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Abstract
The effects of two feeding regimens on meat quality, myosin heavy chain (MyHC) 
types, and key factors regulating muscle fiber type (AMP-activated protein kinase 
[AMPK] and peroxisome proliferator-activated receptor-coactivator-1α [PGC-1α]) 
in the biceps femoris muscle of Mongolia sheep were investigated. A total of 20 
Mongolia sheep were weaning for 90 days and divided into two groups (pasture group 
(P) and confinement group (C)) at 10.36 ± 0.35 kg of weaning weight. After weaning, 
sheep were pasture fed or confinement fed for 9 months. The results showed that 
live weights, carcass weight, intramuscular fat (IMF), and Warner–Bratzler shear force 
(WBSF) in P group were significantly lower (p < .05) than that in C group. Compared 
with P group, color evaluations with respect to L* and b* values were significantly 
higher (p < .05) in C group. Expression of the MyHC I gene in the P group was signifi-
cantly higher, while MyHC IIa and MyHC IIb genes expression was significantly lower 
(p < .05) than that in C group. Also, AMPK activity and expression of AMPKα2 and 
PGC-1α genes were significantly higher (p < .05) in P group compared with C group. 
The present study indicated that muscle fiber composition was one of the key differ-
ences leading to the differences of meat quality in different feeding regimens. AMPK, 
particularly AMPKα2, and PGC-1α were considered to be two key factors regulating 
muscle fiber types in Mongolia sheep. The results support that AMPK activity and 
the expression of AMPKα2 and PGC-1α genes may affect the composition of muscle 
fibers; thus, AMPK activity and the expression of AMPKα2 and PGC-1α genes had an 
effect on meat quality by changed composition of muscle fibers.
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1  | INTRODUC TION

Muscle fiber was the most basic component unit of muscle quality, 
which composition and type transformation of muscle fiber would 
directly affect the meat quality, such as tenderness, flavor, and in-
tramuscular fat (Yin, Sun, Zhang, Bai, & Wang, 2013). Muscle fiber 
classification method mainly has three kinds: The first method is 
to simply divided into type I muscle fibers (slow contraction—red 
muscle fiber—oxidizing muscle fibers) and type II fibers (fast con-
traction—white muscle fiber—glycolysis muscle fibers). The second 
type divides muscle fibers into three types according to ATPase ac-
tivity: type I (slow-twitch oxidative), type IIA (fast-twitch oxidative 
glycolysis), and type IIB (fast-twitch glycolysis) (Brooke & Kaiser, 
1970). The third is based on the myosin heavy chain (MyHC) poly-
morphism, mammalian skeletal muscle fiber type composition can 
be divided into four types: MyHC I (slow-twitch oxidative), MyHC IIa 
(fast-twitch oxidative), MyHC IIx (fast-twitch oxidative-glycolytic), 
and MyHC IIb (fast-twitch glycolytic; Schiaffino & Reggiani, 2011). 
A shift of muscle fiber from type IIB to type I may cause more ten-
derness of meat, thus improve meat quality (Choi & Kim, 2009). In 
recent years, the previous research has reported that meat quality 
can be improved by altering the composition of muscle fibers (Zhang, 
Tang, Zhang, Wang, & Wang, 2014). A study in Turkish native sheep 
breeds found that diameter of type I muscle fibers was positively 
correlated with tenderness and pH value in longissimus dorsi muscle 
(LD), and the numbers of type IIA were positively correlated with 
water holding capacity (WHC) in LD of Akkaraman sheep breeds 
(Şirin et al., 2017). In another study, when the proportion of type I 
was high and the proportion of type IIB was low in longissimus dorsi, 
Korean native cattle had high marbling, more tenderness, and light-
ness (Hwang, Kim, Jeong, Hur, & Joo, 2010). According to Gil et al. 
(2003), compared with muscles with lower MyHC I content, muscles 
with higher MyHC I content showed higher ultimate pH value, but 
lower dropping loss, and darker surface. These results suggest that 
muscle fiber types had great influence on meat quality.

