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Restoration of motor function after CNS
damage: is there a potential beyond
spontaneous recovery?

Volker Dietz1

What determines the effectiveness of neurorehabilitation approaches on the outcome of function in stroke or spinal cord injured

subjects? Many studies claim that an improvement of function is based on the intensity of training, while some actual studies indi-

cate no additional gain in function by a more intensive training after a stroke. Inherent factors seem to determine outcome, such as

damage of specific tracts in stroke and level of lesion in spinal cord injured subjects, while the improvement of function achieved

by an intensive training is small in relation to the spontaneous recovery. It is argued that an individual capacity of recovery exists

depending on such factors. This capacity can be exploited by a repetitive execution of functional movements (supported as far as

required), irrespective of the intensity and technology applied. Elderly subjects have difficulties to translate the recovery of motor

deficit into function. Alternative, non-training approaches to restore motor function, such as epidural or deep brain stimulation as

well as CNS repair are still in an early clinical or in a translational stage.
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The issue: What is the
impact of
neurorehabilitation on the
recovery of function?
The number of patients suffering a CNS damage, most

frequently due to a stroke, increase continuously due to

an ageing population. Most of these patients undergo

neurorehabilitation procedures. There is no standard

treatment of motor deficits after a CNS damage, i.e. the

procedures applied differ between countries and centres

within the same country. The effectiveness or superiority

of any rehabilitation approach can hardly be demon-

strated on a strong scientific basis as ethical issues do not

allow comparison between treated and non-treated

patients and robust studies which compare different

approaches or demonstrate best evidence for an interven-

tion are rare.1

Most rehabilitation approaches are believed to achieve

a gain in function by the exploitation of neuroplastic-

ity.1–3 The success of this exploitation is suggested to be

influenced by a number of factors, such as age or severity

of CNS damage4 or, e.g. by task complexity.5 In the neu-

rorehabilitation of stroke or SCI subjects, the idea of ex-

ploitation of neuroplasticity becomes usually implemented

in rehabilitation by the repetitive execution of functional

movements of impaired limb(s), requiring synergistic

muscle activation,6 i.e. for example, reach and grasp

movements for upper extremities and stepping movements

for lower limbs. The training can be complemented by

passive muscle stretching when a deforming spastic par-

esis is present.7,8 In stroke and SCI subjects by such an

approach some recovery of function is usually achieved,

even in elderly subjects,9 with a maximum within about

three to four months after CNS damage.10 However, out-

come of function not only depends on training but also

on other factors, such as infections which are known to

impair recovery of function.11

A more intensive movement training was suggested to

lead to a better outcome of function.12,13 As a conse-

quence, technology entered the field of neurorehabilita-

tion. Robotic devices became developed that allowed

longer training times in combination with monitoring

changes in function.12,14 During the last 25 years, a large

number of such devices came into the market with the

aim to achieve greater rehabilitation effects by an optimal

exploitation of neuroplasticity by a higher number of

movement repetitions.14,15

The question underlying this review is whether an add-

itional, substantial gain of function can be gathered by a

high intensity training in relation to the recovery of func-

tion achieved by a standard training. This aspect is

related to the question in how far an improvement of

function occurs to a large extent spontaneously or is, al-

ternatively, due to specific rehabilitation approaches. The

term ‘spontaneous’ in the present context is considered as

the recovery of function following a regular, (i.e. several

times/day), repetitive execution of upper/lower limb move-

ments used in daily life activities with a personal/technical

support required. Without the performance of such move-

ments, i.e. when limbs remain immobilized due to the

paresis, little spontaneous recovery is expected to occur.

Instead, muscle/joints contractures will develop—similar

as in conditions with limb immobilization due to other

causes than CNS damage, e.g. bone fractures. The cap-

acity of functional recovery is suggested to consist in a

combination of resolving neurapraxia and neuroplasticity.
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On the basis of actual scientific achievements and dis-

cussions in the field,14,16,17 it is argued that most part of

functional recovery occurs in so far ‘spontaneously’, as it

is determined by the exploitation of an individually lim-

ited capacity for a recovery. Furthermore, it is suggested

that the success of this exploitation does not depend on

specific rehabilitation interventions.16,17

Inherent factors
determining outcome of
function
After a brain damage that includes pyramidal tract con-

