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ABSTRACT: While the synthesis of biaryls has advanced
rapidly in the past decades, cross-Ullman couplings of aryl
chlorides, the most abundant aryl electrophiles, have
remained elusive. Reported here is the first general cross-
Ullman coupling of aryl chlorides with aryl triflates. The
selectivity challenge associated with coupling an inert
electrophile with a reactive one is overcome using a
multimetallic strategy with the appropriate choice of
additive. Studies demonstrate that LiCl is essential for
effective cross-coupling by accelerating the reduction of
Ni(II) to Ni(0) and counteracting autoinhibition of
reduction at Zn(0) by Zn(II) salts. The modified
conditions tolerate a variety of functional groups on
either coupling partner (42 examples), and examples
include a three-step synthesis of flurbiprofen.

The synthesis of biaryls has become one of the most
commonly used reactions in pharmaceutical, agro-

chemical, and materials science industries,1 yet access to
arylmetal reagents remains limiting. The low commercial
availability of arylmetal reagents has inspired a number of
active areas of research (Scheme 1A), including improved
methods for arylmetal synthesis,2 C−H arylation,3 and
decarboxylative cross-coupling.4

The relative abundance of aryl electrophiles (Scheme 1B5)
would make the cross-Ullman reaction6,7 an attractive
approach, but our recently reported catalytic nickel and
palladium method was not broadly ef fective with the most
abundant and versatile aryl electrophiles, aryl chlorides.8 In
addition to opening up more chemical space, aryl chlorides are
often lower in cost, and their lower reactivity would allow for
sequential coupling in fragment-based drug discovery9 or late-
stage coupling on complex molecules.10

Although significant advances in the use of aryl chlorides in
cross-coupling have been made recently,7c,11−14 there are no
general methods for the direct cross-coupling of electron-neutral or
electron-rich aryl chlorides with other aryl electrophiles.15,16 In our
prior report, we established that in order to promote a
successful cross-Ullman reaction, the electrophiles employed
had to be orthogonally paired in reactivity: the Ni catalyst
activated aryl bromides at a higher rate than aryl triflates; the
Pd catalyst activated aryl triflates at a higher rate than aryl
bromides. When sufficiently electron-deficient aryl chlorides
were substituted for aryl bromides, they were still activated
enough to maintain catalyst selectivity. However, when less

activated aryl chlorides were used, poor results were obtained.
Preliminary studies attempting to couple more electron-rich
chlorides with aryl triflates led to production of the triflate-
derived dimer and incomplete conversion of both the aryl
chloride and the aryl triflate. Herein we report a general
multimetallic solution that achieves the selective coupling of a
variety of aryl chlorides with aryl triflates (Scheme 1C).
On the basis of the mechanism proposed in our earlier

studies with nickel and palladium multimetallic catalysis (Table
1A),8 the slow consumption of the aryl chloride and aryl
triflate suggested that arylnickel (II) formation was being
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Scheme 1. Cross-Ullman Reaction in Biaryl Synthesis
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inhibited (Table 1A). Arylpalladium (IV) will not consume
aryl triflate without arylnickel (II) present. The inhibition
could arise from slow oxidative addition (I to II),17 slow
reduction (III to I), or an off-cycle loss of nickel catalyst.
Reduction of the (dtbbpy)NiIIX2 complexes III-Cl and III-

OTf was studied by both electrochemical and chemical
methods (Table 1B). Cyclic voltammetry (CV) studies,
which are commonly used to assess the ease of reduction of
metal complexes,18 showed no difference between III-Cl and
III-OTf (Table 1B and Figures S7 and S8 in the Supporting

Information). While CV provides information on the
thermodynamic driving force for a reduction, it does not
account for the complex kinetic picture of reduction at a metal
surface.19,20 Indeed, the reduction of complexes III-OTf and
III-Cl over zinc flakes in the presence or absence of additives
showed that III-OTf is not reduced unless chloride salts are
present (Table 1B,C, Figures S8 and S9, and Table S2). There
is also a cation effect: while LiCl enhances the rate of reduction
of both nickel complexes III-OTf and III-Cl, ZnCl2 does not.
In fact, zinc chloride and zinc triflate, salts formed during the
reaction, inhibit reduction of (dtbbpy)NiIICl2 (37% yield with
no salt, 2−5% yield with 1 equiv of ZnCl2 or Zn(OTf)2).
Lithium chloride21 can overcome zinc inhibition and was
generally the most useful additive studied (Table 1, entries 1−
6, and Table S2).22,23 While we found that reduction of octyl
bromide to octylzinc bromide was also inhibited by zinc
salts,21d,24 reduction of palladium(II) phosphine complexes to
palladium(0) was fast with or without added LiCl or Zn
(Figures S11−S16).25,26
These studies show that the low reactivity observed for the

coupling of aryl chlorides with aryl triflates (Scheme 1B) is due
to autoinhibition: the zinc salts (ZnCl2 and Zn(OTf)2) formed
in the reduction of III to I inhibit subsequent reductions of III.
While it had previously been noted that halide anions
accelerate reduction of NiX2 intermediates at zinc surfaces,27,28

the inhibitory effect of less-coordinating anions (OTf−, BF4
−,

PF6
−)29 and zinc salts has not been previously reported. This

result has broad implications for cross-electrophile coupling
reactions that rely upon heterogeneous metallic reductants.
The catalytic reaction behaved as expected from the