Several key gene-regulated muscle fiber types have been iden-
tified, such as AMP-activated protein kinase (AMPK) and peroxi-
some proliferator-activated receptor-coactivator-1α (PGC-1α) (Lin 
et al., 2002; Röckl et al., 2007). AMPK signaling pathway is central 
in the regulation of cellular energy, it referred to as cellular energy 
sensor (Hardie & Sakamoto, 2006). A study had found that chronic 
administration of 5-aminoimidazole-4-carboxamide-ribo-nucleoside 
(AICAR) which an AMPK agonist can induce muscle fiber types from 
fast to slow transition (Suwa, Nakano, & Kumagai, 2003). AMPK was 
also activated during muscle contraction, and regular endurance 
exercise can induce AMPK activation, accompanied by the con-
version of muscle fiber types from fast to slow (Röckl et al., 2007). 
According to Cantã (2009), AMPK could increase the level of NAD+ 
in mouse myoblasts, activate Sirtuin (Sirt1), and then regulate Sirt1 
downstream gene PGC-1α. It has been reported that PGC-1α was 
involved in conversion and determination of muscle fiber types, lead 
to the distribution of red/oxidized fiber types increasing (Lin et al., 
2002). According to Tetsuo, Takayoshi, Hideaki, Shihori, and Yoriko 

(2010), the expression of PGC-1α gene could transform muscle fiber 
from fast to slow. Overexpression of PGC-1α in transgenic mice and 
pigs can promote conversion of glycolytic fibers to oxidative fiber 
through enhanced mitochondrial respiration and fatty acid oxidation 
(Zhang et al., 2017).

In recent years, China had introduced many policies prohibiting 
grazing and restricting grazing. Therefore, the grazing method has 
gradually changed from natural grazing to house feeding. Many stud-
ies over the past few years had reported that feeding regimens can 
play an important role in animal husbandry, including improved meat 
quality, growth performance, and fatty acid composition (Carrasco, 
Panea, Ripoll, Sanz, & Joy, 2009; Fruet et al., 2016; Wang et al., 2018). 
Feeding regimens also affect the distribution of different types of 
muscle fibers in farm animals. There are also differences in the dis-
tribution of various muscle fibers in the same part of the indoor and 
the outdoor animals, as the result may be caused by the amount of 
exercise in the outdoor animals is larger, and the increase in exercise 
will promote the aerobic metabolism of the muscles and affect the 
transformation of muscle fibers, thus affecting the distribution of 
muscle fibers. Exercise can promote the conversion of IIb to IIx to 
IIa to I muscle fibers, reducing exercise can promote the transfor-
mation of muscle fibers in the opposite direction (Gerrard, 2000). 
According to Petersen, Henckel, Oksbjerg, and Sørensen (1998), the 
content of IIa in the muscle of the outdoor pigs was higher than that 
of the indoor pigs, while the contents of IIb and IIx were decreased 
in outdoor group, in addition, the aerobic metabolism of the mus-
cles of the free-range pigs was strengthened, and the shape of the 
meat was affected. In summary, the differences in the distribution 
and composition of muscle fibers under different feeding regimens 
may be important reasons for the different quality of meat products.

The aim of the present study was to compare the effect of two 
feeding regimens, on meat quality, MyHC isoforms, and muscle fi-
ber-related genes in the biceps femoris muscle of Mongolia sheep.

2  | MATERIAL S AND METHODS

2.1 | Animals and diets

A total of 20 Mongolia sheep from Inner Mongolia, China were 
weaning for 90 days and divided into two groups (5 rams and 5 ewes 
in each group) at 10.36 ± 0.35 kg of weaning weight. After wean-
ing, all sheep were randomly (10 animals and 5 each of rams and 
ewes/ feeding regimen) according to two different feeding regimens 
in the subsequent growth phase: pasture feeding regimen (P) and 
confinement feeding regimen (C). The P group sheep were allowed 
to graze freely on natural pasture which is semi-arid grassland for 
9 months that mainly consisted of Stipa gobicao, Stipa breviflora, 
and Cleistogenes. Squarrosa, animals were allowed to move freely in 
the field of 104 m2. While the C group sheep were kept in one pen 
(16 m2) for 9 months in a feedlot and fed a controlled diet of forage 
consisting of corn stalks, skin of sunflower seed, corn's concentrate 
and fattening feed.
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2.2 | Samples collection at slaughter

