in a water bath at
95 ◦C for 90 min, the cooling of the test samples was completed at room temperature, and
200 µL of this reaction mixture was shifted to a 96-well plate. Absorbance was recorded at
630 nm, and the results were presented as µg AAE/mg.
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The total-reducing potential (TRP) of the test samples were predicted by utilizing
the methodology of [33]. Briefly, from a 4 mg/mL extract prepared in DMSO, about
200 µL of extract was mixed with 400 µL of phosphate buffer (0.2 mol/L, pH 6.6) and 1%
potassium ferricyanide [K3Fe (CN)6], which was then incubated for 20 min at 50 ◦C. After
this, 400 µL of 10% trichloroacetic acid was mixed to the mixture, and centrifugation was
completed at 3000 rpm for 10 min by a centrifuge (Spectrafuge™ 24D microcentrifuge,
Labnet International, Corning, NY, USA). The 200 µL from the upper layer solution was
added into a 96-well plate, and, then, to stop the reaction, 50 µL of 0.1% Ferric chloride was
added. Finally, at 630 nm the absorbance was recorded, and the results were presented as
µg AAE/mg.

The antioxidant capability of the test samples was evaluated by utilizing the stable 2,
2-diphenyl 1-picrylhydrazyl (DPPH) free radical as described by [34]. Spectrophotometric
analysis was conducted to analyze the percentage of radical-scavenging activity (%RSA) in
terms of % inhibition. Briefly, in a 96-well plate, 10 µL extract was transferred, followed
by a 190 µL addition of DPPH solution, and the plate was incubated for 30 min at 37 ◦C.
Assay was conducted in triplicate, and ascorbic acid was used as a standard. The following
equation was used to calculate scavenging activity as a percentage (%inhibition):

% Scavenging =

(
1− Abs

Abc

)
∗ 100 (2)

where Abs indicates the DPPH-solution absorbance with the sample, and Abc shows the
negative-control (constituting the reagent devoid of the sample) absorbance.

2.5.2. Enzyme-Inhibition Assays

α-Amylase-Inhibition Assay
The α-Amylase-inhibition capability of ZnO NPs was determined by a protocol fol-

lowed by [35]. Initially, in a 96-well plate, about 15 µL phosphate buffer (pH 6.8) was
poured, 0.14 U/mL α-amylase enzyme solution was prepared, and 25 µL of it was poured
into another 96-well plate, followed by the subsequent mixing of 10 µL of the test sample
(4 mg in DMSO) and 40 µL of a starch solution (2 mg/mL in potassium-phosphate buffer).
Incubation of the test samples was performed for 30 min at 50 ◦C, followed by the addition
of 1 M HCl (20 µL) and 90 µL iodine reagent (5 mM iodine, 5 mM potassium iodide).
The 100% enzyme activity represented by the negative control did not constitute any text
sample, while acarbose, at a concentration range of 5–200 µg, was utilized as a positive
control. A blank was prepared devoid of amylase enzyme and the test sample. Absorbance
was recorded utilizing a microplate reader (Thermo Scientific Multiskan GO) at 540 nm,
and the percentage of inhibition is measured as follows:

% enzyme inhibition = OD(s)− OD(n)
OD(b)

∗ 100 (3)

where OD (s) = absorbance value of test sample, OD (n) = absorbance of negative control,
and OD (b) = absorbance of blank.

Lipase-Inhibition Assay
The lipase-inhibition assay previously reported by [36] was followed with some minor

modifications. In ultra-pure water (10 mg/mL), lipase was dissolved and the supernatant
was utilized followed by centrifugation via centrifuge (Spectrafuge™ 24D microcentrifuge,
Labnet International, Corning, NY, USA) at 16,000 rpm for 5 min. Tris Buffer (100 mM;
pH 8.2) was taken as an assay buffer, and olive oil was utilized as a substrate. It was
prepared by 0.08% v/v, dissolved in 5 mM sodium acetate (pH 5.0), containing 1% Triton
X-100 heated in boiling water for 1 min to aid dissolution, mixed well, and cooled for
further use at room temperature. Each Eppendorf for the test sample constituted 350 µL
of buffer, 150 µL of lipase, and 50 µL of the test sample (4 mg/mL in DMSO), along with
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the addition of 450 µL of substrate to start the reaction. An Eppendorf devoid of the test
sample was pondered as a blank, and Orlistat was used as an inhibitor and constituted
400 µL of buffer, 150 µL of lipase, and 450 µL of substrate. Incubation of all the samples
was performed at 37 ◦C for 2 h, followed by centrifugation at 16,000 rpm for 1 min. After
centrifugation, 200 µL of mixture was poured into the respective wells of a microtiter
plate, and absorbance was taken at 400 nm via a UV spectrophotometer (Halo DR-20, UV-
VIS spectrophotometer, Dynamica Ltd., Victoria, Australia). Comparison with a standard
inhibitor (Orlistat) was completed, and the percentage of enzyme inhibition was determined
by the following formula:

% enzyme inhibition = OD(b)− OD(s)
OD(b)

∗ 100 (4)

where OD (b) = absorbance of blank, and OD (s) = absorbance value of test sample.

Urease-Inhibition Assay
The assay mixture containing 25 µL of urease, 50 µL of phosphate buffer ((3 Mm,

pH 4.5) constituting 100 mM urea), and 10 µL of the test samples (4 mg in DMSO) was
added in a 96-well plate and kept in an incubator at 30 ◦C for 15 min. Later, 45 µL of phenol
reagent (1% (w/v) phenol and 0.005% (w/v) sodium nitroprusside) and 70 µL of alkali
reagent (0.5% (w/v) NaOH and 0.1% NaOCl) were mixed with each well. The activity
of urease inhibition was evaluated by predicting the production of ammonia that was
apparent, with the pungent smell of ammonia as discussed by [37]. Incubation of the plates
was completed at 30 ◦C for 50 min and later a 630 nm reading was taken by utilizing a
UV spectrophotometer (Halo DR-20, UV-VIS spectrophotometer, Dynamica Ltd., Victoria,
Australia). Thiourea was utilized as a urease inhibitor and considered as a control, while a
blank constitute with none of the test sample and control was utilized, which contained
60 µL of buffer instead of 50 µL, thoughthe rest was the same as above. The percentage of
enzyme inhibition was determined by the help of the following formula:

% enzyme inhibition = OD(b)− OD(s)
OD(b)

∗ 100 (5)

where OD (b) indicates blank, and OD (s) indicates value of the sample.

2.5.3. Catalytic Activity

Peroxidase (POD) Activity
The peroxidase activity of the test samples was investigated by utilizing the method

followed by [38], with minor modifications. For the assay, in each well 140 µL of NaAc-HAc
buffer (0.2 M, pH 4.0) was poured, followed by the addition of 20 µL of the test sample, and
later H2O2 (6 mM, freshly prepared) and 20 µL TMB (3 mM, freshly prepared) were poured.
A reaction mixture devoid of the test sample was considered as a control. Absorbance was
measured by utilizing a micro-plate reader at 652 nm wavelength, and enzyme activity was
determined by the following formula:

A = ELC (6)

Here, A: sample absorbance, C: enzyme concentration (mM/min/mg), E: extinction
coefficient (6.39 mM−1 cm−1), and L: length of wall (0.25 cm).

