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A B S T R A C T   

SARS-CoV-2 has a higher chance of progression in adults of any age with certain underlying health conditions or 
comorbidities like cancer, neurological diseases and in certain cases may even lead to death. Like other viruses, 
SARS-CoV-2 also interacts with host proteins to pave its entry into host cells. Therefore, to understand the 
behaviour of SARS-CoV-2 and design of effective antiviral drugs, host-virus protein-protein interactions (PPIs) 
can be very useful. In this regard, we have initially created a human-SARS-CoV-2 PPI database from existing 
works in the literature which has resulted in 7085 unique PPIs. Subsequently, we have identified at most 10 
proteins with highest degrees viz. hub proteins from interacting human proteins for individual virus protein. The 
identification of these hub proteins is important as they are connected to most of the other human proteins. 
Consequently, when they get affected, the potential diseases are triggered in the corresponding pathways, 
thereby leading to comorbidities. Furthermore, the biological significance of the identified hub proteins is shown 
using KEGG pathway and GO enrichment analysis. KEGG pathway analysis is also essential for identifying the 
pathways leading to comorbidities. Among others, SARS-CoV-2 proteins viz. NSP2, NSP5, Envelope and ORF10 
interacting with human hub proteins like COX4I1, COX5A, COX5B, NDUFS1, CANX, HSP90AA1 and TP53 lead to 
comorbidities. Such comorbidities are Alzheimer, Parkinson, Huntington, HTLV-1 infection, prostate cancer and 
viral carcinogenesis. Subsequently, using Enrichr tool possible repurposable drugs which target the human hub 
proteins are reported in this paper as well. Therefore, this work provides a consolidated study for human-SARS- 
CoV-2 protein interactions to understand the relationship between comorbidity and hub proteins so that it may 
pave the way for the development of anti-viral drugs.   

1. Introduction 

SARS-CoV-2, the virus responsible for COVID-19 has disrupted our 
daily lives and even after almost two years, we are still struggling in our 
fight against the virus. Though it originated in China, in a short time 
COVID-19 cases were reported from all around the globe. By September 
2021, more than 229 million people have been affected by this virus 
with more than 4 million deaths.2 The usual symptoms of COVID-19 
range from common cough and cold, shortness of breath, fever to mul-
tiple organ failure which may eventually lead to death. Since this is a 

RNA virus, it shows high mutations and new strains of the virus are also 
in circulation right now. According to W.H.O,3 the strains of the virus 
declared as variants of concern are Alpha or B.1.1.7, Beta or B.1.351, 
Gamma or P.1 and Delta or B.1.617.2 [1–3]. 

SARS-CoV-2 encompasses four structural proteins, spike glycopro-
tein, envelope, membrane glycoprotein and nucleocapsid, apart from 
non-structural proteins (NSP1-NSP16) and accessory proteins like 
ORF3a, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c and ORF10 [4]. 
Viruses are incapable of living and reproducing outside a host body. 
Thus, they need to infiltrate a host for their survival. Protein-protein 
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interaction (PPI) is one such way by which a virus invades a host cell [5]; 
SARS-CoV-2 being no exception. For SARS-CoV-2, bats are supposed to 
be the primary hosts and pangolins are identified to be the possible in-
termediate hosts from which the virus got transmitted to humans 
resulting in COVID-19 disease [6–8]. Furthermore, knowledge of virus 
invasion and pathogenesis of SARS-CoV-2 is very important to under-
stand the comorbidities in human host. In this regard, study of PPI is 
crucial and helpful in drug repurposing and discovery as well. These 
facts have motivated us to conduct this research. 

Traditionally, the collection of PPI data is mainly done through 
laboratory-based methods such as protein-chips [9,10], correlated 
mRNA expression profile [11], TAP-tagging [12,13], yeast-two hybrid 
[14,15] and synthetic lethal analysis [16]. However, laboratory based 
methods are mostly time consuming and labour-intensive. Also, due to 
the voluminous nature of PPI data there is a chance that PPI data 
generated by laboratory-based methods may not be complete [17]. 
Furthermore, small proteins are difficult to recognise in lab set up 
although they have important functional roles in many biological pro-
cesses [18]. Moreover, it has been frequently observed that high false 
positives and false negatives occur in the prediction results of 
laboratory-based methods [19–21]. To mitigate these problems, a large 
number of computational methods have been proposed in the literature 
to identify protein-protein interactions. In this regard, a very popular 
method to predict PPI is link prediction model where it is considered 
that proteins interact if they are similar [22]. However, the accuracy of 
such models are heavily dependent on the reliability of PPI networks 
which may be affected due to a huge number of false-negative and 
false-positive PPIs. Also, in scale-free property of PPI networks [23,24], 
some PPI are dense while others are mostly sparse (average degree of 7 
or less [25]) and link predictive models are not very efficient for sparse 
networks. Thus, high throughput technologies which consider biological 
information of proteins can be used to predict PPIs [26]. In Ref. [27], the 
authors have used bioinformatics and machine learning approaches to 
identify potential drug targets and pathways in COVID-19. In this re-
gard, they have identified 1520 and 1733 differentially expressed genes 
(DEGs) from GSE152418 and CRA002390 PBMC datasets and have 
considered hub gene signature based on module membership (MMhub) 
statistics and PPI networks. Furthermore, they have demonstrated the 
classification performance of hub genes with more than 90% accuracy, 
thereby suggesting the potential of the hub genes to be biomarkers. 
Gupta et al. [28] have also used machine learning for prediction of new 
small molecule modulators of PPI. In their work, they have concluded 
that Random Forest predicts general PPI Modulators independent of PPI 
family with an AUC-ROC value > 0.9. They have also identified novel 
chemical scaffolds as inhibitors for RBD_hACE PPI which are involved in 
host cell entry of SARS-CoV-2. 

Several public databases have been created for the experimentally 
determined human-virus PPI data and mostly consists of two categories 
[29]. The first one consists of PPI for species-specific databases 
encompassing only one specific viral species. It includes NCBI HIV-1 
Human Interaction Database [30], HCVpro [31], DenHunt [32], Den-
vInt [33] and ZikaBase [34]. The second category on the other hand 
comprises of a wider range of virus species databases such as Viruses. 
STRING [35], VirusMentha [36], PHISTO [37], VirHostNet [38] and 
HPIDB [39]. Mostly, these public databases are created by integrating 
other PPI databases using automatic integration tools like PSICQUIC 
[40] or they may be manually collected from other public databases as 
well. 

