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An efficient simulation for quantum 
secure multiparty computation
Kartick Sutradhar* & Hari Om

The quantum secure multiparty computation is one of the important properties of secure quantum 
communication. In this paper, we propose a quantum secure multiparty summation (QSMS) protocol 
based on (t, n) threshold approach, which can be used in many complex quantum operations. To 
make this protocol secure and realistic, we combine both the classical and quantum phenomena. The 
existing protocols have some security and efficiency issues because they use (n, n) threshold approach, 
where all the honest players need to perform the quantum multiparty summation protocol. We 
however use a (t, n) threshold approach, where only t honest players need to compute the quantum 
summation protocol. Compared to other protocols our proposed protocol is more cost-effective, 
realistic, and secure. We also simulate it using the IBM corporation’s online quantum computer, or 
quantum experience.

In quantum internet, the secure quantum communication is an essential property. The secure quantum commu-
nication can be provided by the quantum key distribution (QKD)1–5, secure quantum channel6–9, dense quantum 
measurement10–13, and quantum secure multiparty summation (QSMS). In quantum computing, the QSMS is a 
fundamental paradigm for secure quantum communication14–19. The QSMS can be used to build many complex 
protocols20–31 like multiplication, sorting32–35, voting36,37, auction, etc. The QSMS includes a list of secrets S and 
a set of players P . The list of secrets is shared among n players P = {P1, P2, . . . ,Pn} over a finite field Fd , where 
d denotes a large prime. The players P = {P1, P2, . . . ,Pn} jointly perform the summation by without disclosing 
the privacy of their secrets. The security of this protocol is guaranteed until some players reveal their secrets. 
Suppose, the dealers A and B contain two secrets X and Y (for simplicity, we take only two secrets, but the secrets 
can be any number n or more than n) and the players P = {P1, P2, . . . ,Pn} want to compute the secure summa-
tion without revealing their secrets. Consider that X,Y ∈ S are two secrets of the dealers A and B, respectively. 
The dealers A and B share two secrets X and Y among n players P = {P1, P2, . . . ,Pn} using the Shamir’s secret 
sharing38. The X1,X2, . . . ,Xn and Y1,Y2, . . . ,Yn denote the shares of secrets X and Y, respectively. The players 
P = {P1, P2, . . . ,Pn} want to execute (Xi + Yi) , i = 1, 2, . . . , n , without disclosing their shares. We simulate this 
protocol by using the IBM quantum computer or quantum experience39,40, which is presented at T.J. Watson lab 
in USA. The novelties of this QSMS can be summarized as follows.

•	 The proposed protocol is more secure against the participant attack and it has the threshold approach of 
(t, n), in which only the t honest players can securely compute the multiparty quantum summation.

•	 Compared to other protocols, the proposed protocol is more realistic and cost-effective.

In secure multiparty classical computation, there exist many summation protocols, but they are unable to pro-
vide secure communications; whereas, the QSMS is unconditional secure as it uses the concepts of quantum 
mechanics. In secure multiparty quantum computation, there have been discussed many summation protocols. 
In 2002, Heinrich41 discussed a QSMS protocol. In 2003, Heinrich42 introduced another QSMS protocol with 
Boolean setting. In 2006, Hillery43 discussed a QSMS, based on two-particle entanglement. In 2007, Du et al.44 
discussed a QSMS protocol based on non-orthogonal states. This protocol’s modulo is n+ 1, where total number 
of players is n. In 2010, Chen et al.45 implemented a QSMS protocol based on multi-particle entanglement with 
modulo 2. In 2014, Zhang et al.46 discussed a QSMS protocol based on polarization of photon with modulo 2. 
In 2015, Zhang et al.47 implemented a quantum summation protocol for three-party with modulo 2. There are 
some limitations in the above mentioned protocols44–47, as discussed below.

•	 These protocols are based on a threshold approach of (n, n), where all players need to perform the secure 
multiparty quantum summation. If any player is rational, then these protocols cannot be executed efficiently.