2.5.4. Cytotoxicity Assays

Cell-Viability Assay (XTT Assay)
The cytotoxicity of the biosynthesized ZnO NPs was checked against NIH3T3 mouse

fibroblast cells by XTT assay (2, 3-bis [2-methoxy-4-nitro-5- sulfoxyphenyl]-2H-tetrazolium
5-carboxyanilide inner salt), utilizing an XTT assay kit as previously elaborated by [39].
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Briefly, fibroblast cells were trypsinized using 1X Trypsin + EDTA and plated in a 96-well
plate at a cell density of 3000 cells/well, provided with the complete growth medium of
Dulbecco’s Modified Eagle Medium Low Glucose (DMEM LG) (Sigma Aldrich, St. Louis,
MO, USA), along with 20% fetal bovine serum (FBS) (Gibco), and incubated in a 5%
CO2 incubator at 37 ◦C. At 80%–90% confluency, the cells’ media was aspirated, and
washing of the cells was completed twice with 1x PBS. The cells were treated with different
concentration of ZnO NPs (25, 50, 75, and 100 µg/mL) prepared in serum-free media, and
the plates were incubated for 24 h at 37 ◦C. Untreated fibroblast cells were considered as
a control. After 24 h of nanoparticle treatment, the media was aspirated from the wells
and washed twice with 1xPBS. After this, a fresh mixture of electron-coupling reagents and
XTT was prepared in a ratio of 1:50, and 50 µL of the prepared mixture was added in each
treated well of the plate. The plate was then wrapped completely in aluminum foil and
incubated in a humidified 5% CO2 incubator at 37 ◦C for 4 h. The absorbance was recorded
at 450 nm, and the experiment was conducted thrice in a triplicate manner.

Evaluation of Anticancer Potential by MTT Assay
The anticancer potential of the prepared ZnO NPs was assessed against HepG2

liver-cancer cells. MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide),
referred to as a tetrazolium dye, was utilized to determine the in vitro-toxicity impact of ex-
tracts/NPs, as followed by [23]. In living cells, a reduction in MTT occurred in an insoluble
formazan (purple product) that is measured spectrophotometrically. For 24 h, pre-seeded
HepG2 cells (>90% viability; 1 × 104 cells/well; 200 µL per well) in a 96-well plate were
exposed with 200 µg/mL of the test samples. It was followed by the addition of 10 µL of
MTT dye (5 mg/mL) per well, along with 3 h of incubation. Then, insoluble formazan was
dissolved by the addition of 10% acidified sodium dodecyl sulfate (SDS), and incubation
of the cells was completed overnight. By utilizing a microplate reader (Thermo Scientific
Multiskan GO), analysis of each plate was completed at 570 nm. Untreated HepG2 cells
(NTC) acted as a control. Prior to cytotoxicity screening, centrifugation of the extract was
performed, and the sonication of NPs was completed by ultrasonic bath (USC1200TH,
Prolabo, Sion, Switzerland). The percentage (%) of cell viability in contrast to the NTC
sample was quantified, utilizing the following equation:

% viability =
(
Sample Abs− Control Abs/NTC′ s abs−Media Abs

)
∗ 100 (7)

where the Abs of the NTC represents optical density at 570 nm, respectively, for the
non-treated control samples, while the Abs of the sample corresponds to the treated
control samples. The Abs of the sample control, and the Abs of blank corresponds to the
background optical density. The whole experiment was repeated thrice.

Brine-Shrimp-Lethality Assay
Bio-assisted synthesized ZnO NPs (20 mg/mL stock in water) were used to determine

the lethality against Artemia salina (brine shrimp) in the 96-well plate (300 µL) for about
24 h. The brine shrimp is significant in the investigation of the toxicological impact of
nanoparticles or other compounds. Artemia salina’s larvae was utilized in this study by
following the protocol of [23]. Brine-shrimp eggs were subjected to incubation of 24–48 h
for hatching in seawater. During the procedure, the constant supply of oxygen in the sterile
sea water (38 g/L) was ensured, and supplementation of 6 mg/L dried yeast was given
with the sterile sea water under the proper light. The necessary temperature (30–32 ◦C) and
light for hatching were provided by illumination. By utilizing a Pasteur pipette, 10 mature
phototropic nauplii were picked and added into the wells. After this, 200 µg/mL final
concentrations of ZnO NPs were added into the wells containing the sea water and shrimp
larvae. In each well, a final volume of 300 µL was adjusted. For the positive control,
doxorubicin’s serial concentration (ranging from 1 µg/mL to 10 µg/mL) were taken, while
1% DMSO in sea water served as a negative control. Quantification of the live shrimps was
completed after 24 h of incubation with nanoparticles, and the median lethal concentration
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(LC50) was calculated by utilizing a 2D v5.01 table curve of the test NPs, with a mortality
rate of ≥50%.

Biocompatibility Testing with Human Red Blood Cells (hRBCs) (Hemolytic Assay)
Hemolytic assay was conducted to investigate the biocompatibility of bio-assisted

ZnO NPs against freshly isolated human red blood cells [23]. Fresh blood was collected
with consent from 1 female and 2 male healthy students (average age 28 years), having no
previous illness record. The blood was dispensed in an EDTA tube to prevent clotting. For
the isolation of red blood cells, the centrifugation of 1 mL blood was completed for 5 min
at 14,000 rpm, and the obtained pellet was washed with PBS twice. In 200 µL of pelleted
erythrocyte, 9.8 mL of PBS (phosphate-buffer saline) (pH: 7.2) was added and mixed thor-
oughly. Almost 100 µL of erythrocyte suspension and the test NPs sample were introduced
into a 1.5 mL Eppendorf tube. The tubes were incubated at 35 ◦C for 1 h, proceeded by
centrifugation at 10,000 rpm for 10 min. Then, 100 µL of supernatant was dispensed in a
96-well plate, and absorbance of the released hemoglobin was recorded at 540 nm utilizing
an Absorbance Microplate Reader (Thermo Scientific Multiskan GO). Triton X-100 served
as a positive control, while DMSO acted as a negative control. The results were presented
in the form of the percentage of hemolysis, using the following formula:

% hemolysis = [Sample Abs
−Negative control Abs/ Positive control Abs
−Negative control Abs]

(8)

2.5.5. Membrane-Integrity Analysis

Measurement of Reactive Oxygen and Nitrogen Species
Dihydrorhodamine-123 (DHR-123) fluorescent dye was utilized to measure the reac-

tive oxygen species (ROS)- and reactive nitrogen species (RNS)-level, as followed by [40].
In the presence of ROS and RNS, the dihydrorhodamine-123 (DHR-123) dye become
oxidized into fluorescent rhodamine (R123). Briefly, HepG2 cells at a cell density of
5 × 105 cells/well were plated, and after 90% confluency the cells were treated with
ZnO NPs or DMSO (control group). After the NPs treatment, the treated and non-treated
cells (NTC) were washed twice with PBS, resuspended in PBS containing 0.4 µM of DHR-
123, and incubated in the dark at 30 ◦C for 10 min. After washing twice with PBS, the
fluorescence signal was measured at 505 nm with an emission wavelength of 535 nm,
respectively. The assay was repeated twice using Resveratrol as a positive control, and the
results were expressed in term of Trolox C equivalent antioxidant capacity (TEAC).