All the animals were sacrificed at 12 months (3 months weaning and 
9 months feeding regimes) in a local abattoir (Bayannur Agriculture 
and Animal Husbandry, Inner Mongolia, China). The live weight was 
measured before slaughter. After the sheep were slaughtered and 
fully bloodshot, the head, hooves, internal organs, fur strip, and 
lymph were removed; after 30 min, the carcass weight was meas-
ured. Small portions of biceps femoris (BF) were taken from the 
other part of the carcass within 45 min postmortem were cut into 
0.5 cm × 0.5 cm × 1.0 cm pieces, and immediately frozen in liquid 
nitrogen and stored at −80°C until further analysis.

2.3 | Meat quality

The meat color of the muscle was evaluated on the muscle surface 
using a chromatic meter (CR-410, Konica Minolta, Japan). The av-
erage of three measurements was recorded, and the results were 
expressed as luminance (L*), redness (a*), and yellowness (b*). The 
initial and ultimate pH were measured on the biceps femoris mus-
cle at 45 min and 24 hr postmortem using a pH meter (pH-Star; 
Ingenieurbüro R. Matthäus, Ebenried). The Warner–Bratzler shear 
force (WBSF, kg/cm2) was measured using a tenderness meter 
(C-LM3B, Northeast Agricultural University, Harbin, China). Muscle 
samples (approximately 300 g) were taken from the biceps femoris 
at 24 hr after slaughter. Then, the samples were heated in a sealed 
plastic bag in a water bath at 75°C for approximately 45 min, fol-
lowed by cooling in cold tap water for 40 min. 12 rectangular cores 
(1 cm2), parallel to the longitudinal orientation of the muscle fibers, 
were taken and analyzed. The greatest and least values for each sam-
ple were disregarded, and then, the mean of the remaining values 
was used to get the final result of WBSF. The meat samples (60 g) 
were chopped in a commercial mixer-blender and stirred well and 
analyzed in triplicate. The protein content was analyzed by Kjeldahl 
(GB 5009.5-2016), and intramuscular fat content was analyzed by 
Soxhlet (GB 5009.6-2016). The moisture was determined by drying 
to a constant weight in an oven (105°C), and the ash on the sample 
residue was measured after drying at 550°C for 12 hr in a muffle 
furnace.

2.4 | AMPK activity

Frozen muscle samples (300mg) were homogenized using a polytron 
homogenizer (XHF-DY, Scientz) in 5 times their volume of chilled (1–
2°C) buffer (wt/vol) consisting of: (0.25 M D-maimitol (AR, Amresco), 
0.05 M Tris–HCl (AR, Amresco, pH 7.4, 4°C), 1 mM EDTA (AR, Sigma), 
1 mM DTT (AR, Merck), 1 mM EGTA (AR, Sigma, America), 50 mM 
NaF (AR, Yongda), and 5 mM sodium pyrophosphate (AR, Yongda). 
The homogenate was centrifuged at 10,000 r/min for 5 min at 4°C 
(Underwood et al., 2008). The level of AMPK phosphorylation was 
used as a control in the analysis of AMPK activity. AMPK activity 

was measured using a Sheep Phosphorylated Adenosine monophos-
phate-activated protein kinase (p-AMPK) ELISA Assay Kit (Nanjing 
Jiancheng Bioengineering Institute, Nanjing, China). The kit uses a 
double-antibody sandwich enzyme-linked immuno-assay (ELISA) 
to assay the level of p-AMPK in samples. Enzyme activity was ex-
pressed as the level of p-AMPK (ng/mL).

2.5 | RNA extraction and RT- PCR

Total RNA from the frozen muscle samples was extracted using 
RNAiso Plus (Takara, Dalian, China) according to the manufacturer's 
protocol. The concentration and purity of the total RNA was cal-
culated using BioDrop μLite (BioDrop, Cambridge, England). The 
extracted RNA was digested using gDNA Eraser (Takara). Reverse 
transcriptions were performed using an M-MLV reverse tran-
scriptase kit (Takara).

