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It is increasingly being recognized that severe gastroduodenal diseases such as
peptic ulcer and gastric cancer are not just the outcomes of Helicobacter pylori
infection in the stomach. Rather, both diseases develop and progress due to the
perfect storms created by a combination of multiple factors such as the expression
of different H. pylori virulence proteins, consequent human immune responses, and
dysbiosis in gastrointestinal microbiomes. In this mini review, we have discussed
how the genomes of H. pylori and other gastrointestinal microbes as well as the
genomes of different human populations encode complex and variable virulome–
immunome interplay, which influences gastroduodenal health. The heterogeneities that
are encrypted in the genomes of different human populations and in the genomes of
their respective resident microbes partly explain the inconsistencies in clinical outcomes
among the H. pylori-infected people.
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INTRODUCTION

No pathogenic bacteria created a bigger spark among microbiologists, gastroenterologists, and
science enthusiasts than Helicobacter pylori upon its discovery from the human stomach. Once
the colonization of this bacterium in the harshly acidic human gastric milieu was confirmed by
histology and culture by Robin Warren and Barry Marshall in 1983, within the next 20 years,
the total number of publications on it surpassed the total number of publications on Salmonella,
which was discovered in 1855 (Warren and Marshall, 1983; Harry et al., 2001). Once the role of
H. pylori as the causative agent of gastritis, peptic ulcer disease (PUD), and gastric cancer (GC) was
firmly established, the World Health Organization (WHO) classified it as Class I carcinogen (first
among all bacteria) in 1994 (IARC, 1994); gastritis and PUD became curable with triple therapy
(a proton pump inhibitor and two antibiotics); gastric mucosa-associated lymphoid tissue (MALT)
lymphoma became the first malignancy to be reversed with antimicrobial agents (Malfertheiner
et al., 2014); and both Warren and Marshall were awarded the Nobel Prize in Physiology and
Medicine in 2005. However, at the same time, it was also realized that H. pylori colonization
in the human stomach is remarkably common and is not just restricted to patients suffering
from gastric and duodenal diseases. A study showed that in 2017, 4.4 billion people (57.9% of
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the global population at that time) were infected with H. pylori
(Hooi et al., 2017). Although H. pylori remains colonized in
the stomach of a major fraction of the population, only a small
subset of people, typically 10–20% of the infected population,
suffer from severe gastroduodenal diseases such as PUD and
GC, but the reasons for the inconsistencies in clinical outcomes
were not precisely understood (Bauer and Meyer, 2011). Data
emerged in the past four decades suggest us to appreciate
that PUD and GC may have multiple and complex etiologies
such as H. pylori infection, polymorphisms in human cytokine
genes, dysbiosis in the gastric and intestinal microbiome, the
influence of geography, climate, and altitude, lifestyles such as
diet, smoking, and alcohol consumption, and perturbations that
are imposed by different medicines (Alexander et al., 2021). In
this mini review, we discussed how complex and functional host–
microbe interplays that determine the gastroduodenal health are
encoded in the human genome and in the genomes of trillions
of microbes (including H. pylori) that populate the human
gastrointestinal tract.

Helicobacter pylori: OUR FRIENDLY FOE
SINCE ANCIENT TIME

H. pylori is one of the oldest human pathogens known. A 5,300-
year-old iceman mummy (named Ötzi), excavated from the
Italian Alps, had H. pylori DNA in the stomach (Maixner et al.,
2016). Interestingly, unlike most human pathogens, H. pylori
exclusively colonizes humans (Mendall and Northfield, 1995).
H. pylori colonization is acquired during the initial years of
life by an intrafamilial manner through oral/fecal–oral route
and remains colonized for decades before causing any severe
diseases (Brown, 2000). Most (80–90%) of the infections,
however, either remain asymptomatic and unnoticed or cause
noticeable gastritis. Typically, the antral predominant gastritis
is associated with H. pylori-induced gastrin secretion followed
by increased H+ secretion by parietal cells and predisposes to
PUD. However, in direct contrast, long-term H. pylori infection
leads to hypochlorhydria due to decreased H+ secretion by the
parietal cells and this allows the growth of several other bacteria
(discussed later) (McColl et al., 1998). This cascade of events leads
to atrophic gastritis, which eventually progresses to intestinal
metaplasia, intraepithelial neoplasia, and GC (Barra et al., 2021).