Evaluation of Mitochondria-Membrane Potential
The mitochondria-membrane potential (∆Ψm) was determined by investigating the

fluorescence of 3,3′-dihexyloxacarbocyanine iodide DiOC6, which is a specific probe, as
followed by [41]. On the base of ∆Ψm, DiOC6 stains the mitochondria. For this purpose,
ZnO NPs were treated, while NTC HepG2 cells were grown in a culture medium containing
25 nM of DiOC6 and were incubated at 30 ◦C for 45 min. By utilizing a Versa Fluor
Fluorimeter, the fluorescence signal was measured at 482 nm. For each condition, six
independent measurements were conducted, and the results were represented as relative
fluorescent units.

Caspase-3/7-Like Activities
The protein lysates from the bio-assisted synthesized ZnO NPs that treated HepG2

cells and control cells were isolated in a cold lysis buffer (1 mM DTT, protease inhibitors in
PBS and 1% NP40). With the help of SDS-PAGE, a total of 50 mg of separated proteins were
tracked by immunoblotting, using specific primary antibodies for caspase-3 and caspase-7
with dilution of 1:1000 using an ECL identification kit [42].
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2.5.6. Antibacterial Assay

The antibacterial activity of the ZnO NPs was examined by the disc-diffusion method,
as illustrated by [35]. For this purpose, two Gram-positive bacteria (Micrococcus luteus
and Staphlococcus aureus) and three Gram-negative bacteria (Salmonella typhi, Enterobacter
aerogens and Salmonella Setubal) were tested. The bacteria were grown on nutrient agar
plates, and 5 µL (4 mg/mL in DMSO) of the test samples were impregnated on filter paper
discs and placed in the inoculated plates. Cefexime was used as a positive control, and the
plates were incubated at 37 ◦C for 24 h. After overnight incubation, the average diameter
of the clear zone of inhibition was measured and recorded.

2.5.7. Statistical Analysis

Origin 8.5 (Windows v8.1, Northampton, MA, USA) was used for the result analysis
of all performed activities, while the statistical analysis of the XTT cell-viability assay was
performed by a one-way analysis of variance (ANOVA) test, followed by an unpaired
Bonferroni test, using GraphPad Prism 8 software. Data were represented as mean ± SD of
three independent experiments, followed by a one-way ANOVA (p < 0.05).

3. Results
3.1. Bio-Assisted Synthesis of Zinc-Oxide NPs

The medicinal plant Lepidium sativum was exploited for the successful bio-assisted
synthesis of ZnO NPs for the very first time. The white-crystalline powder of the ZnO NPs
was acquired at pH 12, after several steps of washing, drying, and grinding. It was taken
and stored in an air-tight glass vial, at room temperature for physiochemical, morphological,
and biological activities.

3.2. Physical Characterization
3.2.1. XRD (X-ray Diffraction) Analysis

The purity, phase identification, and structure of the bio-assisted ZnO NPs were
predicted by X-ray diffraction. The crystalline nature and purity of NPs was confirmed by
the XRD pattern, with several diffraction peaks predicted at different 2θ, i.e., 31.74◦, 34.34◦,
36.35◦, 47.38◦, 56.57◦, 62.68◦, 66.36◦, 67.83◦, and 68.2◦, corresponding to different Miller
indices (100), (002), (101), (102), (110), (103), (200), (212), and (201), respectively, as shown in
Figure 3a. The average particle size of the pure ZnO NPs was evaluated to be 25.6 nm.
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3.2.2. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectroscopy was utilized to predict the surface adsorption of the functional
groups present on the bio-assisted ZnO NPs. FTIR spectra of the bio-assisted ZnO NPs
is in spectral range of 400–4000 cm−1, as shown in Figure 3b. The absorption peaks
were observed in the region of 617 cm−1, 882 cm−1, 1225 cm−1, 1286 cm−1, 1470 cm−1,
2370 cm−1, 2920 cm−1, 2980 cm−1, 3647 cm−1, 3811 cm−1, 3892 cm−1, 3933 cm−1, and
3983 cm−1, respectively. A characteristic band predicted at 617 cm−1 corresponds to the
Zn-O stretching bond, as ZnO NPs were reported in the region of 650–400 cm−1 [5]. The
peak intensity at 882 represents the C-H “oop” of the aromatics, 1225 and 1286 correspond
to the C-N stretch of aliphatic and aromatic amines, 1470 corresponds to the Amine NH
vibration stretch, as previously indicated by [43], 2370 corresponds to C≡N stretching
mode, and 2920 and 2980 correspond to the C-H stretch of alkanes, respectively. The
peak at 3377 corresponds to the O-H group [44]. The bands of absorption observed in
the region of 3600–3900 cm−1 correspond to the stretching-vibration modes of the OH
groups [45]. These results demonstrate the significant importance of biological molecules
in ZnO NPs fabrication.

3.2.3. HPLC Analysis

HPLC analysis showed various secondary metabolites associated with bio-assisted
ZnO NPs, such as chlorogenic acid (830 µg/mg DW), quercetin (1850 µg/mg DW), and
kaempferol (1290 µg/mg DW). Chlorogenic acid belongs to the phenolic family, while
quercetin and kaempferol belong to the flavonoid group. The chemical structures of
chlorogenic acid, quercetin, and kaempferol are shown in Figure 4.
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3.2.4. Scanning-Electron-Microscopy (SEM) Analysis

Particle size, along with surface morphology of the bio-assisted ZnO NPs, was es-
timated utilizing a scanning-electron microscope (SEM). Representative images of the
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scanning-electron micrograph of the bio-assisted nanoparticles are shown in Figure 5. A
typical scanning-electron micrograph reveals that particles possess spherical shape with
some degree of aggregation.
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3.3. In Vitro Antioxidant Potential

Total antioxidant capacity (TAC), total reducing power (TRP), and DPPH-free radical
scavenging activity assays were conducted to evaluate the antioxidant capability of the bio-
assisted ZnO NPs and phytochemicals as shown in Figure 6a. For the assays, 4 mg/mL con-
centration were exploited. The TAC value was found to be 96.60387 ± 0.57116 µgAAE/mg
for the plant extract and 97.75848 ± 0.91892 µgAAE/mg for the NPs. The TRP as-
say was also conducted to further evaluate the antioxidant potency of the plant extract
and the NPs. The TRP value for the plant extract and the NPs was predicted to be
68.4898 ± 0.68483 µgAAE/mg and 73.03813 ± 0.78838 µgAAE/mg, respectively. To fur-
ther evaluate the antioxidant potential of the plant extract and the bio-assisted ZnO NPs,
DPPH radical scavenging assay was conducted. Results of the plant extract and the NPs
were found to be 55.7% and 61.033%, respectively. From the results, it can be revealed that
some of the compounds of the aqueous extract of Lepidium sativum were responsible for
the stabilization as well as the reduction in the ZnO NPs during the synthesis of the NPs,
while the seed extract itself also possessed good antioxidant potential.
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3.4. Enzyme-Inhibition Activities

Enzyme-inhibition activities were shown in Figure 6b. The α-amylase-inhibition
capability of the L. sativum extract and the ZnO NPs were found to be 12.8% and 16.3%
inhibition, respectively. The α-amylase inhibition assay demonstrated a moderate anti-
diabetic activity for the biosynthesized ZnO NPs and extract, while there is no significant
difference observed between the percentage of inhibitory potential of the ZnO NPs and the
extract against α-amylase enzyme.