nections to hands and fingers the motor deficit can hard-

ly be compensated by the activation of other non-

damaged tracts/brain areas.18–20 As a result, a quite lim-

ited recovery (10–20%) of paralyzed fingers occurs.21,22

The minor signs of recovery have been suggested to occur

spontaneously (e.g. resolving neurapraxia?), i.e. without

evidence for training effects.23 In contrast, following dam-

age of other brain areas a more favourable recovery of

function of proximal arm and leg muscles can be

expected (60–80%; Table 1).18–20 This is achieved by a

standard therapy, i.e. the repetitive execution of function-

al movements over a limited time (e.g. 30–50 min per

day) which become supported as far as needed.24

After spinal cord damage, the improvement of upper

limb function depends on the level, and extent of le-

sion.10 In cervical cord injuries, a combined damage of

central (spinal tracts) and peripheral nerval structures

(motoneurons and roots to arm, hand and finger muscles)

occurs. This results in an arm/hand/finger paresis associ-

ated with a mixture of spastic and flaccid muscle tone25

(Table 1). The peripheral part of nervous system damage

can account for up to 50% of paresis.26 This part of

nerval damage has little potential to recover. After a

sensori-motor complete SCI any recovery of function is

rather unlikely to occur.24

The age of patients has little influence on the recovery

of the neurological deficit in post-stroke27,28 and SCI29

subjects, i.e. it is similar in elderly and young subjects.

However, after an SCI young compared to elderly sub-

jects can better translate the recovery of motor system

deficits into functions required in daily life activities.29

It is concluded that there is an inherent, individual cap-

acity of recovery of function after a stroke or SCI that

depends on factors, such as location and severity of CNS

damage. This capacity can be determined early after CNS

damage by clinical, electrophysiological24 and imaging19

examinations. These measures can also be used as prog-

nostic factors and, consequently, for the selection of ap-

propriate rehabilitation procedures early after CNS

damage.

Compensatory role of
spastic muscle tone
After a stroke/incomplete SCI, a loss of supraspinal drive

leads to a paresis and, consequently, reduced mobility.

With the development of spastic muscle tone, this deficit

becomes partially compensated (Fig. 1). Functional move-

ments, such as stepping, can be executed on a lower level

of organization.30 Therefore, most post-stroke subjects re-

gain walking function by using the spastic-paretic leg

more or less stick-like: Support of the body in the stance

phase and circumduction of the leg during swing (due to

reduced knee flexion). The normal push-off the leg at the

end of stance phase is lost. As a consequence, the limited

improvement of walking ability achieved over the course

of rehabilitation after a stroke is associated with little

change in biomechanical and muscle activation character-

istics of the spastic-paretic leg.24,31 The improvement in

mobility is, therefore, rather due to adaptational changes

than due to a restoration of ‘normal’ stepping function.

Table 1 Main aspects of neurorehabilitation and outcome of upper limbs following stroke or cervical SCI

Location Typical recovery course Goal Rehabilitation

approach

Stroke Damaged Corticospinal tract (CST) Little recovery, esp. chronic

impairment of hand/finger

extension

Prox. arm muscle activation;

avoidance of muscle con-

tractures; use of impaired

limb for support/holding

function

Prox. arm muscle strength-

ening; repetitive passive

limb motion; training of

compensatory strategies

Intact CST Spontaneous recovery of

�70% of initial arm/hand

impairment

Arm and simple grasping

function; uni-/bimanual

ADL functions

Functional reach/grasp and

bimanual (cooperative)

hand movements;

strengthening of wrist/

finger extensors; simple

movement training with

transfer to ADL; limited

dose-dependent training

effects

SCI Lesion level C6/7 Spasctic forearm flexor

muscle tone impending

the development of tenod-

esis grasp

Tenodesis grasp; bimanual

grasp
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Patients suffering a cervical SCI (i.e. C6/7) require spas-

tic muscle tone to perform simple grasp movement (the

so-called tenodesis grasp). Furthermore, spastic proximal

arm muscles can provide some passive gravity support to

carry an object from one to another spot (cf Table 1).

More intensive training:
More gain in function?
Several studies indicate that by a more intensive training

an additional gain in function of upper and lower limbs

can be achieved. This effect was reported for post-stroke

subjects,1–3,32–35 as well as for subacute36 and chronic37

SCI subjects.

However, in none of these studies the additional gain

of function was related to the recovery of function

achieved by a standard training or to the spontaneous re-

covery of function. In fact, for lower limb function the

improvement of outcome achieved by a more intensive

training is small (or transient; cf. fig. 3 of Hubli et al.38)

in relation to the gain in function achieved by a standard

training in post-stroke38 and SCI36 subjects. For upper

limb function of chronic post-stroke subjects, there is no

evidence for a dose–response effect of training intensity

on functional recovery.39

Can a more intensive locomotor training improve step-

ping function after a stroke? In a large group (200

adults) of moderately to severely impaired subacute post-

stroke subjects, a bodyweight supported treadmill training

was not superior to relaxation sessions (of same duration

and in addition to standard therapy) in respect of walk-

ing speed and activities of daily living (ADL).16

Correspondingly, in incomplete SCI subjects doubling of

the daily locomotor training time had only small effects

on walking ability.36

Alternative non-training
approaches to restore
motor function

SCI repair

What is the best cell candidate for a transplantation-

based treatment of brain or pinal cord injury and, which

kind of CNS damage should preferentially be treated?