Continuous changes, as part of evolution within the human
stomach, have occurred and accumulated in different H. pylori
genomes for thousands of years along with human migrations,
which has started 60,000 years ago in different clades, followed
by settlements in different geographical regions (Correa and
Piazuelo, 2012). The modern H. pylori strains, which have
successfully “coevolved” with humans, are classified into
distinct populations—hpAfrica1 (subpopulations—hspWAfrica
and hspSAfrica), hpAfrica2, hpEastAsia (subpopulations—
hspAmerind, hspEAsia, and hspMaori), hpEurope, hpNEAfrica,
hpAsia2, and hpSahul (Falush et al., 2003; Linz et al., 2007;
Moodley et al., 2009). The above H. pylori populations exhibit
distinct geographical predisposal. hpEurope is distributed
in the Middle East, India, Iran, and Europe. hspWAfrica is

present in Western Africa, while hspSAfrica and hpAfrica2
are present in South Africa. hpNEAfrica circulates in Nilo-
Saharan speakers of northern Nigeria, Sudan, Ethiopia, and
Somalia. hspEAsia is distributed among East Asians, while
hspMaori is seen in Taiwan’s Aboriginal, Melanesian, and
Polynesian populations. hspAmerind is present among Native
Americans. hpAsia2 is seen in populations of Malaysia, Thailand,
Bangladesh, and northern India. Strains from Papua New Guinea,
Aboriginals, and Australia belong to the hpSahul population
(Correa and Piazuelo, 2012).

Overall, H. pylori is one of the most genetically diverse species
among bacterial pathogens (Suzuki et al., 2012). Its diversity is
due to a higher level of spontaneous mutations occurring within
the restricted gastric niche, a higher frequency of horizontal gene
transfer, and natural competence (Israel et al., 2001). Impaired
DNA repair, integration of acquired DNA into the “plasticity
zones,” and higher intraspecific recombination also contributed
to diverse genetic forms (Fernandez-Gonzalez and Backert,
2014). H. pylori remains a very successful human pathogen
for centuries with a considerably lower proportion of terminal
clinical outcomes and higher self-propagation across generations
with a plethora of virulence factors that facilitate chronic
colonization in the human stomach, where the pH is nearly 2.
H. pylori virulence factors include urease, flagella, adhesins, and
several effector proteins that lead to pathogenesis. One of the
major effector proteins of H. pylori is the oncoprotein CagA,
encoded by the cagA gene present in the 40 kb cag pathogenicity
island (cagPAI). Inside the gastric cell, phosphorylated CagA
interacts with Src homology-2 (SH2) domains of the host
proteins such as CSK, Grb2, and SHP2, leading to altered
cell proliferation and differentiation, cytoskeletal changes, and
increased proinflammatory cytokines (IL-8) secretion via the NF-
κB pathway (Papadakos et al., 2013; Hatakeyama, 2014). Another
effector protein, the VacA, gets internalized by binding to the
receptor protein tyrosine phosphatases (RPTPα and RPTPβ)
and low-density lipoprotein receptor-related protein-1 (LRP1),
resulting in cell vacuolation and cell deaths by apoptosis, necrosis,
and autophagy (Foegeding et al., 2016; Chauhan et al., 2019).