Lipase-inhibition-assay results indicated that the L. sativum extract and ZnO NPs
exhibited 68.7% and 71.8% lipase-inhibition capacity. The lipase-inhibition assay performed
in this study exhibited good lipase-inhibitory potential for both the biosynthesized ZnO
NPs and the extract, however there is no significant difference between the percentage of
inhibition of the NPs and the extract. So, these results demonstrate that both the L. sativum
extract and the ZnO NPs can act as lipase inhibitors.

The urease-inhibition potential of the L. sativum extract and the ZnO NPs were ob-
served to be 76.1% and 57.0%. According to the results, both the ZnO NPs and the extract
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showed good inhibitory properties against the urease enzyme, however the percentage of
inhibitory potential of the extract is significantly higher as compared to that of the NPs.

3.5. Catalytic Activity

Peroxidase activity (POD) was conducted using a 4 mg/mL concentration of the ZnO
NPs and 1 ml of the L. sativum extract. Results showed that plant extract and NPs exhibited
peroxidase activity of 0.2 ± 0.01 mM/min/mg and 0.4 ± 0.01 mM/min/mg, respectively,
as shown in Figure 6c. The results elaborated on the greater catalytic potential of the ZnO
NPs compared to the L. sativum extract, suggesting an improved sensitivity of H2O2 for the
nanoparticles than the plant extract.

3.6. Cell-Viability Assay
3.6.1. XTT Assay

NIH3T3 fibroblast cell lines were used to determine the cytotoxic impact of the bio-
assisted ZnO NPs. Different concentrations of the ZnO NPs were tested, and the results
revealed the dose-dependent cytotoxicity of the NPs, i.e., they were less toxic at lower doses
and more toxic at higher concentrations. XTT-assay results showed 100.0 ± 0.012% cell
viability in the control group vs. 75.23 ± 1.866% in 25 µg/mL, 71.10 ± 1.784% in 50 µg/mL,
55.63 ± 1.468% in 75 µg/mL, and 52.13 ± 1.64% in 100 ug/mL, respectively, as shown in
Figure 7a. The 25 ug/mL concentration of the NPs offered less toxicity to the cells in contrast
to the control and the other tested concentrations of the NPs (50 µg/mL, 75 µg/mL, and
100 µg/mL). However, there is no significant difference observed between cell viabilities at
25 ug/mL and 50 ug/mL concentrations, and a similar trend was observed for 75 ug/mL
and 100 ug/mL concentrations of the NPs. The 100 µg concentration exhibited the least cell
viability and is the most toxic among all the tested concentrations, as it reduces the overall
viability of the cells to 50%. Hence, these results conferred that a dose above 100 µg/mL
may appear to be lethal to the cells.
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Figure 7. Cytotoxicity assays: (a) cell-viability assay (XTT assay) of ZnO NPs against NIH3T3-
fibroblast cells; (b) anticancer activity (by MTT cell-viability assay) against HepG2 cancer cells.
Experiments are performed in triplicates and values are presented as means ± standard deviation.
*** results are highly significant, ** significant results, while ns showed that results are not significant;
whereas similar alphabets in figure (b) illustrated significant similarity, while different alphabets
show differences between groups (p < 0.05).
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3.6.2. Antiproliferative Potential of ZnO NPs by MTT Assay

The antiproliferative activity of the bio-assisted ZnO NPs (20 mg/mL) against the
HepG2 cancer cell line was tested using an MTT cell-viability assay. Results depicted that
the bio-assisted ZnO NPs showed cytotoxicity towards HepG2 cells. Non-treated cells
(NTCs) showed a percentage of viability of 95 ± 1.71%, which reduced to 30.10 ± 1.34% in
the presence of the bio-assisted ZnO NPs at a dose of 200 µg/mL, as shown in Figure 7b.
These results revealed a higher antiproliferative effect by the ZnO NPs at 200 µg/mL
concentration against HepG2 cells, hence confirming the significant anticancer ability of
the ZnO NPs against liver-cancer cells.

3.6.3. Evaluation of Toxicity by Brine-Shrimp-Lethality Assay

The obtained results indicated that significant toxicity was shown by the bio-assisted
ZnO NPs against brine shrimp larvae. Doxorubicin presented a 5.92 ± 0.34 µg/mL LC50
value, while the ZnO NPs presented an LC50 value of 19.43 ± 1.90 µg/mL, respectively, as
shown in Table 1. Results of the brine shrimp were stated in different standards as follows:
if LC50 < 1.0 µg/mL, then the compounds are highly toxic; compounds are said to be toxic
if LC50 is 1.0–10.0 µg/mL; for moderately toxic compounds, LC50 is 10.0–30.0 µg/mL; the
LC50 value for mildly toxic compounds is 30.0–100.0 µg/mL, and non-toxic compounds
exhibit an LC50 > 100.0 µg/mL [46,47]. Hence, the bio-assisted ZnO NPs were considered
as moderately toxic, while doxorubicin showed more toxicity compared to the NPs, as it is
a toxic compound and has been used to cure various cancers.

Table 1. Biocompatibility assays of bio-assisted ZnO NPs.

Assay Mean ± SD of ZnO NPs Mean ± SD of Control

Brine-shrimp lethality (LC 50
(in µg/mL)

ZnO NPs
19.4 ± 1.9

Doxorubicin
5.9 ± 0.3

Red blood cells hemolysis (%) ZnO NPs
4.1 ± 0.2

Non-treated cells NTCs
0.9 ± 0.3

NTCs = non-treated cells, SD = standard deviation.

3.6.4. Biocompatibility Analysis with Human Red Blood Cells (hRBCs)

The bio-safe nature of the bio-assisted ZnO NPs was evaluated by assessing their
compatibility with human red blood cells (hRBCs). Results revealed that the bio-assisted
ZnO NPs showed 4.1 ± 0.2% hemolytic potency, compared to the NTCs that exhibited
0.9 ± 0.3% hemolytic ability, as shown in Table 1. The hemolysis potential is determined by
the rupturing of the RBC and the release of hemoglobin upon treatment of the 4 mg/mL
ZnO NPs. The findings of this assay suggested slightly hemolytic potency of the ZnO NPs,
compared to the control.