The expression levels of all genes were examined by RT-PCR 
using SYBR Premix Ex Taq (Takara). The GAPDH gene was used 
as the internal reference for evaluation of the AMPKα1, AMPKα2, 
AMPKγ3, PGC-1α, MyHC I, MyHC IIa, MyHC IIb, and MyHC IIx 
genes, because the expression level of GAPDH was basically con-
sistent in each tissue of the animal body (Zhang et al., 2018). The 
primer sequences used are shown in Table 1. The reaction (25 μl) 
contained 2 μl pooled cDNA template, 12.5 μl SYBR Premix Ex Taq 
(Takara), forward and reverse primers (1 μl each), and DNase/RNase-
free water (8.5 μl).The RT-PCR conditions used for all genes were as 
follows: 95°C/30 s, 35 cycles of 95°C/5 s, 57°C/30 s and 72°C/30 s, 
all genes followed by a final extension cycle at 72°C for 10 min. The 
CT values were quantified using a modified delta-Ct method and a 
PCR data analysis program. For all the treated samples, evaluation of 
2−ΔΔCt indicated the fold change in gene expression relative to the 
control (Livak & Schmittgen, 2001).

2.6 | Statistical analysis

Differences in the parameters studied were analyzed using a one-
way analysis of IBM SPSS Statistics 19.0. The LSD test was applied 
to compare the averages. The average of the standard error media 
(SEM) was reported. The relationship between the parameters was 
evaluated by Pearson correlation analysis.

3  | RESULTS AND DISCUSSION

3.1 | Meat quality

The results of effects of feeding regimen on Mongolia sheep meat 
quality are shown in Table 2. The feeding regimens had a signifi-
cant effect on live weight and carcass weight which were 23.47% 
and 39.8% higher, respectively, in C group than in P group (p < .05). 
L* and b* values of the P group were 12.45% and 86.77% (p < .05) 
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higher than those of C group, respectively, in agree with the study 
of Kim et al. (2013) that L* and b* values of subcutaneous fat in pas-
ture lambs were higher than those in fed in the closed environment 
feeding lambs. There was no significant difference in pH value in 
45 min and 24 hr postslaughter (p > .05). The study showed that 
the WBSF of P group was significantly lower 14.04% than C group 
(p < .05) indicating that muscle tenderness was better in P group. 
The IMF content of BF muscle in C group was significantly higher 
54.59% than that in P group (p < .05), which was consistent with 
the research results of Angela, Alenka, Silvester, and Drago (2014). 

Moisture, protein content, ash, and a* values showed no significant 
difference (p > .05) in both groups. It is well known that the compo-
sition of the muscle fiber type can effect on the meat quality, such 
as pH value, flavor, color, tenderness, and so on (Eggert, Depreux, 
Schinckel, Grant, & Gerrard, 2002; Hwang et al., 2010; Maltin et al., 
1998; Żochowska et al., 2005). The differences in meat quality be-
tween the two groups in the present study may be explained by the 
composition of the muscle fibers.

3.2 | Expression of MyHC isoforms genes

The effects of feeding regimens on muscle fiber type compo-
sition of Mongolia sheep are shown in Figure 1. The expression 
of MyHC I gene in P group was significantly higher than that in 
C group (p < .05). The expression of the MyHC IIa and MyHC IIb 
genes in the P group was significantly lower than C group (p < .05). 
Expression of MyHC IIx gene had no significant difference (p > .05) 
in two groups. It is well known that the type of muscle fiber was re-
lated to the meat color. Renerre (1990) reported that an increase in 
the number of type I muscle fibers in skeletal muscle tissue would 
reduce the color stability of the meat. Pork with higher number and 
size IIA and IIB muscle fibers, the L* values was increase and WHC 
(water holding capacity) was decrease (Kim et al., 2013; Larzul 
et al., 1997). On the contrary, the present study showed that the 
expression of MyHC IIa and MyHC IIb genes in the C group were 
higher than P group, while the L* and b* values were lower than 
the PF group. Therefore, the relationship between meat color and 
muscle fiber types needs to be further studied in Mongolia sheep. 
As we all know, MyHC IIb gene had more glycogen than other 
MyHC isoforms genes (Men, Deng, Xu, & Tao, 2012; Quiroz-Rothe 