In order to contribute to the ongoing research pertaining to SARS- 
CoV-2 and PPI, in this work we have initially created a human-SARS- 
CoV-2 PPI database from existing works in the literature. In this re-
gard, we have identified 7085 unique PPIs between the human and 
SARS-CoV-2 proteins. This consolidated database is a novel contribution 
of our work. Furthermore, for each virus protein we have identified at 
most 10 human hub proteins which have the highest degrees. These hub 
proteins are connected to most of the other human proteins. 

Consequently, if they are affected, the potential diseases in the pathways 
of most of the human proteins will get triggered as well, thereby leading 
to comorbidities. Also, the biological significance of the identified 
human hub proteins is reported by using KEGG which is essential for 
identifying the corresponding pathways related to diseases or comor-
bidities. Also, GO enrichment analysis is performed as well. As a 
consequence, it is identified that SARS-CoV-2 proteins viz. NSP2, NSP5, 
Envelope and ORF10 interacting with human hub proteins like COX4I1, 
COX5A, COX5B, NDUFS1, CANX, HSP90AA1 and TP53 can lead to 
comorbidities. Such comorbidities comprise of Alzheimer, Parkinson, 
Huntington, HTLV-1 infection, prostate cancer and viral carcinogenesis. 
Moreover, drug repurposing which is an effective drug discovery strat-
egy from existing drugs is a very practical alternative to de novo drug 
discovery and random clinical trials. Considering this, we have also 
reported possible repurposable drugs like Disodium Selenite, Desipra-
mine, Clindamycin and Vorinostat targeting the human hub proteins. To 
summarise, we have prepared human-SARS-CoV-2 PPI database by 
curating such PPIs from different existing works in the literature 
resulting in 7085 unique PPIs, identified human hub proteins using such 
PPI networks and finally identified the list of repurposable drugs for 
such human hub proteins as well as comorbidity issues related to such 
hub proteins. To the best of our knowledge, these consolidated ideas 
have not been addressed previously in any article. Therefore, this study 
mitigates the gaps in the literature through the above mentioned con-
tributions. It is to be noted that other works like [41,42] have analysed 
drug repurposibility and comorbidities by considering expression data 
as opposed to our work which directly considers PPI data for the above 
analysis. 

2. Materials and methods 

In this section, the data preparation is elaborated at first which is 
then followed by the discussion on the pipeline of the proposed work. 

2.1. Data preparation 

For our work, initially we have prepared a consolidated human- 
SARS-CoV-2 PPI database taking into consideration the PPIs from 
Refs. [4,5,43]. There are 332 PPIs in Ref. [4] whereas [5] has reported 
6489 PPIs and Li et al. [43] have reported 295 PPIs. Considering all the 
PPIs between human and SARS-CoV-2, 7085 unique PPIs are identified 
among 2204 unique human proteins and 4 structural and 25 
non-structural virus proteins which include NSP1-16, Spike glycopro-
tein, ORF3a, ORF3b, Envelope protein, Membrane glycoprotein, ORF6, 
ORF7a, ORF7b, ORF8, ORF9b, ORF9c, Nucleocapsid and ORF10. 

2.2. Pipeline of the work 

The pipeline of the work is shown in Fig. 1(a). Initially, to create a 
consolidated human-virus PPI database, 7116 interactions are collected 
from the existing works in the literature which have thereafter resulted 
in 7085 unique PPIs. The distribution of the PPIs in the literature is 
shown in Fig. 1(b). Thereafter, all the human proteins for a particular 
virus protein are given as an input to the STRING database.4 STRING 
database returns all the human-human protein interactions for those 
inputs and may include additional human proteins apart from the ones 
that are provided as inputs. It may also exclude some human proteins in 
the process as well. Next, for each SARS-CoV-2 protein, at most 10 
human proteins viz. hub proteins are identified which have the highest 
degrees. It is important to note that based on their association with an 
individual SARS-CoV-2 protein, there are two levels of human proteins, 
Level 1 and Level 2 as shown in Fig. 1(c). Level 1 human proteins are 
those which are in the immediate vicinity or directly connected to the 

4 https://string-db.org/. 
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SARS-CoV-2 protein while Level 2 are such human proteins which are 
indirectly connected to the virus protein through the Level 1 proteins. 
Among the 10 proteins as shown in the figure, A, C and G are considered 
to be the hub proteins as they have the highest degree among all the 
human proteins. Thus, a hub protein can either be a level 1 or a level 2 
human protein. It is worth mentioning over here that a level 2 hub 
protein can be connected to the virus protein either through a hub 

protein or any directly connected human protein which may not be a 
hub protein. In this paper, the direct or level 1 hub proteins are marked 
in red while the indirect or level 2 hub proteins are marked in green and 
the rest of the human proteins are marked in yellow. SARS-CoV-2 pro-
teins on the other hand are marked in blue throughout the paper. Once 
the hub proteins are identified, to understand the effects of these hub 
proteins on comorbidities, their pathways are explored and the 

Table 1 
Statistics of Human Proteins for each SARS-CoV-2 Protein.  

Virus Number of Unique 
Human Proteins directly 

Number of Unique 
Human Proteins 

Number of Unique Human Hub 
Proteins (out of top 10) 

Number of Unique Human Hub 
Proteins (out of top 10) 

Number of Unique Human 
Proteins (other than hub 
proteins) 

Protein interacting with SARS- 
CoV-2 proteins 

present in Human 
PPI network 

directly interacting with SARS- 
CoV-2 proteins 

indirectly interacting with 
SARS-CoV-2 proteins 

directly connected to Hub 
Proteins 

NSP1 7 4 4 0 0 
NSP2 15 9 8 1 0 
NSP3 85 72 10 0 32 
NSP4 10 6 5 1 0 
NSP5 100 87 10 0 35 
NSP6 4 2 1 1 0 
NSP7 830 788 9 1 469 
NSP8 50 39 10 0 16 
NSP9 19 13 9 1 1 
NSP10 34 27 10 0 10 
NSP11 1 11 1 9 1 
NSP12 54 32 9 1 15 
NSP13 42 29 10 0 11 
NSP14 10 2 2 0 0 
NSP15 29 11 8 2 1 
NSP16 2 NA NA NA NA 
Spike 

glycoprotein 
317 302 10 0 158 

ORF3a 59 44 9 1 16 
ORF3b 1 11 1 9 1 
Envelope protein 1141 1086 10 0 673 
Membrane 

glycoprotein 
107 81 9 1 36 

ORF6 1236 1194 9 1 677 
ORF7a 148 133 9 1 55 
ORF7b 987 951 9 1 611 
ORF8 106 82 10 0 42 
Nucleocapsid 28 23 10 0 7 
ORF9b 534 513 9 1 331 
ORF9c 26 10 9 1 0 
ORF10 1103 1057 9 1 635  

Fig. 1. (a) Pipeline of the work (b) Distribution of PPIs in literature (c) Representation of proteins in human-virus PPI network (d) Number of human proteins directly 
interacting with SARS-CoV-2 proteins and (e) Sum of interactions in human PPI interactome with respect to SARS-CoV-2 proteins. 
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biological significance are demonstrated using KEGG pathway and GO 
enrichment analysis. KEGG pathway analysis is also important for 
identifying the pathways leading to comorbidities. Finally, identifica-
tion of potential repurposable drugs targeting the human hub proteins to 
curb the effects of COVID-19 are carried out using Enrichr5 [44,45] tool. 