stoichiometric studies: the addition of LiCl enabled turnover
(Table 1C, entries 1−6, and Figures S1 and S2).30 Consistent
with previous reports,8 these reactions were still promoted by
the cooperativity between the two metal catalysts: reactions
without palladium were poorly selective, and reactions without
nickel did not consume starting materials (Table 1, entries 9
and 10). Similar to other cross-electrophile coupling
reactions,28a the reaction was tolerant of adventitious O2,
allowing reactions to be set up on the benchtop (Table 1, entry
11), although O2 in the reaction headspace resulted in an
induction period (Figure S6).31 Both Zn and Mn could be
utilized as reductants. As in our previous report, LiBr was
superior to LiCl with Mn (Table 1, entries 7 and 8, and Figure
S5).20a Finally, while dtbbpy and dppb were generally the best
pair of ligands for this coupling, PCy3 was also effective
(Figures S2 and S3). While 6,6′-dibromo-2,2′-bipyridine was
not an effective ligand for the model reaction, it was effective
for couplings of electron-poor aryl chlorides (Scheme 2).
With these modified reaction conditions and an effective

way to promote aryl chloride reactivity, we examined the
couplings of a variety of aryl chlorides and triflates containing
an array of functional groups and steric environments (Scheme
2). Electron-poor fluorine-containing substrates as well as
electron-neutral and electron-rich substrates were well-
tolerated, including sensitive functionalities such as a Boc-
protected amine (3c), an aldehyde (3i), an alkyl Bpin ester
(3ab), and a phosphonate ester (3ac). More reactive aryl
halides, such as aryl chlorides bearing strongly electron-
withdrawing groups, heteroaryl halides, or aryl bromides, could
be selectively coupled with an aryl triflate by the use of the
hindered, electron-poor ligand 6,6′-dibromo-2,2′-bipyridine
(3g, 3i, 3j, 3o, 3t, and 3u). Under these reaction conditions,
ortho-substituted (3q−s) and 2,6-disubstituted aryl bromides

Table 1. Mechanistic Study and Optimization of the Ar−Cl
Cross-Ullman Reaction

entry change from the optimized conditionsc 3a (%)d

1 none 84
2 NaCl instead of LiCl 62
3 LiBr instead of LiCl 59
4 Bu4NCl instead of LiCl 53
5 TMSCl instead of LiCl 16
6 no LiCl <10
7 Mn instead of Zn 62
8 Mn instead of Zn, LiBr instead of LiCl 77
9 without PdCl2 and dppb 44
10 without NiCl2(dme) and dtbbpy <5
11 reaction set up on the benchtope 80
12 1.2 equiv of 2a 90 (89f)

aIn DMF. See the Supporting Information for details on electro-
chemical studies. bReduction of III was conducted in DMF at a
concentration of 0.025 M with Zn powder (40 equiv). Cyclooctadiene
(0.125 M) was added to stabilize the product. Salts (1−40 equiv)
were added in some cases. See the Supporting Information for
additional results and experimental details. cReactions were run on a
0.5 mmol scale in 2 mL of solvent. NMP = N-methyl-2-pyrrolidinone.
dGC yield vs dodecane as an internal standard. eThe reaction was set
up under air with dry solvent. fIsolated yield.
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and chlorides (3t−v) were also coupled efficiently. In contrast,
steric hindrance was not as well tolerated in our previous

report.32,33 The ability to couple unactivated aryl chlorides can
be beneficial in synthesis when the corresponding aryl bromide

Scheme 2. Reaction Scope and Applicationsa

aReactions were run on a 0.5 mmol scale in 2 mL of solvent for 2−24 h. bUsing 5 mol % 6,6′-dibromo-2,2′-bipyridine instead of dtbbpy. cThe aryl
bromide was used instead of the aryl chloride.
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is either more expensive or not commercially available (3w−
ac). The most challenging combination was electron-rich aryl
chlorides with electron-poor aryl triflates (3l), which suffered
from lower selectivity (about 2.5:1 biaryl to product).
The scope of the aryl triflate was also examined (Scheme 2),

demonstrating good yields with both electron-donating and
electron-withdrawing substituents (3ad−am). The lower yields
observed for the coupling of electron-poor aryl triflates with
electron-poor aryl chlorides (3ah and 3aj) were due to
competing homodimer formation. In these cases, the use of
6,6′-dibromo-2,2′-bipyridine as the ligand did not improve the
yield. The couplings with 2-cyano-1-chlorobenzene form
biaryls that could be useful for the synthesis of angiotensin
II receptor antagonists (3ad−ah).34
Besides their improved availability and lower cost, an

additional benefit of using aryl chlorides is that their lower
reactivity facilitates multistep synthesis (Scheme 2). For
example, cross-electrophile coupling with an alkyl bromide
(5), C−H arylation (7), and reductive α-arylation (9) can all
be conducted while preserving the C−Cl bond.35 As an
example of how this can be applied in synthesis, a concise
three-step synthesis of flurbiprofen (9) was demonstrated that
would be amenable to rapid analogue synthesis.36

This report shows how the nickel and palladium system can
be rationally modulated to couple less reactive substrates: an
unselective multimetallic reaction was made selective with the
use of an additive, LiCl, that facilitates the reduction of the
nickel catalyst at the zinc surface. Combined with our previous
reports, these results suggest that the Ni/Pd system is general
and that multimetallic catalysis may have broad generality.
Finally, this work demonstrates how reactivity in cross-
electrophile coupling reactions can be influenced by the
reductant choice as much as the ligand choice: salts formed in
the reaction may be autoinhibitory, and new reductant
combinations can unlock new reactivity.
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