TA B L E  1   Primer sequences for RT-PCR

Gene Primers Amplicon (bp) Accession number

AMPKα1 F: TCCGAAGTATTGATGATGA
R: ACAGATGAGGTAAGAGAAG

154 XM_004017019.2

AMPKα2 F: ATGAGGTGGTGGAGCAGAGG
R: CGTGAGAGAGCCAGAGAGTGAA

131 EU_131097.1

AMPKγ3 F: GTAACCCGTTGAACCCCATT
R: CCATCCAATCGGTAGTAGCG

127 EU_477214.1

PGC-1α F: TGCTGCTCTGGTTGGTGAAG
R: TGAAGGCTCGTTGTTGTACTGATT
R:GGAGGAGTCGTGGGAGGAG

166 XM_012179735.2

MyHC I F: AAGAACCTGCTGCGGCTG
R: CCAAGATGTGGCACGGCT

250 XM_012129251.1

MyHC Ila F: GAGGAACAATCCAATACAAATCTATCT
R: CCCATAGCATCAGGACACGA

173 XM_015098655.1

MyHC IIb F: GACAACTCCTCTCGCTTTGG
R: GGACTGTGATCTCCCCTTGA

274 XM_004012706.3

MyHC IIx F: GGAGGAACAATCCAATGTCAAC
R: GTCACTTTTTAGCATTTGGATGAGTTA

178 XM_012114332.2

GAPDH F: CTCAAGGGCATTCTAGGCTACACT
R: GACCATGAGGTCCACCACCCTGT

180 NM_001190390.1

TA B L E  2   Effect of feeding regimen on meat quality in Mongolia 
sheep (n = 10)

 P group C group

Live weight (kg) 37.95 ± 2.25b 46.86 ± 1.72a

Carcass weight(kg) 16.85 ± 1.22b 23.56 ± 2.51a

L* 27.83 ± 2.41a 24.74 ± 2.33b

a* 20.73 ± 1.76a 19.33 ± 3.28a

b* 7.34 ± 1.58a 3.93 ± 1.57b

pH0 6.35 ± 0.09a 6.56 ± 0.10a

pH24 5.71 ± 0.08a 5.77 ± 0.07a

WBSF (kg/cm2) 45.47 ± 6.73b 52.90 ± 5.98a

Intramuscular fat (%) 4.25 ± 0.56b 6.57 ± 0.62a

Moisture (%) 74.11 ± 6.89a 72.21 ± 3.21a

Protein (%) 22.23 ± 1.32a 21.59 ± 1.02a

Ash (%) 1.01 ± 0.06a 1.06 ± 0.09a

Note: Values in rows followed by different letters are significantly 
different (p < .05).
Abbreviation: WBSF, Warner–Bratzler shear force.

info:ddbj-embl-genbank/XM_004017019.2
info:ddbj-embl-genbank/EU_131097.1
info:ddbj-embl-genbank/EU_477214.1
info:ddbj-embl-genbank/XM_012179735.2
info:ddbj-embl-genbank/XM_012129251.1
info:ddbj-embl-genbank/XM_015098655.1
info:ddbj-embl-genbank/XM_004012706.3
info:ddbj-embl-genbank/XM_012114332.2
info:ddbj-embl-genbank/NM_001190390.1
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& Rivero, 2010; Shen et al., 2014). Thus, we expected that the pH 
values would be lower in C group which had the higher MyHC IIb 
gene expression in both groups. Contrary to what was expected, 
there was no statistical significant in PH0 and pH24 between the 
two groups in our experiments because fiber proportion and pre-
slaughter glycogen reserve level also affects pH decline (Y M Choi, 
Ryu, & Kim, 2007; Immonen, Ruusunen, Hissa, & Puolanne, 2000; 
Ryu & Kim, 2006) The relationship between IMF content and mus-
cle fiber properties is currently controversial (Lefaucheur, 2010). 
According to Hu, Wang, Zhu, Guo, and Wu (2008), mRNA expres-
sion of MyHC I, IIa, and IIx was positively correlated with IMF con-
tent in the longissimus dorsi muscle of pigs, and MyHC IIb mRNA 
expression was opposite. Zhang, Liu, et al. (2014) reported that the 
MyHC gene may be considered a negative factor with IMF con-
tent. In present study, the changes in the gene expression of MyHC 
IIa and MyHC IIb with IMF content were consistent, but MyHC I 
was reversed. The proportion of MyHC I fibers was significantly 
higher in the lowest shear force group in longissimus dorsi muscle 
of Sutai pigs (Yang, Jie, Chao, & Zhao, 2012). Our results agree in 
part with previous reports. Therefore, the effects of feeding regi-
men on meat quality may via altering the composition of muscle 
fiber types.