3. Results 

This work is executed according to the pipeline as shown in Fig. 1(a). 
In this work, the primary motivations are to create a human-virus PPI 
interacting database and identifying the human hub proteins to under-
stand their effects in comorbidities. In this regard, we have collected 
7085 unique PPIs from the existing works in the literature, the details of 
which are provided in the Supplementary. Subsequently, with all the 
human-human interaction networks collected for each virus protein, the 
degree of each human protein with respect to a SARS-CoV-2 protein in 
the PPI network is identified. The degrees of the human proteins are 
provided in the Supplementary. Once the degree of each human protein 
for the corresponding SARS-CoV-2 protein is computed, at most top 10 
human proteins are selected with the highest degrees which are then 
considered to be the hub proteins for each virus protein. The statistics of 
human proteins for each virus protein are reported in Table 1. This table 
shows the number of unique human proteins directly interacting with 
SARS-CoV-2 proteins, number of unique human proteins present in 
human PPI network considering proteins directly interacting with SARS- 
CoV-2 proteins, number of unique human hub proteins (out of top 10) 
directly interacting with SARS-CoV-2 proteins, number of unique human 
hub proteins (out of top 10) indirectly interacting with SARS-CoV-2 
proteins and number of unique human proteins apart from the hub 
proteins directly connected to the hub proteins. As has been mentioned 
earlier, not all human proteins directly interacting with the SARS-CoV-2 
proteins may be a part of the PPI network. This can be inferred from 
Table 1 as well. For example, for NSP1, 4 human proteins are present in 
the PPI network while 7 human proteins are directly interacting with 
SARS-CoV-2 proteins. The corresponding graph for the number of 
human proteins directly interacting with the SARS-CoV-2 proteins is 
shown in Fig. 1(d). The sum of interactions or the total degree of the 
human proteins in human PPI interactome with respect to the virus 
protein is shown in Fig. 1(e). For example, NSP7 has a total of 53448 
human PPI interactions. It can be seen from the figure that out of the 29 
virus proteins, 28 has corresponding human-human interaction net-
works while NSP16 does not have any associated human-human protein 
interactions. 

All the identified human hub proteins may not be directly interacting 
with the SARS-CoV-2 proteins, rather they may be connected indirectly. 
For example, for NSP7, out of the 10 hub proteins, 9 such proteins are 
directly interacting with the SARS-CoV-2 protein while 1 human hub 
protein is indirectly interacting with the virus protein through some 
other human proteins. It is to be noted that for SARS-CoV-2 proteins like 
NSP1, NSP2, NSP4, NSP6 and NSP14 which have corresponding inter-
acting human proteins equal to 7, 15, 10, 4 and 10 respectively have 
number of hub proteins equal to 4, 9, 6, 2 and 2, all less than 10. The 
details of the human hub proteins for each protein of SARS-CoV-2 are 
reported in Table 2. The table provides a list of the directly and indi-
rectly connected hub proteins along with their respective degrees. For 
example, the directly connected hub proteins of NSP2 are NDUFS1, 
COX4I1, COX5A, COX5B, EIF4E2, FKBP15, GIGYF2 and MTCH2 with 
their respective degrees being 4, 3, 3, 3, 1, 1, 1 and 1 while the indirectly 
connected hub protein is KIAA1033 which has a degree of 1. The human- 
SARS-CoV-2 PPI network with only the directly and indirectly connected 
human hub proteins are visualised in Fig. 2 while Fig. 3 shows the in-
dividual PPI networks for all the SARS-CoV-2 proteins. The networks are 
created using Cytoscape [46] which is an open-source platform. As there 

may be a lot of human proteins directly connected to the hub proteins 
(for example, Envelope protein has 673 human proteins directly con-
nected to hub proteins), for visualization purposes, for each SARS-CoV-2 
protein, apart from all the hub proteins, only a handful of the human 
proteins are chosen from both level 1 and level 2 and shown in Fig. 3. 
The criteria for choosing such human proteins (excluding the hub pro-
teins) are as follows:  

● if the number of such human proteins are less than 20, then consider 
all such proteins,  

● if the number of such human proteins are greater than 20, then 
consider 20 such proteins having the highest degrees. 

Thus, no more than 30 human proteins (≤10 hub proteins and ≤20 
other proteins) are considered for visualization purpose in Fig. 3. The 
details of all the human-SARS-CoV-2 PPI corresponding to only the hub 
proteins for each virus protein along with the details of all such in-
teractions for each virus protein irrespective of the hub proteins are 
provided in the Supplementary. 