3.7. Membrane-Integrity Analysis
3.7.1. Reactive Oxygen- and Nitrogen-Species Assessment

The results depicted that the ZnO NPs accelerate the level of the ROS and RNS in
HepG2 cells, in contrast to non-treated cells (NTCs). The least ROS/RNS production was
observed in the case of the NTCs, i.e., 835± 80.17, while the bio-assisted ZnO NPs exhibited
a high level of ROS/RNS production, i.e., 3009.67 ± 401.48, as shown in Figure 7a. This
is suggesting that membrane integrity is disrupted by the elevated level of the reactive
oxygen and nitrogen species.

3.7.2. Evaluation of Mitochondria-Membrane Potential

Results showed that a loss of mitochondrial function was observed in the case of the
bio-assisted ZnO NPs, as shown in Figure 8a. The ZnO NPs presented 1393.7 ± 56.2, while
non-treated cells (NTCs) showed mitochondrial-membrane potential to be 3374.9 ± 105.3.
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3.7.3. Gene Expression of Caspases 3/7

The protein expression of caspase-3 and caspase-7 was determined in response to the
bio-assisted ZnO NPs showing that the bio-assisted ZnO NPs elevated the caspase-3/7
protein activity of, i.e., 224.0 ± 11.1%, and 337.7 ± 16.8% for the ZnO NPs, while the
non-treated cells (NTCs) exhibited protein activity that was 100.0 ± 1.8% and 100.0 ± 6.6%,
as shown in Figure 8b.

3.8. Antibacterial Activity

The antibacterial potency of the bio-assisted ZnO NPs was tested against five pathogenic
bacterial strain, among these were two Gram-positive bacteria (Micrococcus luteus and
Staphlococcus aureus) and three Gram-negative bacteria (Salmonella typhi, Enterobacter aero-
gens and Salmonella Setubal), using the well-diffusion method. A 4 mg concentration of NPs
and 1 mL of pure plant extract were used to evaluate bacterial susceptibility. A sample
exhibiting a ≥12 mm inhibition zone is considered significant. Results indicated that the
plant extract did not exhibit anti-bacterial activity, as its zone of inhibition is less than
12 mm, while the ZnO NPs exhibited good anti-antibacterial potential against all bacterial
strains, although Salmonella Setubal and Staphlococcus aureus antibacterial activity were
found to be the most significant. The inhibitory zones were measured in millimeters,
with the help of Vernier caliper. The inhibitory zones of the NPs obtained at a 4 mg/mL
concentration were recorded as 18 ± 1.1 mm for Staphlococcus aureus, 18 ± 1.4 mm for
Salmonella Setubal, 15 ± 1.2 mm for Micrococcus luteus, 15 ± 1.2 mm for Salmonella typhi, and
14 ± 1 mm for Enterobacter aerogens, respectively, as shown in Figure 9. While the inhibitory
zones measured against cefexime were 19 ± 1.8 mm for Staphlococcus aureus, 22.5 ± 2.2 mm
for Salmonella Setubal, 21.8 ± 0.8 mm for Micrococcus luteus, 13 ± 2.5 mm for Salmonella
typhi, and 20 ± 2.2 mm for Enterobacter aerogens, respectively.
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4. Discussion

In this study, an aqueous seed extract of Lepidium sativum was exploited as a reducing
and stabilizing agent for preparation of the ZnO NPs for various biological activities.
Lepidium sativum, also commonly known as garden cress or pepper cress, belongs to
the Brassicaceae family and is an edible herbaceous plant [48,49]. Different plant parts,
particularly the seeds, exhibit potent pharmaceutical characteristics, and these seeds have
been utilized previously to cure cough, bronchitis, and asthma. Cress seeds have been
utilized to cure leucorrhea and hemorrhoids and have been proven to be effective against
skin illnesses and diarrhea [50–52]. Due to its high phytochemical profile, the dietary
utilization of this medicinal plant increases the body natural immunity against several
diseases. These phytochemicals, such as carotenoids, flavonoids, phenolics, and terpenoids,
have a potent role in the protection of cells from oxidative stress, which is responsible for
some metabolic disorders such as cancer [53,54]. L. sativum constitutes a large amount of
the phenolic components that can serve as antioxidant and anticancer agents [55]. Several
phytochemicals constituted by L. sativum includes ferulic acid, vanillic acid chlorogenic
acid, kaempferol, p-coumaric acid, caffeic acid, and quercetin. These phytochemicals could
have performed a potent function for the preparation of stable bio-assisted ZnO NPs [48].
After synthesis of such stable bio-assisted ZnO NPs, in the form of white precipitates, they
were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy
(FTIR), HPLC, and scanning-electron microscopy (SEM).

X-ray-diffraction analysis revealed the purity and phase identification of the bio-
assisted ZnO NPs. The peaks predicted at different 2θ verified the pure and high crystalline
nature of the particles. By studying the literature, it is revealed that the hexagonal wurtzite
structure (JCPDF file NO. 00-036-1451) [56] of the particles was confirmed by Miller indexa-
tion. Similar results regarding size and shape were also reported in previous studies [57–60].
Moreover, the average particle size of the bio-assisted ZnO NPs was found to be 25.6 nm,
using Scherrer formula. FTIR analysis exhibited the functional groups that existed in the
plant extract and may have participated in the mechanism of bonding with the bio-assisted
ZnO NPs. As L. sativum extract contains saponosides, alkaloids, terpenes, flavonoids,
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sterols, and tannins compounds [61], and these phytochemicals can act as a reducing and
capping agent during nanoparticle synthesis [62,63], it was demonstrated previously that
the functional groups in the plant extract donate electrons that are responsible for zinc-ion
reduction (Zn2+ to Zn1+),which finally reduces to zinc NPs (Zn0). Another study indicated
that the negative functional groups present in the extract exhibited a stabilizing effect [64].
A typical scanning-electron micrograph reveals that particles possess a spherical shape with
some degree of aggregation. Similar morphological studies were also found in previous
studies [65,66].

In vitro biological assays were also conducted to determine the biomedical applications
of the ZnO NPs. The TAC and TRP assays involve an investigation of the reductones
present in the samples. The reductones are referred to as species with antioxidant potential,
due to their capability to donate an H-atom, which leads to the discontinuation of free-
radical chains [67]. A DPPH assay depends on the production of the light-yellow diphenyl
picrylhydrazine molecule, developed due to a reduction in DPPH moiety, after electron
acceptance from the donor species [68]. The antioxidant potential of the bio-assisted ZnO
NPs was found to be slightly greater in contrast to that of the plant extract. Related
observations from the literature review suggested the high antioxidant potential of the
bio-assisted NPs [69,70]. The overall results obtained from these activities revealed that
the compounds present in the aqueous extract of L. sativum may have been involved in
the stabilization and reduction in the ZnO NPs during the synthesis process, which, hence,
resulted in the relatable, good antioxidant and reduction potential of the NPs, as exhibited
by the extract.