OPEN

Department of Computer Science and Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, India. 
*email: kartick.sutradhar@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-81799-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2206  | https://doi.org/10.1038/s41598-021-81799-z

www.nature.com/scientificreports/

•	 These protocols are not cost-efficient because they have bit-by-bit operations.
•	 These protocols have some security issues because their modulo is too small.

Shi et al.48 implemented a QSMS protocol, which can compute the summation efficiently with large modulo p, 
but it has the threshold approach of (n, n), where p = 2q and q is number of qubits. Shi and Zhang49 discussed a 
QSMS protocol, which can compute the summation efficiently, but it is not secure because it has only two-party. 
Zhang et al.50 implemented a QSMS protocol based on quantum secure multiparty computation, but its modulo 
is 2 only. Liu et al.51 discussed a QSMS protocol based on the threshold approach of (n, n) with modulo 2, and 
its form of computation is bit-by-bit. In 2018, Yang and Ye52 discussed a QSMS protocol with modulo d. Its form 
of computation is secret-by-secret, but it has the threshold approach of (n, n). In 2019, Jiao et al.53 discussed a 
QSMS protocol, which has the threshold approach of (n, n), and its form of computation is bit-by-bit. In the 
same year, Zhang et al.54 have discussed a QSMS protocol. Its modulo is d, but it has the threshold approach 
of (n, n). In 2020, Sutradhar and Om introduced a quantum secret sharing55 protocol. This protocol is efficient 
and has (t, n) threshold approach, but it has more computational cost because it uses CNOT gate and SHA1. 
This protocol does not discuss about the realistic implementation, collective and coherent attacks. In the same 
year, Sutradhar and Om56 discussed a multiparty quantum summation protocol. This protocol is efficient and 
has (k, n) threshold approach, but it has more computational cost because it uses SUM gate, where k denotes the 
players of the qualified subset. This protocol does discuss about the collective and coherent attacks. Recently, 
Sutradhar and Om57 introduced another quantum protocol for secure multiparty summation. This protocol is 
efficient and has (t, n) threshold approach, but it has more computational cost because it uses the SUM gate. This 
protocol does not discuss about the realistic implementation. Moreover, the proposed protocol is more secure, 
realistic and cost-effective as compared to the these protocols55–57. In this paper, we propose a QSMS protocol 
with a form of secret-by-secret computation. The proposed protocol has the threshold approach of (t, n), where 
only t honest players need to execute the secure multiparty quantum summation efficiently and cost-effectively 
without disclosing their secrets.

Preliminaries
In this section, we discuss the Shamir’s Secret Sharing (SSS), Pauli operator, and Quantum Fourier Transform 
(QFT).

Shamir’s secret sharing.  The SSS38 contains P = {P1, P2, . . . ,Pn} , a dealer, and n players. It is formed in 
two phases as discussed below.

Secret sharing phase.  In this phase, the dealer uses (t − 1)-degree polynomial f(x) to share the secret and dis-
tribute those shares among n players, each player Pi contains only f (xi) , i = 1, 2, . . . , n.

Secret reconstruction phase.  In this phase, reconstruction is performed by the threshold number of players 
using the Lagrange Interpolation, as discussed below.

For x = 0 , Eq. (1) can be simplified as follows:

where u, z = 1, 2, . . . , t.

Pauli operator.  The Pauli operator is defined as follows:

where m ∈ {0, 1, . . . , d − 1}.

Quantum Fourier transform (QFT).  The QFT58 is an extension of the regular Fourier discrete transfor-
mation. For v ∈ {0, 1, . . . , d − 1} , the QFT is defined as follows:
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Our contribution
In this section, we propose a (t,n) threshold QSMS protocol. Let the dealers A and B have two secrets (for sim-
plicity, we only take two secrets but the secrets can be any number n or more than n, where n denotes total no of 
players) X and Y, respectively, and n players want to jointly perform the summation (S = X + Y) without reveal-
ing their secrets. In this protocol, each qualified subset P = {P1, P2, . . . ,Pt} contains a kth player as an initiator. 
We assume that kth player is P1 , which acts as an initiator. The initiator P1 only contains his share value, nothing 
else. The process of quantum secure multiparty summation is given as follows.