The capabilities of the H. pylori strains to establish
colonization and to induce pathogenic alterations in the stomach
are greatly determined by the allelic types of virulence genes,
which vary with geography (Table 1). For vacA, the alleles
observed are s1 (with subtypes s1a and s1b) and s2 for the
vacAs region; i1 (with subtypes i1a and i1b) and i2 for the vacAi
region; m1 (with subtypes m1a, m1b, and m1c) and m2 for the
vacAm region; c1 and c2 for the vacAc region; and d1 and d2
for the vacAd region (Trang et al., 2016; Alexander et al., 2021).
CagA protein also shows distinct variations between strains
circulating in different populations. The Western H. pylori strains
carry CagA EPIYA-C, while the EPIYA-D is typically expressed
by East Asian strains (Figure 1; Higashi et al., 2002). The
vacAs1i1m1cagA+ (particularly of East Asian-type CagA) strains
are associated with aggressive clinical outcomes as compared to
vacAs2m2cagA − strains. The diversities in virulence encoded
in the H. pylori genomes in different populations are the major
determinants of different clinical manifestations in different
populations (Table 1; Chang et al., 2018). For example, the
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TABLE 1 | Variations in H. pylori genotype, microbiome, and host genes and association with gastric diseases.

Variations in H. pylori genotype Variations in microbiome Variations in host immune-associated genes

Region Dominant
H. pylori types

Associated
condition

Region Dominant microbiome Associated
condition

Region/
ethnicity

Host gene polymorphisms Associated
condition

India vacA s1a m2
(Saxena et al.,
2011)

PUD and GC Intestinal Microbiome Asians TNF-A-857C/T and TNF-A-238G/A
(de Brito et al., 2018)

GC

India Increase in Oscillospira
(Devi et al., 2021)

PUD and GC

Decrease in Bifidobacterium
(Devi et al., 2021)

Gastric Microbiome

East
Asia

Bacillus
(Cavadas et al., 2020)

GC

IL-10-1082G, IL-10-819C, and IL-10-592C
(Kim et al., 2013)

GC

TT genotype of IL-10-819C/T
(Xue et al., 2012)

Protection against
GC

India IL-1B-511TT
(Chakravorty et al., 2006)

PUD

Saudi Arabia TLR4-rs4986790 (A > G), TLR4-rs4986791
(C > T), TLR10-rs10004195 (A > T)
(Eed et al., 2020)

H. pylori infection

South
Korea

High Lactobacillus, Fusobacterium,
Bacillus, and Pseudomonas
(Cavadas et al., 2020)

GC

TLR9-rs352140 (C > T)
(Eed et al., 2020)

H. pylori gastritis

Iran vacAs1,vacA m1,
vacAs1m2
(Keikha et al., 2020)

PUD Low Achromobacter
(Cavadas et al., 2020)

Chinese TLR4-rs11536889and TLR9-rs187084 (T > C)
(Castaño-Rodríguez et al., 2013)

GC

TLR4-rs1927911, rs10759931, and
rs10116253
(Castaño-Rodríguez et al., 2013)

Protection against
GC

TLR10-rs10004195
(Castaño-Rodríguez et al., 2013)

Protection from
H. pylori infection

East Asia vacA s1c m1 i1
cagA + (EPIYA-D)
(Sahara et al.,
2012)

PUD and GC Vietnam Higher
Achromobacter, Bacillus, and
Pseudomonas
(Cavadas et al., 2020)

GC CD14 260C/T polymorphism
(Castaño-Rodríguez et al., 2013)

GC

TLR10-rs10004195 T allele
(Castaño-Rodríguez et al., 2013)

H. pylori infection

Lower Lactobacillus, Fusobacterium
(Cavadas et al., 2020)

(Continued)
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TABLE 1 | (Continued)

Variations in H. pylori genotype Variations in microbiome Variations in host immune-associated genes

Region Dominant
H. pylori types

Associated
condition

Region Dominant microbiome Associated
condition

Region/
ethnicity

Host gene polymorphisms Associated
condition

China Increase in Slackia exigua,
Streptococcus anginosus,
Peptostreptococcus stomatis, Dialister
pneumosintes, and Parvimonas micra
(Coker et al., 2018)

GC Japan TLR4-rs11536889 C allele with miR146A
(Hishida et al., 2011)

Gastric atrophy

Korea NOD1 G796A (Kim et al., 2013) H. pylori-induced
gastric mucosal
inflammation

Turkey NOD1 796 A/A (Castaño-Rodríguez et al., 2013) Gastric atrophy
Antral intestinal
metaplasia