Amylase inhibitors, also termed as starch blockers, contain components that can stop
the absorption of dietary starches by the body, through hindering the degradation of
complex sugars into their simpler forms. Such materials possess potent applications to
control diabetes [23]. This significant enzyme breaks down the α bonds of polysaccharides,
i.e., glycogen as well as starch, yielding maltose, and glucose [71]. In the light of the
obtained results, it can be concluded that the L. sativum extract and the ZnO NPs can act as
mild anti-diabetic agents. Previous reports in this context indicated that the polyphenols
and flavonoids capping the NPs could be responsible for the α-amylase inhibition of
bio-assisted NPs [72,73].

A lipase-inhibition assay was performed to identify the anti-obesity properties of the
L. sativum extract and the bio-assisted ZnO NPs. This fat digestion is decreased or inhibited
by suppressing the pancreatic-lipase action that splits triglycerides into fatty acids and
glycerol. Orlistat, which is a potent lipase-inhibitor drug has been used to treat obesity and
it was used as a positive control in this assay [36,74].As no significant difference was noticed
between the lipase inhibition of the NPs and the extract, these results demonstrate that both
L. sativum extract and the ZnO NPs can act as lipase inhibitors. It has been revealed from
previous reports that naturally occurring polyphenols have the ability to inhibit pancreatic
lipase, and, hence, in this way, they influence energy intake and affect fat digestion [75].
Hence, the obtained results are in accordance with previous work.

Urease (E.C 3.5.1.5), the first enzyme crystallized from Canavalia ensiformis, is known
to possess nickel ions that can rapidly catalyze the breakdown of urea to generate carbon
dioxide and ammonia [37]. The higher inhibitory potential of the extract in the results may
be attributed to the greater count of the phytochemicals present in the extract that may
cause urease inhibition, compared to the phytochemical count that is coated on the NPs.
It has been demonstrated earlier that the functional groups and chemical constituents of
phytochemicals play a significant role in urease inhibition. The functional groups, such as
ketones and the hydroxyl group, which are associated with aromatic rings, can show the
interaction with the active site of enzymes with Ni ions, resulting in impeding the function
of urease [37].

Catalytic-peroxidase activity determines the ability of the oxidoreductase that catalyzes
the H2O2 breakdown, by donating an electron and by the oxidation of the inorganic and
organic compounds [76]. The results showed the greater catalytic potential of the ZnO NPs
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in contrast to the L. sativum extract, suggesting an improved sensitivity of H2O2 for the
nanoparticles. The same trend is reported by [77], which is that ZnS-MMT nanocomposites
improved H2O2 sensitivity.

NIH3T3 fibroblast cell lines were exploited to predict the cell viability of the bio-
assisted ZnO NPs. So, the results demonstrated that the 25 ug/mL concentration of
NPs possessed less toxicity and more cell viability, while the 100 µg/mL concentration
exhibited the least cell viability and more toxicity. Earlier studies also revealed that the
ZnO NPs possessed greater cell viability at a lower concentration, though it depends on
exposure time and concentration because they have a direct impact on cell viability [78].
Moreover, a higher antiproliferative effect of the synthesized ZnO NPs at a 200 µg/mL
concentration against HepG2 cells showed the potent anticancer ability of the ZnO NPs
against liver-cancer cells. In previous reports, the ZnO NPs have shown an efficient
antiproliferative effect against liver-cancer cells [23]. Our findings are also relevant to
previous work by [28]. Brine shrimp at the larval stage were used to determine the
toxicological impact of ZnO NPs. Brine shrimp is a renowned model for the determination
of the toxicological impact of substances on living organisms [46]. Doxorubicin served as a
control in the current study because it is a well-known chemotherapeutic agent, utilized
for the treatment of various cancers types [79]. Thus, the bio-assisted ZnO NPs showed
a moderate toxicity, while doxorubicin was considered more toxic in contrast to the NPs
because doxorubicin presented an LC50 in the range of 1.0–10.0 µg/mL, while the LC50 of
the ZnO NPS was in the range of 10.0–30.0 µg/mL [46,47]. Hemolytic potency is evaluated
using different grades, i.e., a material having≥5% hemolysis is considered hemolytic, while
if the hemolytic potency is 2%–5% then it is slightly hemolytic, but if it is ≤2% then it is
regarded as non-hemolytic [80]. These findings regarding the hemolytic potential of the
ZnO NPs were relevant to previous studies and showed that the ZnO NPs possess slightly
hemolytic potency [81].

ROS/RNS are referred to as by-products of the metabolism, which are generated
physiologically in the mitochondria. Their production was investigated by utilizing the
dihydrorhodamine 123 (DHR123) probe. As the ZnO NPs in this finding increase the
level of ROS and RNS in HepG2 cells in contrast to non-treated cells (NTCs), so are our
results in accordance with the previous report of [82], suggesting that membrane-integrity
is disrupted by an elevated level of the reactive oxygen and nitrogen species. Our results
for the ZnO NPs showed decreased mitochondrial integrity, and in the literature, it was
indicated that such biosynthesized ZnO NPs have demonstrated a reduced mitochondrial
integrity because of metal depletion from their surfaces, which results in an elevated level
of ROS that generates oxidation stress as well as membrane-integrity disruption [82]. As
protein expression of these caspases was elevated in HepG2 cells, when the NPs were
applied in contrast to NTCs, these caspases acted as an effector protein that performs an
important role in apoptosis initiation and control over cancer formation [82].

Regarding the antibacterial activity of the ZnO NPs, it has been revealed that significant
antibacterial activity against all five of the bacterial strains was shown in our results as
a zone of inhibition, measured at ≥12 mm. From the literature, it has been observed
that the NPs’ size has a greater impact on their bioactivity, since, due to the smaller size,
most of the NPs become accumulated inside the cytoplasm through the cell membrane
and, hence, cause more toxicity. The antibacterial activity of the ZnO NPs is also linked
with the physiochemical properties of NPs, such as solubility, shape, size, and chemical
composition [83]. It is also suggested that the smaller the size an NP is, the greater its
efficacy to inhibit bacterial growth [83].

5. Conclusions

The present investigation reports the bio-assisted synthesis of the ZnO NPs, with
Lepidium sativum seed extract as a reducing agent. Characterizations, such as XRD and
SEM, were performed to confirm the ZnO NPs’ synthesis. The average particle size of
the nanoparticles was evaluated to be 25.6 nm. FTIR analysis revealed the presence of
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functional groups on the NPs’ surface, and HPLC confirmed the presence of secondary
metabolites, i.e., chlorogenic acid, quercetin, and kaempferol, which aid in reduction and
capping. Furthermore, the ZnO NPs exhibited potent antioxidant activities, i.e., TAC, TRP,
and DPPH, as well as considerable enzyme-inhibition potential for α-amylase, urease, and
lipases. Biocompatibility analysis also revealed that these NPs are biocompatible, offer
less toxicity to brine-shrimp larvae, and possess low hemolytic potential. The NPs have
exhibited dose-dependent toxicity against fibroblast cells, i.e., less toxic at lower doses
(25 ug/mL) and more toxic at higher doses (100 µg). Moreover, the ZnO NPs were found to
be effectively inhibiting the growth of HepG2 cells. The elevated production of ROS/RNS
and enhanced expression of caspase-3/7 was observed in the potential of the ZnO NPs
to treat HepG2 cells. Significant antibacterial activity was shown by the NPs against all
tested bacterial strains. Therefore, we believe that the bio-assisted ZnO NPs synthesized in
the current study might be used for biomedical and pharmaceutical applications, owing
to their effective antioxidant, antibacterial, enzyme-inhibition, and anticancer activities.
However, for possible biomedical application from the toxicological perspective, further
experiments are needed to be completed in animal models, so this study can also lead
toward determining the exact mechanism of apoptosis induction via molecular studies as
well as facilitate in the future application of the ZnO NPs as anti-cancer therapeutics.
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antioxidant and aldose reductase inhibitory activities of phenolic compounds from Sideritis brevibracteata. Food Chem. 2010, 118,
686–692. [CrossRef]