It has been demonstrated that exercise had profound effects on 
the transformation of muscle fiber types. Morifuji, Murakami, and 
Fujino (2016) suggested that endurance exercise could prevent the 
conversion of muscle fibers from slow muscle fibers to fast muscle 
fibers and increase mitochondrial oxidase activity in skeletal muscle 
of nonobese type 2 diabetic rats. Eight weeks of treadmill training in 
rats, the results showed that moderate and heavy intensity exercise 
may lead to transform of skeletal muscle fiber types from fast to 
slow (Yin et al., 2017). The wild-type mice were treated with volun-
tary wheel running for six weeks inducing shift of muscle fiber types 
from IIb to IIa/x through AMPK mediates adaptive responses to ex-
ercise training in skeletal muscle (Röckl et al., 2007). According to Su 
et al. (2019), endurance exercise lead to convert in MyHC isoforms 

from oxidative type to the glycolytic type. In present study, the vari-
ation of movement in two groups may be one of the main reasons 
caused the differences of meat quality. The space of the P group was 
about 1,000 times of the C group. And the P group were allowed to 
graze freely on natural pasture which semi-arid grassland so that the 
pastured sheep had to keep walking for grass. Therefore, the physi-
cal activity of the pastured sheep far more than confinement sheep. 
Results of the present study showed that exercise of Mongolia sheep 
in different feeding regimen differs and chronic exercise influences 
the gene expression of MyHC isoforms and further affects meat 
quality traits. And we could perhaps draw a conclusion that long-
term pasture can lead to the conversion of MyHC IIx, MyHC IIa, and 
MyHC IIb to MyHC I in the biceps femoris muscle of Mongolia sheep.

3.3 | Comparison of key factors regulating muscle 
fiber type of different feeding regimens

The influence of different feeding regimens on AMPK activity of 
Mongolia sheep was presented in Figure 2. The level of p-AMPK in 
BF muscle of P group was significantly higher than that in C group 
(p < .05). The influence of different feeding regimens on the gene ex-
pression of AMPK subunits are shown in Figure 3. Compared with C 
group, the expression of AMPKα1 and AMPKγ3 genes in BF muscle 
of P group was significantly lower (p < .05), while the expression of 
the AMPKα2 gene in P group was significantly higher (p < .05) than 
C group. Consistent with the AMPK activity and the expression of 
AMPKα2 gene, PGC-1α expression in P group was higher than that 
in BF muscle of C group (p < .05).

AMPK signaling pathway is central in the regulation of cellular 
energy, it referred to as cellular energy sensor (Hardie & Sakamoto, 
2006). According to Ko et al. (2018), aerobic exercise training could 
increase the activation of AMPK. Energy was consumed during ex-
ercise, resulting in a rapid increase in the level of AMP/ATP of the 
skeletal muscle, and AMPK was activated. Cycling human and mouse 

F I G U R E  1   Gene expression of MyHC isoforms in P and C 
groups (n = 10). Columns with different letters for the same isoform 
are significantly different (p < .05)

F I G U R E  2   The level of p-AMPK in P and C groups (n = 10). 
Columns with different letters for the same subunit are significantly 
different (p < .05)
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wheel movement would cause increased AMPK activity (Zhi-Ping 
et al., 2003; Wojtaszewski, Jorgensen, Hellsten, Hardie, & Richter, 
2002). Therefore, the increase of AMPK activity in pastured sheep 
compared with confinement may due to the greater physical exer-
cise before slaughter in P group.