Malaysia Streptococcus (Khosravi et al., 2014) PUD

Kazak IL-1B-511T/T allele, IL-1B-31C/C
(Kulmambetova et al., 2014)

Gastritis

Latin
America

vacA s1m1
(Sugimoto and
Yamaoka, 2009)

GC and PUD Intestinal Microbiome Caucasian TLR4 SNP Asp299Gly and SNP Thr399Ile
(Cheng et al., 2007)

GC

Finland High Enterobacteriaceae (Sarhadi et al.,
2021)

GC

Africa vacA s1m1
(Sugimoto and
Yamaoka, 2009)

GC Low Bifidobacterium (Sarhadi et al.,
2021)

Gastric Microbiome

Europe High Bacillus (Cavadas et al., 2020) GC

TNF-A-308 G/A (de Brito et al., 2018)

IL-10-1082A, IL-10-819T, and IL-10-592T
(Kim et al., 2014)

European TLR10-rs10004195 T allele
(Mayerle et al., 2013)

Protection from
H. pylori infection

IL-1B-511T/-31T/IL-1RN*2
(El-Omar et al., 2000)

GC

Gastric Microbiome

United
States

High Fusobacterium and low
Lactobacillus (Cavadas et al., 2020)

GC Brazil IL-6–174G/C polymorphism
(Gatti et al., 2007)

GC

IL-8-251 A/A (Ramis et al., 2017) PUD

Mexican TT genotype of IL-10-819C/T
(Martínez-Campos et al., 2019)

Protection against
GC

IL-10-592C/A (Martínez-Campos et al., 2019) Lower risk of GC

The dominant H. pylori genotypes, the predominant members of the gastrointestinal microbiome, and host immune response-associated gene polymorphisms distributed in different geographical locations, along with
corresponding disease association, are given in the table. The distribution of various vacA alleles in different regions of Europe and America shows the predominance of vacA s1b in Spain and Portugal, vacA s1a in
Northern and Eastern Europe, and vacA s1a and vacA s1b in France, Italy, and North America (Van Doorn et al., 1999). The composition of gastric disease-associated gastrointestinal microbiome also varies significantly
with geography. It is to be noted that several host gene polymorphisms confer protection against H. pylori infection as well as gastric diseases (GC—gastric cancer, PUD—peptic ulcer disease).
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prevalence of GC is highest in East Asian countries, but is
remarkably low in African countries (Rawla and Barsouk, 2019).

THE REWARDS AND PENALTIES FROM
THE MICROBIAL WORLD INSIDE US

Every living human body carries its unique microbiome
composed of a few trillion microbes along with their respective
genomes that express different proteins for carrying out
metabolic functions (Cho and Blaser, 2012; Blaser, 2014; Gilbert
et al., 2018). Every anatomical niche of a healthy individual
has a distinct microbiome that helps in various physiological
processes (Kennedy and Chang, 2020). Conversely, enrichment
of a few bacterial taxa, which leads to dysbiosis in the
microbiome, is deleterious to human health (Turnbaugh et al.,
2007; Hullar et al., 2014). The microbiome composition of each
niche for each individual varies due to several factors such as
antibiotic usage, geography, diet, lifestyle, and H. pylori infection
(Alexander et al., 2021).