Step 1: A and B choose two distinct (t − 1)-degree polynomials f (x) = X + α1x + α2x
2 + · · · + αt−1x

t−1 
and g(x) = Y + β1x + β2x

2 + · · · + βt−1x
t−1 , X and Y are secrets and the symbol ′+′ is defined as addition 

modulo d, d is a prime such that n ≤ d ≤ 2n . The A and B use the Shamir’s secret sharing to compute the 
shares f (xi) and g(xi) , respectively, which are distributed among n players using an authenticated classical 
channel. The player Pi only knows the shares f (xi) and g(xi) , i = 1, 2, . . . , n.
Step 2: Player Pi computes h(xi) = f (xi)+ g(xi) , i = 1, 2, . . . , n, and possesses the share h(xi) only.
Step 3: Player Pu computes the shadow (mu) of the share h(xu) , u = 1, 2, . . . , t , as follows.

Step 4: Initiator player P1 prepares t−particle entangled states as follows.

Player P1 sends the particle |c�u to player Pu , u = 2, 3, . . . , t.
Step 5: Each player Pu performs the QFT52 on his particle |c�u as follows:

Each player Pu , (u = 1, 2, . . . , t) , also applies the Pauli operator Umu ,0 on his particle as follows:

After performing the QFT and Pauli operator, the resultant state |�2� is obtained as follows.

Step 6: Each player Pu performs the measurement operation on his particle |au +mu� in computational basis 
{|1�, |2�, . . . , |d − 1�} , and broadcasts his measurement results au +mu , where u = 1, 2, . . . , t.
Step 7: Finally, the players in qualified subset calculate the summation jointly by summing their results of 
measurement: S =

∑t
u=1 au +mu mod d.

Correctness

Lemma 1  If QFT and Pauli operators are honestly performed by all players in a qualified subset P = {P1, P2, . . . ,Pt} , 
then they can jointly compute the multiparty quantum summation (

∑t
u=1 mu mod d) correctly.

Proof  If QFT and Pauli operators are honestly performed by every player in the qualified subset 
P = {P1, P2, . . . ,Pt} , the quantum state is obtained as follows.
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Each player Pu , u = 1, 2, . . . , t , performs the measurement operation on his own particle in computa-
tional basis |au +mu� . The QSMS can be computed after receiving the measurement results of each player Pu , 
u = 1, 2, . . . , t . The QSMS of secret can be calculated as follows.

Thus, the multiparty quantum summation of secrets equals to 
∑t

u=1 mu mod d . 	�  �

Illustration of secure multiparty quantum summation
Here, we use a numerical example to discuss the working of the proposed protocol. Let A and B hold two secrets 
2 and 3, respectively and they want to perform the summation S = (2+ 3) . A and B choose threshold (t) = 3 , 
total number of players (n) = 7 , and prime (d) = 11 . Suppose A and B select two different polynomials 
f (x) = 2+ x + x2 mod 11 and g(x) = 3+ x + x2 mod 11 , respectively. They calculate the shares f (xi) and 
g(xi), i = 1, 2, . . . , 7 using the Shamir’s secret sharing, and allocate these shares to 7 players. Each player 
Pi , i = 1, 2, . . . , 7 , performs h(xi) = f (xi)+ g(xi) mod 11 . The calculation of shares h(xi) is shown in Table 1. 
Each player Pu , u= 1, 2, 3, computes the shadow of the shares mu , as m1 = 9.

(

2
2−1

. 3
3−1

)

mod 11 = 5 , 
m2 = 6.

(

1
1−2

. 3
3−2

)

mod 11 = 4 , and m3 = 7.

(

1
1−3

. 2
2−3

)

mod 11 = 7 , respectively (using Eq. 5). The player 
P1 now computes |�1� = 1√

11

∑10
c=0 |c�1|c�2|c�3 and sends the particle |c�u to player Pu, u = 2, 3 . Each player 

Pu, u = 1, 2, 3, applies the QFT and Pauli operator U5,0 , U4,0 , U7,0 on his particle, respectively, (as per Eq. 9).