4. Discussion 

4.1. KEGG pathway analysis 

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis 
reveals the potential diseases that can develop in humans due to SARS- 
CoV-2. Hub proteins are the ones which are connected to most of the 
other human proteins in the PPI network. Thus, instead of considering 
all the human proteins that have been returned by the STRING database, 
for the KEGG pathway analysis only the hub proteins and those human 
proteins which are directly connected to the hub proteins are consid-
ered. Table 3 reports such maximum 5 significant KEGG pathways (if 
there are any) with the corresponding human hub proteins related to 
them and their FDR corrected p-values. The detailed pathways are 
provided in the Supplementary. These results are collected from STRING 
database. Fig. 4 shows the KEGG pathways for NSP2, NSP5, Envelope 
protein and ORF10. For better visualization, maximum top 30 pathways 
are shown in the figures. The size of the bubbles in the figures are based 
on the corresponding number of human hub proteins associated with 
each pathway; lesser the number of hub proteins, smaller are the size of 
the bubbles while their colours are based on the FDR-corrected p-values. 
It can be seen from Fig. 4 that the most significant pathways corre-
sponding to hub proteins for a SARS-CoV-2 protein are involved in 
various diseases. For example, the human hub proteins targeted by NSP2 
are enriched in pathways relating to hsa05010: Alzheimer’s disease, 
hsa05012: Parkinson’s disease and hsa05016: Huntington’s disease with 
the respective FDR corrected p-value being 4.51E-06 for all the three 
pathways while the corresponding hub proteins targeted by NSP2 are 
COX4I1, COX5A, COX5B and NDUFS1. SARS-CoV-2 can aggravate 
cancer pathways as well. For example, human hub protein CANX tar-
geted by NSP5 is enriched in pathway for hsa05166: HTLV-I infection 
(FDR-corrected p-value 3.20E-03) which is associated with aggressive 
adult T-cell lymphoma, GAPDH targeted by Envelope protein is enriched 
in pathway for hsa04066: HIF-1 signaling pathway (FDR-corrected p- 
value 2.50E-04) while HSP90AA1 is enriched in pathways for hsa04151: 
PI3K-Akt signaling pathway (FDR-corrected p-value 1.30E-03), hsa05215: 
Prostate cancer (FDR-corrected p-value 1.24E-02), hsa05200: Pathways in 
cancer (FDR-corrected p-value 1.26E-02) and EEF2 is responsible for 
hsa04010: AMPK signaling pathway (FDR-corrected p-value 4.80E-04). 
Furthermore, RPN1, SEC61A1, CANX and HSP90B1 all targeted by 
NSP5 are enriched in the pathway for hsa04141: Protein processing in 
endoplasmic reticulum (FDR-corrected p-value 2.37E-07) and there are 
studies [47,48] which show that prolonged endoplasmic reticulum 
stress is responsible for the development and progression of many dis-
eases like atherosclerosis, neurodegeneration, liver disease, type 2 dia-
betes and cancer. Moreover, TP53 targeted by ORF10 is enriched in 5 https://maayanlab.cloud/Enrichr/. 
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pathway relating to hsa05203: Viral carcinogenesis (FDR-corrected 
p-value 1.70E-04). Other significant pathways found for the human 
proteins with FDR corrected p-values within 5% statistical significance 
are Influenza A, Measles, Epstein-Barr Virus infection and Vibrio cholerae 
infection. 

4.2. Gene ontology (GO) enrichment analysis 

GO enrichment analysis is performed to understand the significance 
of the roles that the different interacting human proteins play in bio-
logical activities. Similar to KEGG pathways, the GO enrichment results 
are collected from STRING database as well and considered only for the 
hub proteins and their direct connections. The result of the analysis for 

Table 2 
Details of Human Hub Proteins for each SARS-CoV-2 Protein.  

Virus Human hub proteins (out of top 10) Degree of Human hub 
proteins 

Human hub proteins (out of top 10) 
indirectly 

Degree of Human hub 
proteins indirectly 

Protein directly interacting with SARS-CoV-2 proteins directly interacting with 
SARS-CoV-2 proteins 

interacting with SARS-CoV-2 proteins interacting with SARS- 
CoV-2 proteins 

NSP1 POLA1, POLA2, PRIM1, PRIM2 3, 3, 3, 3 NA NA 
NSP2 NDUFS1, COX4I1, COX5A, COX5B, EIF4E2, 

FKBP15, GIGYF2, MTCH2 
4, 3, 3, 3, 1, 1, 1, 1 KIAA1033 1 

NSP3 RPL8, RPSA, RPL12, EEF1A1, RPL6, RPL15, 
RPS11, RPS16, RPL11, RPS15A 

31, 30, 29, 28, 28, 27, 27, 27, 
26, 26 

NA NA 

NSP4 TIMM10, TIMM10B, TIMM9, RAD23A, XPC 3, 3, 3, 1, 1 C19orf52 3 
NSP5 CCT5, RPN1, CCT3, SEC61A1, CANX, CCT7, 

EEF1G, HSP90B1, PSMC6, PSMD14 
16, 16, 15, 15, 14, 13, 13, 12, 
12, 12 

NA NA 

NSP6 ATP6AP1 1 ATP5L 1 
NSP7 EEF2, HNRNPA1, EIF4A3, HSPA8, RPL4, RPS20, 

RPSA, RPS3, RPL8 
259, 251, 243, 236, 232, 231, 
222, 221, 219 

NHP2L1 238 

NSP8 NOP58, MPHOSPH10, EXOSC3, DDX10, NGDN, 
XPO1, EXOSC2, EXOSC5, KPNA2, SRP54 

13, 10, 9, 8, 8, 8, 7, 7, 7, 7 NA NA 

NSP9 NUP214, NUP54, NUP62, NUP88, HSPA1A, 
NEK9, FBN1, FBLN5, FBN2 

6, 6, 6, 6, 5, 4, 2, 1, 1 NUPL1 4 

NSP10 ALDH18A1, NMD3, XPOT, XPO5, AASDHPPT, 
ALDH7A1, AP2A2, DIS3, GALK1, GSPT2 

8, 4, 4, 3, 2, 2, 2, 2, 2, 2 NA NA 

NSP11 TBCA 10 TBCD, TBCE, TUBA1A, TUBA4A, TUBB1, 
TUBB2A, TUBB2B, TUBB4A, TUBB4B 

10, 10, 10, 10, 10, 10, 10, 
10, 10 

NSP12 PABPC1, HSPA8, NCL, PCBP1, MATR3, RBMX, 
STAU1, DDX1, RPS19, 

11, 10, 10, 8, 7, 7, 7, 5, 5 C14orf166 4 

NSP13 AKAP9, PCNT, CDK5RAP2, CEP135, PRKAR2B, 
CEP250, PRKACA, CNTRL, FGFR1OP, NIN 

17, 17, 14, 12, 12, 11, 11, 10, 
10, 10 

NA NA 

NSP14 PRDX4, PRDX5 1, 1 NA NA 
NSP15 POLR1B, URB1, TRMT2A, CDK12, CTCF, NUTF2, 

NXF1, REXO4 
3, 3, 2, 1, 1, 1, 1, 1 KIAA0020, TCEB3 5,1 

NSP16 NA NA NA NA 
Spike 

glycoprotein 
HSPA8, CCT4, RPL8, RPS3, RPSA, CCT5, CCT8, 
EEF1A1, CCT7, RPLP0 

101, 89, 89, 88, 86, 85, 84, 
84, 83, 83 

NA NA 

ORF3a HYOU1, P4HB, PDIA6, PPIB, FKBP10, PDIA4, 
SERPINH1, EDEM3, TXNDC5 

14, 13, 10, 10, 8, 8, 8, 7, 7 ERO1L 7 

ORF3b STOML2 10 PHB2, YME1L1, PARL, PHB, SMDT1, 
ATP5A1, MRPL40, HSPA1A, HSPA1L 

6, 6, 5, 5, 5, 4, 4, 3, 2 

Envelope protein HSPA8, GAPDH, EEF2, RPS27A, HNRNPA1, 
HSP90AA1, EIF4A3, RPL4, CCT2, RPS3 