Chronic colonization of the H. pylori in the stomach
alters the local immune response, leading to dysbiosis in the
gastric microbiome (Brawner et al., 2014). Proteobacteria
and Firmicutes are predominant in the gastric microbiome
of H. pylori-positive individuals, while Actinobacteria,
Firmicutes, and Bacteroidetes were dominant in H. pylori-
negative individuals (Andersson et al., 2008). Significant
variations in the relative abundances of genera such as
Veillonella, Granulicatella, Neisseria, Fusobacterium, Prevotella,
Actinomyces, and Streptococcus were also observed between
H. pylori-positive and H. pylori-negative individuals (Klymiuk
et al., 2017). The gastric microbiome composition of patients
with H. pylori-associated gastritis was almost exclusively
dominated by H. pylori, whereas a high microbial diversity
was observed in H. pylori-negative gastritis individuals and in
normal individuals (Parsons et al., 2017; Gantuya et al., 2019).
Notably, in a study from Malaysia, Streptococcus was isolated
at a significantly higher frequency in PUD cases (Khosravi
et al., 2014). On the other hand, in the gastric microbiome
of patients with GC, the abundance of Helicobacteraceae
was lower than that in patients with chronic gastritis (Eun
et al., 2014). For patients with advanced stages of GC, a
distinct lower abundance of H. pylori, but higher abundances
of Prevotella, Streptococcus, Veillonella, and Lactobacillus, in
the gastric microbiome was observed (Dicksved et al., 2009).
An increased abundance of the family Lachnospiraceae and
Lactobacillus coleohominis along with a decreased count of
Neisseria, Porphyromonas, and Streptococcus sinensis showed
an association with GC (Aviles-Jimenez et al., 2014). On
the other hand, GC patients from China had enrichment
of species such as Slackia exigua, Streptococcus anginosus,
Peptostreptococcus stomatis, Dialister pneumosintes, and
Parvimonas micra in the stomach (Coker et al., 2018).
Furthermore, an overgrowth of nitrate-reducing bacteria in
the atrophic stomach is attributed to the development of
gastric cancer via the accumulation of N-nitroso compounds
(Barra et al., 2021).

Even though H. pylori colonization is restricted to the
stomach, an alteration in the normal intestinal microbiome is
observed during H. pylori infection in the murine model and in
human (Kienesberger et al., 2016; Dash et al., 2019). Although
the mechanism remains poorly studied, it is possibly due to the
H. pylori-induced hypochlorhydria and altered gastrointestinal
immunity. H. pylori infection is associated with increased
diversity in the intestinal microbiome (Yang et al., 2019; Devi
et al., 2021). Children with H. pylori-associated gastritis showed
a higher abundance of Parabacteroides and Bacteroides, and a
lower abundance of Faecalibacterium and Roseburia, than the
healthy control group (Benavides-Ward et al., 2018). In India,
individuals with H. pylori-associated diseases showed a higher
Oscillospira abundance in the intestinal microbiome, while their
Bifidobacterium abundance was remarkably low (Devi et al.,
2021). A lower Bifidobacterium abundance in the intestine was
also observed among Finnish patients with GC along with
a higher abundance of Enterobacteriaceae (Table 1; Sarhadi
et al., 2021). The use of probiotics such as Bifidobacterium and
Lactobacillus has been shown to moderately improve H. pylori
eradication and reduce the side effects of antibiotics (Zhang et al.,
2015). It is known that probiotic strains of Lactobacillus and
Bifidobacterium also impart a protective effect against H. pylori
infection (Yang et al., 2021). L. acidophilus and L. bulgaricus
decrease H. pylori adhesion to the gastric epithelial cells.
Also, L. bulgaricus suppresses the secretion of proinflammatory
cytokine IL-8 by gastric epithelial cells (Song et al., 2019).

Apart from H. pylori infection, gastrointestinal microbiome
composition is affected by geographical variations and ethnicity,
which indirectly influence the progression of gastric diseases
(Figure 1; Gupta et al., 2017). Gastric microbiome analysis
showed a higher abundance of Proteobacteria in Europeans,
while a higher abundance of Firmicutes was observed in Asians.
GC cohort from South Korea had a higher abundance of
Lactobacillus, followed by Fusobacterium, and a lower abundance
of Achromobacter, while Vietnamese cohorts had an opposite
trend (Cavadas et al., 2020). Bacillus and Pseudomonas were
found to be dominant in GC cohorts from both regions. Patients
with GC from the United States and Europe had a relatively
higher abundance of Bacillus, Parasutterella, Brevibacillus, and
Fusobacterium. Patients with GC from the United States also
had a lower abundance of Lactobacillus (Cavadas et al., 2020).
Although the link between dysbiosis and gastroduodenal diseases
is noticeable, the functional mechanisms involved in the process
remained poorly described to date.