Each player Pu, u = 1, 2, 3, performs the measurement operation in computational basis on his particle. The 
players P1 , P2 , and P3 broadcast the measurement results a1 + 5 , a2 + 4 , and a3 + 7 , respectively. Finally, they 
get the summation by summing the results of measurement as follows:
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Table 1.   Share computation.

Players P1 P2 P3 P4 P5 P6 P7

Shares

f (xi) 4 8 3 0 10 0 3

g(xi) 5 9 4 1 0 1 4

h(xi) 9 6 7 1 10 1 7
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Simulation results
We simulate the proposed protocol using the IBM real quantum processor39,40, which is available at T.J.Watson 
lab, USA. We explain the circuit diagram (refer Fig. 1) of our QSMS protocol. The Hadamard gate is taken as 
the QFT in this circuit diagram of QSMS. On his particle, the player Pu applies the QFT and also performs the 
Pauli operator on his particle. Then, each player Pu performs measurement operations on his own particle, and 
broadcasts the measurement result. Finally, by summing their measurement results, the players jointly calculate 
the QSMS. The privacy of this protocol is guaranteed until a certain number of players disclose their shares.

We have simulated this circuit of QSMS with 3 players, 5 qubits, and 8192 number of average shots. Initially, 
the player Pu , u = 1, 2, 3 performs the QFT on his particle |c�u and also executes the Pauli operator on particle 
|c�u . Then, each player Pu, u = 1, 2, 3, executes the measurement operation in computational basis on his particle. 
The players P1 , P2 , and P3 broadcast the measurement results a1 + 5 , a2 + 4 , and a3 + 7 , respectively. Finally, 
they get the summation of 2 and 3 by adding the measurement results as follows:

The simulation result of the proposed summation protocol for 3 players, 5 qubits, and 8192 number of average 
shots. The state 101 (i.e., binary representation of 5) is calculated efficiently. The result of this simulation using 
the IBM real quantum processor is shown in Fig. 2.

Discussion
Here, we address the security and performance analysis based on some properties of the proposed QSMS 
protocol.

Security analysis.  In this section, we analyze the security of QSMS protocol based on the intercept-resend, 
entangle-measure, intercept, collective, coherent, and collusion attacks.

Intercept-resend attack Suppose an attacker Mallory intercepts the particle |c�u . It measures the quantum 
particle |c�u in the computational basis to get the useful data about the share’s shadow ( mu ). Mallory produces 
the clone quantum particle |c̄�u and resends this clone particle to player Pu , u = 2, 3, . . . t . If Mallory applies this 
method to attack, then it can get c accurately with probability 1d . But, from this attack, Mallory cannot get any 
useful data about the share’s shadow mu , because the intercepted particle |c�u does not contain any useful data 
about the share’s shadow mu.

Entangle-Measure attack After the intercept attack, Mallory performs the complex entangle-measure attack 
on the entangled quantum particle |c�u . In this attack, Mallory performs the measurement operation on the 
intercepted entangled quantum particle |c�u in the computational basis to get the useful data about the share’s 
shadow mu . If Mallory applies the entangle-measure attack, then it can get c accurately with probability 1d . But, 
from this attack, Mallory cannot get useful data about the share’s shadow mu , because the intercepted entangled 
quantum particle |c�u does not contain any useful data about the share’s shadow mu.

a1 + 5+ a2 + 4+ a3 + 7 = 16 mod 11 = 5.

Figure 1.   Circuit diagram of QSMS.
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Intercept attack Suppose Mallory intercepts the particle |c�u and measures the quantum particle |c�u in the 
computational basis to reveal the useful data about the share’s shadow mu . If Mallory measures the quantum 
particle |c�u in the computational basis, then it can get c correctly with probability 1d . But, from the measurement 
result c, it cannot get any useful data about the share’s shadow mu , because the intercepted particle |c�u does not 
carry any useful data about the share’s shadow mu.