301, 286, 279, 268, 260, 256, 
254, 253, 251, 248 

NA NA 

Membrane 
glycoprotein 

KPNA2, POLR2A, IPO5, NOP58, SMC4, NUP133, 
TOP2A, POLR2B, SNRNP70 

12, 12, 10, 10, 10, 9, 9, 8, 8 ATP5O 7 

ORF6 HSPA8, EEF2, EIF4A3, RPL4, HNRNPA1, RPS3, 
RPSA, RPS20, RPS27A 

320, 312, 307, 306, 305, 302, 
302, 299, 299 

NHP2L1 309 

ORF7a POLR2A, DHX9, SNRPD2, CPSF1, SRSF3, CPSF4, 
FIP1L1, NOP58, PRPF8 

32, 29, 28, 22, 22, 21, 21, 21, 
20 

SKIV2L2 22 

ORF7b HSPA8, EEF2,HNRNPA1, EIF4A3, GAPDH, RPL4, 
RPS20, RPSA, RPS27A 

284, 273, 273, 264, 258, 248, 
248, 245, 244 

NHP2L1 262 

ORF8 CANX, HSP90B1, CALR, PDIA6, CCT5, CCT7, 
HYOU1, CCT3, SEC61A1, RPN1 

24, 23, 21, 20, 19, 19, 19, 18, 
18, 17 

NA NA 

Nucleocapsid PABPC1, ELAVL1, G3BP1, UPF1, HNRNPDL, 
HSPA4, MOV10, PABPC4, G3BP2, LARP1 

10, 9, 8, 8, 5, 5, 5, 5, 4, 4 NA NA 

ORF9b HSPA8, RPS20, RPSA, RPL4, RPS3, CCT2, 
EEF1A1, HNRNPA1, RPS27A 

185, 177, 177, 176, 175, 173, 
173, 172, 172 

GNB2L1 171 

ORF9c ECSIT, ACAD9, NDUFAF1, NDUFB9, GPAA1, 
PIGO, PIGS, BCS1L, DPY19L1 

4, 3, 3, 3, 2, 2, 2, 1, 1 FAM134C 1 

ORF10 HSPA8, RPS27A, EEF2, EIF4A3, HNRNPA1, RPL4, 
RPS20, RPS3, TP53 

282, 272, 269, 264, 260, 256, 
252, 251, 251 

NHP2L1 265  
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biological processes for NSP2, NSP5, Envelope protein and ORF10 
considering at least one hub protein are reported in Fig. 5. For better 
readability, only the top 30 pathways are shown in the figures. The 
detailed analysis for all the GO pathways (biological, molecular and 
cellular) are provided in the Supplementary. Some significant biological 
pathways for human hub proteins COX5B, COX5A and COX4I1 targeted 
by NSP2 are: GO:0006123: mitochondrial electron transport, cytochrome c 
to oxygen (FDR-corrected p-value 1.11E-05), hub proteins HSP90B1, 
PSMC6 and PSMD14 targeted by NSP5: GO:0030163: protein catabolic 
process (FDR-corrected p-value 1.34E-06), HSPA8, RPS27A, HNRNPA1, 
EIF4A3, RPL4 and RPS3 targeted by Envelope protein: GO:0016071: 
mRNA metabolic process (FDR-corrected p-value 4.13E-123) and HSPA8, 
RPS27A, NHP2L1, EIF4A3, HNRNPA1, RPL4, RPS20, RPS3 and TP53 
targeted by ORF10: GO:0016071: mRNA metabolic process (FDR-cor-
rected p-value 6.46E-132). 

4.3. Repurposable drugs 

Till now, no efficacious drug has been discovered to combat SARS- 
CoV-2. The traditional mechanism of drug development is expensive 
and time-consuming, thereby making drug repurposing a viable option 
for effective drug identification for COVID-19. In this regard, human hub 
proteins corresponding to each SARS-CoV-2 protein can be considered to 
be good candidates as targets for drug repurposing. Such drugs that 
interact with the hub proteins are identified using DSigDB in Enrichr 
tool. For each virus protein, the results for at most top 5 drugs (if any) 
along with their Drug Bank ID as collected from Drug Bank,6 their FDR 
corrected p-values and the possible treatments are reported in Table 4. 

As can be seen from Table 4, several drugs are identified which can be 
used for treating cancer. For example, Tanespimycin (FDR corrected p- 
value 4.44E-03 and Drug Bank ID DB05134) which targets human hub 
protein like HSP90AA1 corresponding to Envelope protein is used for 
treating several types of cancer, solid tumors or chronic myelogenous 
leukemia. As previously discussed, HSP90AA1 which is targeted by 
SARS-CoV-2 Envelope protein triggers PI3K-Akt signaling pathway 
whose aberrant activation promotes the survival and growth of tumor 
cells in many human cancers. Other drugs like Phenethyl isothiocyanate, 
4-Hydroxytamoxifen, Daunorubicin, Camptothecin, Vorinostat, Diin-
dolylmethane etc. are also used for the treatment of various types of 
cancer. It is worth noting that identified drugs like Resveratrol known 
for the treatment of high cholesterol, cancer and heart disease and 
Niclosamide used for treating tapeworm infection are under trials for the 
treatment of COVID-19 [49,50]. Please note that all the hub proteins 
involved for KEGG pathway analysis may not have corresponding drugs 
with FDR corrected p-value less than 5%. Thus, only those hub proteins 
are reported in Table 4 for which there are corresponding relevant 
drugs. For example, for NSP2, the hub proteins with corresponding 
KEGG pathways having FDR corrected p-values less than 5% are 
NDUFS1, COX4I1, COX5A and COX5B while the hub proteins with 
relevant drugs having FDR corrected p-values less than 5% are NDUFS1, 
COX5A and COX5B. Fig. 6 provides a glimpse of the common hub pro-
teins and drugs among multiple SARS-CoV-2 proteins. For example, 
RPSA is a hub protein common to NSP3, NSP7 and Spike glycoprotein 
and the corresponding drug that targets RPSA is Disodium Selenite. 
Please note that though RPSA is also targeted by ORF9b as shown in 
Table 4, it is not shown in the figure as Disodium Selenite is not a 
relevant drug for RPSA in ORF9b as the corresponding FDR corrected 
p-value of Disodium Selenite is not less than 5% in this case. Other drugs 
like Desipramine, Clindamycin and Vorinostat used as antidepressants, 

Fig. 2. Human-SARS-CoV-2 PPI network with only directly and indirectly connected human hub proteins. Nodes marked in blue represent the SARS-CoV-2 proteins, 
nodes marked in red represent the human hub proteins directly connected to SARS-CoV-2 proteins and green represents the human hub proteins indirectly connected 
to SARS-CoV-2 proteins. 