OUR DEFENSES AND
PREDISPOSITIONS ARE ENCRYPTED IN
OUR GENOMES

H. pylori is present in the human stomach since ancient
times, but only a subset of the H. pylori-infected population is
genetically predisposed to gastroduodenal diseases. Colonization
of H. pylori in the human stomach is recognized by the body
with pathogen recognition receptors (PRR) such as nucleotide-
binding oligomerization domain (NOD) and Toll-like receptor
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FIGURE 1 | Pattern of gastric and intestinal microbiomes, host polymorphisms, and H. pylori type between East Asia and the rest of the world: the more virulent
H. pylori CagA EPIYA-D is mostly found in East Asia when compared with H. pylori CagA EPIYA-C, which is predominant in the Western world (Yamaoka, 2008).
Almost all strains from East Asia express BabA, while in West, BabA-positive strains as well as a minority of BabA-negative strains are present. FUT2, encoded by
the Se gene, is required for the synthesis of LeB antigen (BabA-binding host molecule). Mutations in the Se genes, Se G428A and Se A385T, are found to inactivate
and to reduce the activity of FUT2, respectively (Anstee, 2010). The alteration in gastric and intestinal microbiome composition is observed in H. pylori infection, and
gastric diseases also exhibit regional variations as shown in the figure. Additionally, specific host immune gene polymorphisms in different populations predispose an
individual susceptibility to H. pylori colonization and gastric diseases.

(TLR) and eventually leads to the expression of cytokines,
such as tumor necrosis factor (TNF) and interleukin 8 (IL-8)
(Deforge and Remick, 1991; Amarante-Mendes et al., 2018).
Genome-wide association study showed that polymorphisms in
the PRR and cytokine genes among individuals from different
geographical and ethnic backgrounds critically affect the immune
response to H. pylori and clinical outcomes (Table 1 and
Figure 1; Mommersteeg et al., 2018). A case-control study
from Saudi Arabia showed that patients with TLR4-rs4986790
(A > G), TLR4-rs4986791 (C > T), and TLR10-rs10004195
(A > T) have a significant association with H. pylori infection,
and TLR9-rs352140 (C > T) is connected with H. pylori-
associated chronic gastritis (Eed et al., 2020). However, for people
with Chinese ethnicity, the CC genotype of TLR4-rs11536889
and TLR9-rs187084 (T > C) is associated with an increased
risk of GC, while TLR4-rs1927911, rs10759931, and rs10116253
were found to confer protection against GC (Castaño-Rodríguez
et al., 2013). Also, a Chinese population with TLR10-rs10004195
polymorphism exhibited protection against H. pylori infection
(Tang et al., 2015). A significant association has been identified
between H. pylori-related GC and TLR4 SNPs, Asp299Gly,
and Thr399Ile in a Caucasian population (Cheng et al., 2007).
NOD1 796G > A polymorphism is linked to gastric mucosal
inflammation in H. pylori-infected Korean population, while
NOD1 796A/A genotype increases risk of gastric atrophy and
antral intestinal metaplasia in a Turkish population (Kara et al.,
2010; Kim et al., 2013). TNF-A-308G/A polymorphism increases
the risk of GC in Caucasians, while TNF-A-857C/T and TNF-A-
238G/A polymorphism increases the risk of gastric tumorigenesis
in Asians (Yang et al., 2014; de Brito et al., 2018). Europeans

with IL-1B-511T/-31T/IL-1RN∗2 have a high risk of GC, while
in a Kazakh population, IL-1B-511T/T and IL-1B-31C/C increase
the risk of gastritis (El-Omar et al., 2000; Kulmambetova et al.,
2014). However, in India, IL-1B-511TT genotype was higher
in H. pylori-infected patients with PUD (Chakravorty et al.,
2006). IL-6-174 G/G polymorphism in a Brazilian population is
associated with a higher GC risk, while IL-8-251 A/A shows a
higher risk of PUD (Gatti et al., 2007; Ramis et al., 2017). It was
observed that IL-10-592T, IL-10-819T, and IL-10-1082A alleles
increased the risk of GC in Caucasians, while IL-10-592C, IL-
10-819C, and IL-10-1082G alleles were associated with GC risk
in Asians (Kim et al., 2014). The TT genotype of IL-10-819C/T
was shown to confer protection against GC in Mexican and Asian
populations (Xue et al., 2012; Martínez-Campos et al., 2019).