Although skeletal muscle expresses the AMPKα1 and AMPKα2, 
the AMPKα2 was activated primarily in response to moderate-in-
tensity endurance exercise in skeletal muscle, promotes skeletal 
muscle glucose transport, glutamate expression (Nakano et al., 
2006). While AMPKα1 was reversed and activated only during 
tonic muscle contraction (Friedrichsen, Mortensen, Pehmøller, 
Birk, & Wojtaszewski, 2013), high-intensity exercise could activate 
AMPKα2 immediately, but AMPKα1 had no significant change. In 
vitro experiments further prove that AMPKα2 was more sensitive 
to ATP than AMPKα1 (Wojtaszewski, Nielsen, Hansen, Richter, & 
Kiens, 2000). And Mcgee et al. (2003) reported that endurance 
training could lead to a significant increase in AMPKα2 content. 
In summary, the activation of different catalytic subunits of AMPK 
was closely related to exercise intensity, and AMPKα2 was mainly 
activated in endurance exercise. In present experiments, after 
a long period of exercise, the pastured sheep may activate the 
AMPKα2 subunit encoded by the AMPKα2 gene. In agreement with 
the previous study, AMPKγ3 expression was higher in C group may 
cause the higher expression of MyHC IIb in C group, since AMPKγ3 
gene is a key molecule that regulates the transform to type IIb of 
muscle fiber (Mahlapuu et al., 2004).

The mouse with a dominant inhibitory mutant of AMPK was 
intolerant to exercise fatigue, while AMPK activation increases 
mitochondrial oxidase activity and mitochondrial synthesis (Mu, 
Jr, Brozinick, Valladares, Bucan, & Birnbaum, 2001), which effect 
may be mediated by PGC-1α, as the results of studies transgenic 
mice expressing a dominant-negative mutant of AMPK in muscle 
and knockout mice confirmed the important role of PGC-1α in the 
AMPK signaling pathway (Haihong et al., 2002). Overexpression of 
the PGC1α gene promotes the transformation of glycolytic muscle 

fibers into the muscle fibers of pigs (Ying, Zhang, Bu, Xiong, & Zuo, 
2016). Through the transgenic method, it was found that after 
transferring PGC-1α gene into mice, type II muscle fibers showed 
the characteristics of slow type muscle fibers, and mitochondrial 
oxidative ability was enhanced, indicating that the specific protein 
expression level of type I muscle fibers was elevated, and type II 
muscle fibers could be obtained. It was converted into Ι type mus-
cle fiber (Lin et al., 2002). And Handschin et al. found that in PGC-1α 
knockout mice, I and IIa muscle fibers were significantly reduced, 
and type IIb muscle fibers were significantly elevated (Handschin 
et al., 2007). Exercise induced activation of PGC-1α was associated 
with the activation of AMPK and p38 MAPK (Gibala et al., 2009; 
Handschin et al., 2007). According to Cantã et al. (2009), AMPK 
could increase the level of NAD+ in mouse myoblasts, activate 
Sirtuin (Sirt1), and then regulate Sirt1 downstream gene PGC-1α. 
These results indicate that AMPK induced muscle fiber type transi-
tion via, at least in part, PGC-1α gene. As the results of the key fac-
tors regulating muscle fiber type in different feeding regimens of 
Mongolia sheep in present study, the long-term exercise of pasture 
sheep could increase the gene expression of AMPKα2, activate 
AMPK, up-regulate the gene expression of PGC-1α, and promote 
the transformation of muscle fiber type from MyHC IIx, MyHC IIa, 
and MyHC IIb to MyHC I in the biceps femoris muscle of Mongolia 
sheep. Our results provide an important basis for further studies of 
the mechanism of muscle fiber type in different feeding regimens 
of Mongolia sheep.

4  | CONCLUSIONS

In present study, pasture sheep showed an advantage over con-
finement sheep with respect to WBSF of meat quality. And higher 
AMPK activity and expression of AMPKα2 and PGC-1α genes 
caused by pasturing can promote the transformation of muscle fiber 
types from MyHC IIx, MyHC IIa, and MyHC IIb to MyHC I, which 
indicated that feeding regimen affect WBSF via alter muscle fiber 
types by regulating AMPK activity, and expression of AMPKα2 and 
PGC-1α genes.
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