53. Hudaib, M.; Mohammad, M.; Bustanji, Y.; Tayyem, R.; Yousef, M.; Abuirjeie, M.; Aburjai, T. Ethnopharmacological survey of
medicinal plants in Jordan, Mujib Nature Reserve and surrounding area. J. Ethnopharmacol. 2008, 120, 63–71. [CrossRef]

54. Conforti, F.; Ioele, G.; Statti, G.; Marrelli, M.; Ragno, G.; Menichini, F. Antiproliferative activity against human tumor cell lines
and toxicity test on Mediterranean dietary plants. Food Chem. Toxicol. 2008, 46, 3325–3332. [CrossRef]

55. Hardman, W.E.; Avula, C.R.; Fernandes, G.; Cameron, I.L. Three percent dietary fish oil concentrate increased efficacy of
doxorubicin against MDA-MB 231 breast cancer xenografts. Clin. Cancer Res. 2001, 7, 2041–2049.

56. Krishna Reddy, G.; Jagannatha Reddy, A.; Hari Krishna, R.; Nagabhushana, B.; Gopal, G.R. Luminescence and spectroscopic
investigations on Gd3+ doped ZnO nanophosphor. J. Asian Ceram. Soc. 2017, 5, 350–356. [CrossRef]

57. Arakha, M.; Saleem, M.; Mallick, B.C.; Jha, S. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle.
Sci. Rep. 2015, 5, 9578. [CrossRef]

58. Matinise, N.; Fuku, X.; Kaviyarasu, K.; Mayedwa, N.; Maaza, M. ZnO nanoparticles via Moringa oleifera green synthesis: Physical
properties & mechanism of formation. Appl. Surf. Sci. 2017, 406, 339–347.

59. Vijayakumar, S.; Vaseeharan, B.; Malaikozhundan, B.; Shobiya, M. Laurus nobilis leaf extract mediated green synthesis of ZnO
nanoparticles: Characterization and biomedical applications. Biomed. Pharmacother. 2016, 84, 1213–1222. [CrossRef]

60. Janaki, A.C.; Sailatha, E.; Gunasekaran, S. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim.
Acta Part A Mol. Biomol. Spectrosc. 2015, 144, 17–22. [CrossRef]

61. Chatoui, K.; Talbaoui, A.; Aneb, M.; Bakri, Y.; Harhar, H.; Tabyaoui, M. Phytochemical screening, antioxidant and antibacterial
activity of Lepidium sativum seeds from Morocco. J. Mater. Env. Sci. 2016, 7, 2938–2946.

62. Mazhdi, M.; Tafreshi, M. The effects of gadolinium doping on the structural, morphological, optical, and photoluminescence
properties of zinc oxide nanoparticles prepared by co-precipitation method. Appl. Phys. A 2018, 124, 863. [CrossRef]

http://doi.org/10.1016/j.foodchem.2008.11.093
http://doi.org/10.1042/CBI20110183
http://doi.org/10.1021/acs.jafc.8b05647
http://doi.org/10.3390/life10060080
http://www.ncbi.nlm.nih.gov/pubmed/32481725
http://doi.org/10.1080/21691401.2019.1642902
http://www.ncbi.nlm.nih.gov/pubmed/31328556
http://doi.org/10.1016/j.jksus.2016.10.002
https://chem.yonsei.ac.kr/chem/upload/CHE2001-02/121116151375428.pdf
https://chem.yonsei.ac.kr/chem/upload/CHE2001-02/121116151375428.pdf
http://doi.org/10.1038/s41598-018-22324-7
http://doi.org/10.1186/s12906-017-1894-x
http://doi.org/10.1186/s12906-017-1951-5
http://doi.org/10.3390/ijms20071787
http://doi.org/10.3748/wjg.v16.i36.4504
http://doi.org/10.1007/s11130-004-4308-4
http://doi.org/10.1016/j.foodchem.2009.05.034
http://doi.org/10.1016/j.jep.2008.07.031
http://doi.org/10.1016/j.fct.2008.08.004
http://doi.org/10.1016/j.jascer.2017.06.008
http://doi.org/10.1038/srep09578
http://doi.org/10.1016/j.biopha.2016.10.038
http://doi.org/10.1016/j.saa.2015.02.041
http://doi.org/10.1007/s00339-018-2291-0


Biomolecules 2022, 12, 855 23 of 23

63. Sruthi, S.; Ashtami, J.; Mohanan, P. Biomedical application and hidden toxicity of Zinc oxide nanoparticles. Mater. Today Chem.
2018, 10, 175–186. [CrossRef]

64. Alamdari, S.; Sasani Ghamsari, M.; Lee, C.; Han, W.; Park, H.-H.; Tafreshi, M.J.; Afarideh, H.; Ara, M.H.M. Preparation and
Characterization of Zinc Oxide Nanoparticles Using Leaf Extract of Sambucus ebulus. Appl. Sci. 2020, 10, 3620. [CrossRef]

65. Suresh, D.; Nethravathi, P.; Rajanaika, H.; Nagabhushana, H.; Sharma, S. Green synthesis of multifunctional zinc oxide (ZnO)
nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci.
Semicond. Processing 2015, 31, 446–454. [CrossRef]

66. Khan, S.A.; Noreen, F.; Kanwal, S.; Iqbal, A.; Hussain, G. Green synthesis of ZnO and Cu-doped ZnO nanoparticles from
leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and
photocatalytic activities. Mater. Sci. Eng. C 2018, 82, 46–59. [CrossRef] [PubMed]

67. Abdel-Hameed, E.-S.S. Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples.
Food Chem. 2009, 114, 1271–1277. [CrossRef]

68. Smuleac, V.; Varma, R.; Sikdar, S.; Bhattacharyya, D. Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for
reductive degradation of chlorinated organics. J. Membr. Sci. 2011, 379, 131–137. [CrossRef] [PubMed]

69. Nagajyothi, P.; Cha, S.J.; Yang, I.J.; Sreekanth, T.; Kim, K.J.; Shin, H.M. Antioxidant and anti-inflammatory activities of zinc oxide
nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol. B Biol. 2015, 146, 10–17. [CrossRef]