VIRULOME–IMMUNOME: THE
OVERLOOKED INTERPLAY

Since the origin of anatomically modern humans in Africa
and their subsequent migration, parallel evolutions and
diversifications have also occurred to trillions of microbes
(including H. pylori), which remained inhabited on and in the
human body over the entire periods of human migrations and
settlements. The pattern of genetic distance between different
H. pylori strains from different populations reflects the migration
pattern and its coevolution with its host (Falush et al., 2003;
Domínguez-Bello et al., 2008). H. pylori remains attached
to the human stomach with its adhesins. The blood group
antigen-binding adhesin (BabA) on the bacterial surface binds
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to a difucosylated ABO/Lewis b (LeB) antigen present on the
surface of human gastric epithelial cells (Huang et al., 2016).
Both H. pylori BabA and human LeB are diverse proteins,
which show remarkable variations with geography and ethnicity
that subsequently affects colonization and clinical outcomes
(Figure 1). Similarly, colonizing in the human gastrointestinal
tract by members of the microbiome depends on the respective
adhesin–receptor interactions, which are yet to be described.
Also, while all virulence genes within the genomes of different
H. pylori strains are well studied, the total virulence-associated
proteins encoded in the genomes of all members of the gastric and
intestinal microbiome, the virulome, which must have an effect
on the gastric epithelium, are completely overlooked till date.

Like microbial virulome, human immunome, the total
immune response genes present to protect against the invading
pathogens, is also not sufficiently understood. It is known that
the gastric niche contains several PRRs such as TLR and NLR
along with antimicrobial peptides and mucins (Peek et al., 2010).
The presence of antimicrobial peptides such as cathelicidins,
hepcidins, and defensins and O-glycosylated protein mucin plays
an important role in protecting the gastric epithelium from
bacterial colonization (McGuckin et al., 2011; Li and Yu, 2020).
A recent study also demonstrated the importance of galectin-3 in
gastric epithelium against H. pylori infection (Park et al., 2016).

The virulome–immunome interplay is inevitable and possibly
contributes to determining the clinical outcomes in the context
of H. pylori infection and microbiome alteration. Bacterial
pathogens are capable of modulating the host immune responses
and cause damage. For example, Propionibacterium acnes
(associated with lymphocytic gastritis) is known to produce
short-chain fatty acids (SCFAs) such as propionate and butyrate
that induce NKG2D–NKG2DL (natural killer group 2 member
D) and the proinflammatory cytokine IL-15 that promote the
progression to GC (Montalban-Arques et al., 2016). Further
studies are necessary to understand how the gastrointestinal
virulome manipulates the human immunome in the context of
PUD and GC.

CONCLUSION

PUD and GC are complex diseases that develop with the
influence of multiple factors. All major contributory factors–the
H. pylori virulence, the gastrointestinal microbiome along with
their virulome, and the microbe-responsive human immunome–
show tremendous unevenness among different individuals and

among different geographic regions, which is also linked to
human migrations and settlements. The present inconsistencies
that we observe in the clinical outcomes within the H. pylori-
infected population settled in different locations have their roots
in the combined evolutions of human immunome along with
H. pylori virulence and gastrointestinal virulome, which is being
continued for at least 60,000 years.

Human gastrointestinal health is undeniably the consequence
of dynamic interplay between the gastrointestinal virulome and
the host immunome. Recent studies suggest that a shift in
this equilibrium has far-reaching effects on the progression
of gastroduodenal diseases. Engineering the gastrointestinal
microbiome by interventions like probiotics to modulate the
host immune response may turn out to be an efficient strategy
for the management of a spectrum of gastroduodenal diseases
in the future, particularly in this era of growing antimicrobial
resistance. However, further multidisciplinary approaches are
required for uncovering the complex mechanisms so that
more specific and effective microbiome-based therapies can be
designed in the future.
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