6 https://go.drugbank.com/drugs. 
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Fig. 3. A glance into human-SARS-CoV-2 PPI network for (a) NSP1 (b) NSP2 (c) NSP3 (d) NSP4 (e) NSP5 (f) NSP6 (g) NSP7 (h) NSP8 (i) NSP9 (j) NSP10 (k) NSP11 (l) 
NSP12 (m) NSP13 (n) NSP14 (o) NSP15 (p) Spike glycoprotein (q) ORF3a (r) ORF3a (s) Envelope protein (t) Membrane glycoprotein (u) ORF6 (v) ORF7a (w) ORF7b 
(x) ORF8 (y) Nucleocapsid (z) ORF9b (aa) ORF9c and (bb) ORF10. In these figures, nodes marked in blue represent the SARS-CoV-2 proteins, nodes marked in red 
represent the human hub proteins directly connected to SARS-CoV-2 proteins, green represents the human hub proteins indirectly connected to SARS-CoV-2 proteins 
and yellow represents other human proteins directly connected to hub proteins. 
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Table 3 
Details of KEGG Pathways corresponding to Human Hub Proteins for each SARS-CoV-2 Protein.  

Virus Human hub proteins KEGG Pathways related 
to Comorbidities 

FDR 
corrected p- 
value 

Virus Human hub proteins KEGG Pathways related to 
Comorbidities 

FDR 
corrected p- 
value 

Protein    Protein    

NSP1 POLA1, POLA2, PRIM1, 
PRIM2 

DNA replication 5.98E-11 Spike 
glycoprotein 

HSPA8, RPL8, RPS3, 
RPSA, EEF1A1, 
RPLP0 

Ribosome 7.36E-30   

Pyrimidine metabolism 1.51E-09   Protein processing in endoplasmic 
reticulum 

1.96E-17   

Purine metabolism 8.63E-09   RNA transport 1.03E-09   
Metabolic pathways 1.68E-05   Epstein-Barr virus infection 1.06E-09       

Legionellosis 1.50E-04 
NSP2 NDUFS1, COX4I1, 

COX5A, COX5B 
Alzheimers disease 4.51E-06 ORF3a HYOU1, P4HB, 

PDIA6, PDIA4, 
EDEM3, ERO1L, 
TXNDC5 

Protein processing in endoplasmic 
reticulum 

4.96E-12   

Huntingtons disease 4.51E-06       
Non-alcoholic fatty 
liver disease (NAFLD) 

4.51E-06   Vibrio cholerae infection 5.30E-03   

Oxidative 
phosphorylation 

4.51E-06       

Parkinsons disease 4.51E-06     
NSP3 RPL8, RPSA, RPL12, 

EEF1A1, RPL6, RPL15, 
RPS11, RPS16, RPL11, 
RPS15A 

Ribosome 1.72E-26 ORF3b HSPA1A, HSPA1L Estrogen signaling pathway 9.10E-03       

Measles 9.10E-03   
RNA transport 5.20E-03   Influenza A 9.10E-03       

Epstein-Barr virus infection 9.80E-03       
MAPK signaling pathway 1.80E-02 

NSP4 XPC, RAD23A Nucleotide excision 
repair 

1.80E-04 Envelope 
protein 

GAPDH, EEF2, 
HSP90AA1 

HIF-1 signaling pathway 2.50E-04       

AMPK signaling pathway 4.80E-04       
PI3K-Akt signaling pathway 1.30E-03       
Prostate cancer 1.24E-02       
Pathways in cancer 1.26E-02 

NSP5 RPN1, SEC61A1, CANX, 
HSP90B1, PSMC6, 
PSMD14 

Protein processing in 
endoplasmic reticulum 

2.37E-07 Membrane 
glycoprotein 

POLR2A, NUP133, 
POLR2B, ATP5O 

RNA transport 1.10E-02   

Proteasome 1.10E-04   Huntington’s disease 1.56E-02   
Epstein-Barr virus 
infection 

1.10E-04   RNA polymerase 2.44E-02   

HTLV-I infection 3.20E-03   Oxidative phosphorylation 2.58E-02   
Vibrio cholerae 
infection 

3.39E-02   Alzheimer’s disease 4.06E-02 

NSP6 ATP5L, ATP6AP1 Oxidative 
phosphorylation 

4.60E-04 ORF6 HSPA8, NHP2L1, 
EIF4A3 

RNA transport 1.79E-39       

Epstein-Barr virus infection 8.05E-18   
Metabolic pathways 2.05E-02   mRNA surveillance pathway 1.51E-16       

Influenza A 3.30E-04       
Legionellosis 1.09E-02 

NSP7 HNRNPA1, EIF4A3, 
NHP2L1, HSPA8, RPL4, 
RPS20, RPSA, RPS3, 
RPL8 

Ribosome 1.08E-104 ORF7a CPSF1, SRSF3, 
CPSF4, FIP1L1, 
PRPF8 

Spliceosome 1.48E-05   

Spliceosome 1.00E-42       
Epstein-Barr virus 
infection 

1.18E-07   mRNA surveillance pathway 3.03E-02   

Influenza A 1.39E-05       
Legionellosis 3.60E-04     

NSP8 NOP58, MPHOSPH10, 
EXOSC3, XPO1, EXOSC2, 
EXOSC5, SRP54 

RNA degradation 4.54E-05 ORF7b HSPA8, GAPDH Epstein-Barr virus infection 6.52E-21   

Protein export 4.54E-05   Influenza A 3.35E-05   
Ribosome biogenesis in 
eukaryotes 

6.10E-04   Legionellosis 1.70E-03       

Longevity regulating pathway - 
multiple species 

1.16E-02       

HIF-1 signaling pathway 3.92E-02 
NSP9 NUP214, NUP54, NUP62, 

NUP88, HSPA1A, NUPL1 
RNA transport 2.24E-07 ORF8 CANX, HSP90B1, 

CALR, PDIA6, 
HYOU1, SEC61A1, 
RPN1 

Protein processing in endoplasmic 
reticulum 

3.18E-15       

Phagosome 3.03E-05 

(continued on next page) 
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antibiotic and for treating Cutaneous T-cell lymphoma (CTCL) respec-
tively are also relevant drugs for the human hub proteins targeted by 
multiple SARS-CoV-2 proteins. Apart from the discussed hub proteins, it 
is to be noted that as per https://cancer.sanger.ac.uk/cosmic/, other 
identified hub proteins like XPC in NSP4, RPN1 in NSP5, XPO1 in NSP8, 
NUP214 in NSP9, PABPC1 and PCBP1 in NSP12, PRKACA in NSP13, 
SRSF3 and FIP1L1 in ORF7a and CALR in ORF8 are also cancer related 
human proteins. 