70. Suresh, D.; Shobharani, R.; Nethravathi, P.; Kumar, M.P.; Nagabhushana, H.; Sharma, S. Artocarpus gomezianus aided green
synthesis of ZnO nanoparticles: Luminescence, photocatalytic and antioxidant properties. Spectrochim. Acta Part A Mol. Biomol.
Spectrosc. 2015, 141, 128–134. [CrossRef]

71. Bhuyan, T.; Mishra, K.; Khanuja, M.; Prasad, R.; Varma, A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for
antibacterial and photocatalytic applications. Mater. Sci. Semicond. Processing 2015, 32, 55–61. [CrossRef]

72. Bala, N.; Saha, S.; Chakraborty, M.; Maiti, M.; Das, S.; Basu, R.; Nandy, P. Green synthesis of zinc oxide nanoparticles using
Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 2015,
5, 4993–5003. [CrossRef]

73. Rajakumar, G.; Thiruvengadam, M.; Mydhili, G.; Gomathi, T.; Chung, I.-M. Green approach for synthesis of zinc oxide nanoparti-
cles from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities.
Bioprocess Biosyst. Eng. 2018, 41, 21–30. [CrossRef]

74. Sjöström, L.; Rissanen, A.; Andersen, T.; Boldrin, M.; Golay, A.; Koppeschaar, H.P.; Krempf, M.; European Multicenter Orlistat
Study Group. Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients.
Lancet 1998, 352, 167–172. [CrossRef]

75. McDougall, G.J.; Stewart, D. The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors 2005, 23, 189–195.
[CrossRef]

76. Raveendran, S.; Parameswaran, B.; Beevi Ummalyma, S.; Abraham, A.; Kuruvilla Mathew, A.; Madhavan, A.; Rebello, S.; Pandey,
A. Primjena mikrobnih enzima u prehrambenoj industriji. Food Technol. Biotechnol. 2018, 56, 16–30.

77. Attar, F.; Shahpar, M.G.; Rasti, B.; Sharifi, M.; Saboury, A.A.; Rezayat, S.M.; Falahati, M. Nanozymes with intrinsic peroxidase-like
activities. J. Mol. Liq. 2019, 278, 130–144. [CrossRef]

78. Saranya, S.; Vijayaranai, K.; Pavithra, S.; Raihana, N.; Kumanan, K. In Vitro cytotoxicity of zinc oxide, iron oxide and copper
nanopowders prepared by green synthesis. Toxicol. Rep. 2017, 4, 427–430.

79. Tomankova, K.; Polakova, K.; Pizova, K.; Binder, S.; Havrdova, M.; Kolarova, M.; Kriegova, E.; Zapletalova, J.; Malina, L.;
Horakova, J. In Vitro cytotoxicity analysis of doxorubicin-loaded/superparamagnetic iron oxide colloidal nanoassemblies on
MCF7 and NIH3T3 cell lines. Int. J. Nanomed. 2015, 10, 949. [CrossRef]

80. Aula, S.; Lakkireddy, S.; Swamy, A.; Kapley, A.; Jamil, K.; Tata, N.R.; Hembram, K. Biological interactions In Vitro of zinc oxide
nanoparticles of different characteristics. Mater. Res. Express 2014, 1, 035041. [CrossRef]

81. Ali, S.S.; Morsy, R.; El-Zawawy, N.A.; Fareed, M.F.; Bedaiwy, M.Y. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): A novel
antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int. J. Nanomed.
2017, 12, 6059. [CrossRef]

82. Ajdari, Z.; Rahman, H.; Shameli, K.; Abdullah, R.; Abd Ghani, M.; Yeap, S.; Abbasiliasi, S.; Ajdari, D.; Ariff, A. Novel gold
nanoparticles reduced by Sargassum glaucescens: Preparation, characterization and anticancer activity. Molecules 2016, 21, 123.
[CrossRef]

83. Safawo, T.; Sandeep, B.; Pola, S.; Tadesse, A. Synthesis and characterization of zinc oxide nanoparticles using tuber extract
of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment. OpenNano 2018, 3, 56–63.
[CrossRef]

http://doi.org/10.1016/j.mtchem.2018.09.008
http://doi.org/10.3390/app10103620
http://doi.org/10.1016/j.mssp.2014.12.023
http://doi.org/10.1016/j.msec.2017.08.071
http://www.ncbi.nlm.nih.gov/pubmed/29025674
http://doi.org/10.1016/j.foodchem.2008.11.005
http://doi.org/10.1016/j.memsci.2011.05.054
http://www.ncbi.nlm.nih.gov/pubmed/22228920
http://doi.org/10.1016/j.jphotobiol.2015.02.008
http://doi.org/10.1016/j.saa.2015.01.048
http://doi.org/10.1016/j.mssp.2014.12.053
http://doi.org/10.1039/C4RA12784F
http://doi.org/10.1007/s00449-017-1840-9
http://doi.org/10.1016/S0140-6736(97)11509-4
http://doi.org/10.1002/biof.5520230403
http://doi.org/10.1016/j.molliq.2018.12.011
http://doi.org/10.2147/IJN.S72590
http://doi.org/10.1088/2053-1591/1/3/035041
http://doi.org/10.2147/IJN.S141201
http://doi.org/10.3390/molecules21030123
http://doi.org/10.1016/j.onano.2018.08.001

	Introduction 
	Materials and Methods 
	Chemicals 
	Seed Collection and Preparation of Seed Extract 
	Bio-Assisted Synthesis of ZnO Nanoparticles 
	Characterization 
	X-ray Diffraction (XRD) Analysis 
	Fourier Transform Infrared Radiation Spectroscopy (FTIR) Analysis 
	High Performance Liquid Chromatography (HPLC) Analysis 
	Scanning-Electron-Microscopy (SEM) Analysis 

	In Vitro Biological Activities of ZnO NPs 
	Antioxidant Assays 
	Enzyme-Inhibition Assays 
	Catalytic Activity 
	Cytotoxicity Assays 
	Membrane-Integrity Analysis 
	Antibacterial Assay 
	Statistical Analysis 


	Results 
	Bio-Assisted Synthesis of Zinc-Oxide NPs 
	Physical Characterization 
	XRD (X-ray Diffraction) Analysis 
	Fourier Transform Infrared Spectroscopy (FTIR) 
	HPLC Analysis 
	Scanning-Electron-Microscopy (SEM) Analysis 

	In Vitro Antioxidant Potential 
	Enzyme-Inhibition Activities 
	Catalytic Activity 
	Cell-Viability Assay 
	XTT Assay 
	Antiproliferative Potential of ZnO NPs by MTT Assay 
	Evaluation of Toxicity by Brine-Shrimp-Lethality Assay 
	Biocompatibility Analysis with Human Red Blood Cells (hRBCs) 

	Membrane-Integrity Analysis 
	Reactive Oxygen- and Nitrogen-Species Assessment 
	Evaluation of Mitochondria-Membrane Potential 
	Gene Expression of Caspases 3/7 

	Antibacterial Activity 

	Discussion 
	Conclusions 
	References