These issues remain an ongoing matter of investiga-

tions.40 Application of Schwann cells,41 stem cells42 or

auto-transplantation of olfactory ensheathing cells:43 All

these cell types are known to be permissive for the out-

growth of lesioned spinal or supraspinal tract axons in

animal models of CNS damage.

In the case of the transplantation of olfactory ensheath-

ing cells in SCI subjects, neither negative nor beneficial

effects were found in individuals with motor complete

spinal cord injury.43 The same is true for transplantation

of foetal stem cells in China44 and for the application of

Figure 1 Mechanisms leading to spastic movement performance. A CNS lesions affecting motor behaviour leads to a loss of

supraspinal drive. As a consequence, alterations of proprioceptive feedback, i.e. changes in the excitability of spinal reflexes and in muscle

function, reflected in altered mechanical muscle properties, occur. The combination of all sequels of the primary lesion leads to the divergent

appearance of clinical spasticity and spastic movement disorder. Modified after Dietz and Sinkjaer.30
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human neural stem cells in cervical SCI45 which both did

not show signs of motor recovery. Besides cell-based re-

pair, the application of Nogo-antibodies was shown to be

effective for SCI repair in animal experiments.46,47 A

Nogo-antibody treatment is currently applied in patients

suffering a cervical SCI in a phase two trial. If this treat-

ment can successfully applied in human SCI it can be

translated to the more complex condition of brain

damage.

Treatment of cervical SCI aims to improve arm/hand

function. The problem is that at the cervical level a com-

bined damage of central and peripheral nervous struc-

tures exists. A thoracic spinal cord repair again would

functionally be less important as at best a rudimentary

stepping function could be achieved.

Epidural spinal cord and deep brain
stimulation

Epidural stimulation of spinal (thoraco-lumbar) neuronal

networks facilitates the performance of stepping move-

ments in SCI individuals with spared descending connec-

tions. In combination with spastic muscle tone this

stimulation approach enhances walking ability.48 The suc-

cess of this approach is in so far limited as only rudimen-

tary steps can be executed with the support of crutches

to maintain body balance. This means that by this ap-

proach subject have problems to carry an object from

one to another spot. As a consequence, for the execution

of ADL activities a wheelchair travelling is more effective.

Also, deep brain stimulation was shown to improve

motor function in rodents with CNS damage.49 This ap-

proach is on the way to be translated to human beings.

Conclusions
The question underlying this review is in how far a more

intensive training leads to an additional gain in function

in relation to a standard training. The answer is that by

an intensive training some additional recovery of function

can be achieved. However, this gain in function is small,

transient, or even can be absent in relation to the ‘spon-

taneous’ recovery of function. It is concluded that there

is an individually limited capacity of recovery of function

after a stroke or SCI that depends on inherent factors

such as location and severity of CNS damage.

The improvement of function within this capacity

depends on the appropriate activation of motoneuron

pools of synergistic limb muscles under physiological

movement conditions. This means, the exploitation of

this capacity is based on the standard rehabilitation ap-

proach, i.e. the repetitive execution of functional move-

ments (with the support of a therapist or a device as far

as required). On this basis, the recovery of function is

achieved irrespective of the rehabilitation intervention

applied.

The recovery of a motor deficit after stroke or SCI

occurs independent of age. However, in SCI subjects the

gain in motor system capacity can better be translated

into function in young compared to elderly subjects.

Considering these aspects, an integral part of rehabilita-

tion should be directed to compensate the remaining

motor deficit by refined assistive devices which allow a

self-independent life as far as it is possible for the indi-

vidual patient.

Alternative, training supplementary approaches, such as

epidural or deep brain stimulation might somewhat en-

hance motor function, e.g. improve the ability to perform

stepping movements in subjects suffering a CNS damage.

A repair of the damaged spinal cord/brain is presently

not yet available.

This review on the recovery of motor function after

CNS damage has to be based on a rather limited scientif-

ic evidence present in the field of neurorehabilitation.

More large scaled trials, including defined patient groups,

are needed to definitively estimate the effect size of a

more intensive training approach.

No new data were generated in the article.

Search strategy and
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Original research papers were cited that included a suffi-

cient number of patients and reviews devoted to original

key studies on rehabilitation effects on outcome of motor

function in stroke and spinal cord injured subjects pub-
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