Collective attack In a collective attack, Mallory prepares an autonomous ancillary particle to communicate 
with each qudit to get the shadow of share and they perform the joint measurement operation on every ancil-
lary qudit. Suppose Mallory communicates with every qudit of all players by preparing an autonomous ancillary 
particle |e� . After successful interaction, Mallory gets the particle |o�x . Then, Mallory wants to know the shadow 
of share by performing a computational basis {|1�, |2�, . . . , |d − 1�} joint measurement operation. Mallory can-
not get any useful data about the share’s shadow from this joint measurement operation because |o�x does not 
contain any useful data about the share’s shadow.

Coherent attack In this attack, Mallory prepares an autonomous ancillary particle |c� to communicate with the 
qudits of each player. After interacting, Mallory gets each player’s particle |o�x and performs a joint measurement 
operation on all players particle c in computational basis {|1�, |2�, . . . , |d − 1�} . Mallory only gets o from the 
joint measurement result of particle |o�x with probability 1d . But, the joint measurement result o does not contain 
any useful data about the share’s shadow. From this attack, Mallory only gets the interacting particle |o�x , but it 
cannot learn any useful data about the share’s shadow.

Collusion attack In this protocol, each player Pu performs the measurement on his own particle |au +mu� and 
broadcasts his result of the measurement au +mu , u = 1, 2, . . . , t . From this broadcast, other players cannot get 
any useful data about the share’s shadow mu . If some rational players Pl−1 and Pl+1 jointly want to get the data 
about the share’s shadow but they cannot get any useful data about the share’s shadow mu because the initiator 
P1 transmits only particles |c�u to all other players and unfortunately |c�u does not contain any useful data about 
the share’s shadow mu.

Performance analysis.  We analyze and compare the performance of the proposed (t, n) threshold sum-
mation protocol with the existing summation protocols44–54. The protocols44–47 are multiparty, but they have the 
threshold approach of (n, n) and their type of computation is bit-by-bit. The protocol48 is multiparty and its type 
of computation is secret-by-secret, but it is based on the threshold approach of (n, n). The protocols49,50 perform 
bit-by-bit computation, but they are based on the threshold approach of (n, n). The protocol51 is multiparty, but 
its type of computation is bit-by-bit and it has the threshold approach of (n, n) with modulo is 2. The protocol52 
is multiparty and its type of computation is secret-by-secret, but it is based on the threshold approach of (n, n). 
The protocol53 is based on quantum multiparty computation, but its type of computation is bit-by-bit and it has 
the threshold approach of (n, n). The protocol54 is multiparty and its type of computation is secret-by-secret, but 
it has the threshold approach of (n, n), where all honest players need to perform the multiparty quantum sum-
mation. This protocol cannot be performed correctly if any player is dishonest. However, our proposed protocol 
has the threshold approach of (t, n), in which only honest players of t can securely compute the multiparty quan-
tum summation with modulo d. In addition, the proposed protocol has secret-by-secret computation type. This 
protocol can be performed correctly if any t players are honest. So, Compared to other protocols, our proposed 
protocol is more cost-effective, efficient, realistic, and secure, as shown in Table 2. In this table, Com., Comm., 
UO, Part., MO, QFT, QFT−1 , DP, EM, INCPT, MP, COLL, COL, COH, IR, sec − by − sec , Y, N, MD, and CT 
denote Computation, Communication, Unitary Operation, Participant, Measure Operation, Quantum Fourier 
Transform, Inverse Quantum Fourier Transform, Decoy Particle, Entangle-Measure, Intercept, Message Particle, 
Collective, Collusion, Coherent, Intercept-Resend, secret-by-secret, Yes, No, Modulo, and type of Computation, 
respectively.

Figure 2.   Simulation result.
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Conclusion
In this paper, we have discussed a secret sharing based (t, n) threshold QSMS protocol. This protocol can be 
executed efficiently if any t number of players are honest. It is secure and efficient because its type of computa-
tion is secret-by-secret and its communication type is linear. It can also compute the QSMS if the total number 
of secrets is more than the total number of players because the linear secret sharing is used to compute the share 
of secrets. This QSMS protocol is more realistic as compared to the existing multiparty quantum summation 
protocols because we have simulated this protocol efficiently using IBM quantum computer that provides efficient 
result after increasing the number of shots.
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