5. Conclusion 

Comorbidity in COVID-19 patients is one of the primary reasons 
which have led to so many deaths around the globe. SARS-CoV-2, the 
virus causing COVID-19, sneaks its way into human body by interacting 
with the human proteins. In this work, we have identified human and 
SARS-CoV-2 protein-protein interactions to identify human hub proteins 
associated with comorbidities. In this regard, we have initially collected 
7116 human-SARS-CoV-2 PPI from different works in the literature 
resulting in identifying 7085 unique PPIs. This can be considered to be a 
novel and significant contribution of our work. Thereafter, we have 
considered at most top 10 human hub proteins based on their degrees. 
Moreover, biological significance of the identified human proteins is 

demonstrated using KEGG which is essential for identifying the path-
ways related to diseases or comorbidities. Also, GO Enrichment analysis 
is performed as well. SARS-CoV-2 proteins like NSP2, NSP5, Envelope 
and ORF10 interacting with human hub proteins COX4I1, COX5A, 
COX5B, NDUFS1, CANX, HSP90AA1 and TP53 can lead to comorbidities 
like Alzheimer, Parkinson, Huntington’s, HTLV-1 infection, prostate 
cancer and viral carcinogenesis. Furthermore, possible repurposable 
drugs like Disodium Selenite, Desipramine, Clindamycin and Vorinostat 
targeting the human hub proteins are reported in this paper for future 
reference for researchers. Also, reported drugs like Resveratrol and 
Niclosamide are under trials for the treatment of COVID-19. This work 
provides a consolidated study for human-SARS-CoV-2 protein in-
teractions to understand the association between comorbidity and 
human hub proteins and we hope it will also be helpful in drug repur-
posing and discovery as well. To summarise, we have prepared human- 
SARS-CoV-2 PPI database by curating such PPIs from different works in 
the literature resulting in 7085 unique PPIs, identified human hub 
proteins using such PPI networks and identified a list of repurposable 
drugs for such human hub proteins as well as comorbidity issues related 
to such hub proteins. 

Table 3 (continued ) 

Virus Human hub proteins KEGG Pathways related 
to Comorbidities 

FDR 
corrected p- 
value 

Virus Human hub proteins KEGG Pathways related to 
Comorbidities 

FDR 
corrected p- 
value 

Protein    Protein      

Epstein-Barr virus 
infection 

0.0336   Antigen processing and 
presentation 

5.80E-03       

N-Glycan biosynthesis 4.66E-02       
Vibrio cholerae infection 4.66E-02 

NSP10 ALDH18A1, ALDH7A1, 
AP2A2, GALK1 

Arginine and proline 
metabolism 

2.00E-02 Nucleocapsid PABPC1, UPF1, 
PABPC4 

mRNA surveillance pathway 6.50E-04   

Biosynthesis of amino 
acids 

2.00E-02   RNA transport 1.70E-03   

Endocrine and other 
factor-regulated 
calcium reabsorption 

2.00E-02   RNA degradation 7.00E-03   

Synaptic vesicle cycle 2.00E-02       
Metabolic pathways 3.70E-02     

NSP11 TUBA1A, TUBA4A, 
TUBB1, TUBB2A, 
TUBB2B, TUBB4A, 
TUBB4B 

Pathogenic Escherichia 
coli infection 

4.51E-18 ORF9b HSPA8, RPS20, 
RPSA, RPL4, RPS3, 
EEF1A1, HNRNPA1, 
RPS27A 

Ribosome 3.33E-81   

Gap junction 9.27E-17   Spliceosome 1.40E-26   
Phagosome 3.12E-15   Epstein-Barr virus infection 1.86E-11   
Apoptosis 3.20E-03   Legionellosis 8.90E-03   
Tight junction 3.90E-03   Antigen processing and 

presentation 
1.75E-02 

NSP12 PABPC1, HSPA8, NCL, 
PCBP1, RBMX 

Spliceosome 9.50E-04 ORF9c NDUFAF1, NDUFB9, 
GPAA1, PIGO, PIGS 

Glycosylphosphatidylinositol 
(GPI)-anchor biosynthesis 

3.12E-06   

RNA transport 2.23E-02   Metabolic pathways 1.29E-02   
Protein processing in 
endoplasmic reticulum 

2.23E-02   Thermogenesis 1.94E-02   

Pathogenic Escherichia 
coli infection 

2.23E-02     

NSP13 PRKAR2B, PRKACA Insulin signaling 
pathway 

2.72E-02 ORF10 HSPA8, TP53 Epstein-Barr virus infection 2.07E-20       

Herpes simplex infection 4.58E-05       
Viral carcinogenesis 1.70E-03       
Huntingtons disease 8.80E-03       
Influenza A 2.21E-02  
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Fig. 4. Significant KEGG pathways corresponding to Hub Proteins for (a) NSP2 (b) NSP5 (c) Envelope protein and (d) ORF10.  
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Fig. 5. Significant GO Biological Processes corresponding to Hub Proteins for (a) NSP2 (b) NSP5 (c) Envelope protein and (d) ORF10.  
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Table 4 
Details of Drugs corresponding to Human Hub Proteins for each SARS-CoV-2 Protein.  

Virus Protein Human hub 
proteins 

Drugs FDR 
corrected 
p-value 

Drug 
Bank ID 

Treatment Virus Protein Human hub 
proteins 

Drugs FDR 
corrected p- 
value 

Drug 
Bank ID 

Treatment 

NSP1 POLA1, POLA2, 
PRIM1, PRIM2 

Dasatinib 3.96E-05 DB01254 Lymphoblastic or 
chronic myeloid 
leukemia 

ORF3b HSPA1A, 
HSPA1L 

D-Penicillamine 1.89E-02 DB00859 Wilson’s disease   

Resveratrol 1.38E-03 DB02709 High cholesterol, 
cancer, heart disease   

Dronabinol 2.62E-02 DB00470 Treat nausea and 
vomiting caused by 
chemotherapy   

Demecolcine 4.67E-03 DB13318 Chemotherapy   Chlortetracycline 3.42E-02 DB09093 Antibiotic   
Fluorouracil 8.35E-03 DB00544 Cancer   Aspirin 3.91E-02 DB00945 Fever and pain   
Troglitazone 3.41E-02 DB00197 Type 2 Diabetes   Lomustine 3.92E-02 DB01206 Brain Tumour, 

Hodgkin’s lymphoma 
NSP2 NDUFS1, COX5A, 

COX5B 
Vitinoin 1.31E-02 DB00755 Eczema and certain 

types of 
promyelocytic 
leukemia 

Envelope 
Protein 

GAPDH, 
EEF2, 
HSP90AA1 

Idebenone 3.38E-03 DB09081 Alzheimer’s disease and 
Leber’s disease         

Tanespimycin 4.44E-03 DB05134 Several types of cancer, 
solid tumors or chronic 
myelogenous leukemia   

3′-Azido-3′- 
deoxythymidine 

2.00E-02 DB00495 HIV   Ivermectin 5.67E-03 DB00602 Anti-parasite         

Alvespimycin 5.67E-03 DB12442 Antitumour in cancer         
Disodium 
selenite 

0.035247665 DB11127 Prevents Cancer 

NSP3 RPL8, RPSA, 
RPL12, EEF1A1, 
RPL6, RPL15, 
RPS16, RPS15A 

Disodium selenite 2.00E-03 DB11127 Prevents Cancer Membrane 
glycoprotein 

NUP133, 
POLR2B 

Calcitrol 1.64E-02 DB00136 Treat 
hyperparathyroidism   

Artesunate 8.35E-03 DB09274 Malaria   Fulvestrant 3.45E-02 DB00947 Breast Cancer   
Vorinostat 2.43E-02 DB02546 Cutaneous T-cell 

lymphoma (CTCL)       
NSP5 SEC61A1, CANX, 

HSP90B1, 
PSMD14 

Clindamycin 9.20E-03 DB01190 Antibiotic ORF6 HSPA8, 
NHP2L1 

Disodium 
selenite 

2.00E-03 DB11127 Prevents Cancer 

NSP6 ATP5L, ATP6AP1 Niclosamide 5.24E-04 DB06803 Tapeworm infection ORF7a CPSF1, SRSF3, 
PRPF8 

Clindamycin 8.97E-03 DB01190 Antibiotic   

Vanadium 5.24E-04 DB13971 Diabetes, low blood 
sugar, high 
cholesterol, heart 
disease, tuberculosis, 
syphilis, preventing 
cancer         

Phenethyl 
isothiocyanate 

3.37E-02 DB12695 Leukemia, Lung 
Cancer       

NSP7 NHP2L1, HSPA8, 
RPL4, RPSA, 
RPS3, RPL8 

Disodium selenite 8.28E-05 DB11127 Prevents Cancer ORF7b HSPA8, 
GAPDH 

Disodium 
selenite 

2.14E-02 DB11127 Prevents Cancer         

Ellagic acid 2.76E-02 DB08846 Follicular Lymphoma         
Diltiazem 2.76E-02 DB00343 Treat high blood 

pressure and to control 
angina (chest pain) 

NSP8 MPHOSPH10, 
XPO1, EXOSC2, 
EXOSC5 

4- 
Hydroxytamoxifen 

8.13E-03 DB04468 Breast cancer ORF8 CANX, 
HSP90B1, 
CALR, PDIA6, 

Loxapine 1.74E-04 DB00408 Schizophrenia 

(continued on next page) 
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Table 4 (continued ) 

Virus Protein Human hub 
proteins 

Drugs FDR 
corrected 
p-value 

Drug 
Bank ID 

Treatment Virus Protein Human hub 
proteins 

Drugs FDR 
corrected p- 
value 

Drug 
Bank ID 

Treatment 

HYOU1, 
SEC61A1   

Pergolide 1.53E-02 DB01186 Parkinson’s Disease   Desipramine 2.54E-04 DB01151 Antidepressant   
Daunorubicin 3.99E-02 DB00694 Acute myeloid 

leukemia(AML)   
Chlorprothixene 2.54E-04 DB01239 Schizophrenia               

Camptothecin 4.70E-02 DB04690 Leukemia   Clindamycin 1.55E-03 DB01190 Antibiotic         
Nilutamide 3.19E-03 DB00665 Prostate cancer 

NSP9 NUP62, HSPA1A Gefitinib 4.25E-02 DB00317 Lung cancer. Nucleocapsid UPF1 Latamoxef 6.89E-04 DB04570 Antibiotic   
Tanespimycin 4.25E-02 DB05134 Cancer         
Pyrvinium 4.65E-02 DB06816 Tapeworm infection       

NSP11 TUBA1A, 
TUBA4A, TUBB1, 
TUBB2A, 
TUBB2B, 
TUBB4A, TUBB4B 

Vinblastine 6.18E-18 DB00570 Cancer ORf9b HSPA8, RPSA, 
EEF1A1, 
HNRNPA1 

Emetine 1.24E-02 DB13393 Anticoronaviral agent   

Docetaxel 6.80E-18 DB01248 Cancer   Vorinostat 2.80E-02 DB02546 Cutaneous T-cell 
lymphoma (CTCL)   

Paclitaxel 1.34E-16 DB01229 Cancer   Sulforaphane 3.10E-02 DB12422 Autism Spectrum 
Disorder   

Vincristine sulfate 1.34E-16 DB00541 Cancer   Mitoxantrone 3.42E-02 DB01204 Chemotherapy   
Sulforaphane 1.84E-07 DB12422 Prevention of prostate 

cancer and other 
types of cancer       

NSP12 PABPC1, HSPA8, 
NCL, PCBP1 

Disodium selenite 3.42E-02 DB11127 Prevents Cancer ORF9c NDUFAF1, 
NDUFB9 

Metformin 2.31E-02 DB00331 Type 2 Diabetes   

Fulvestrant 3.42E-02 DB00947 Breast Cancer         
Temozolomide 3.42E-02 DB00853 Brain Tumour         
Hexachlorophene 4.80E-02 DB00756 Antibacterial       

Spike glycoprotein HSPA8, RPL8, 
RPS3, RPSA, 
EEF1A1, RPLP0 

Disodium selenite 2.45E-02 DB11127 Prevents Cancer ORF10 HSPA8, 
NHP2L1, 
HNRNPA1, 
RPL4, RPS3, 
TP53 

Disodium 
selenite 

9.07E-03 DB11127 Prevents Cancer   

Vorinostat 3.89E-02 DB02546 Cutaneous T-cell 
lymphoma (CTCL)         

Diindolylmethane 3.89E-02 DB11875 Breast, uterine, and 
colorectal cance       

ORF3a HYOU1, PDIA6, 
PDIA4, ERO1L, 
TXNDC5 

Geldanamycin 2.37E-04 DB02424 Antiviral         

Tanespimycin 4.19E-04 DB05134 Several types of 
cancer, solid tumors 
or chronic 
myelogenous 
leukemia.         

Emetine 1.37E-03 DB13393 Anticoronaviral agent         
Deptropine 7.67E-03 DB13466 Chronic bronchitis, 

bronchiectasis, 
bronchial asthma and 
vasomotor rhinitis.         

Desipramine 7.67E-03 DB01151 Antidepressant        
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Fig. 6. Drug Protein Interaction Network. In this figure, rectangle represents the SARS-CoV-2 proteins, triangle represents the human hub proteins and the circle 
denotes the various drugs that interact with the hub proteins. 
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