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Abstract

Objectives

Pial collateral blood flow is a major determinant of the outcomes of acute ischemic stroke.

This study was undertaken to determine whether retinal vessel metrics can predict the pial

collateral status and stroke outcomes in patients.

Methods

Thirty-five patients with acute stroke secondary to middle cerebral artery (MCA) occlusion

underwent grading of their pial collateral status from computed tomography angiography

and retinal vessel analysis from retinal fundus images.

Results

The NIHSS (14.7 ± 5.5 vs 10.1 ± 5.8, p = 0.026) and mRS (2.9 ± 1.6 vs 1.9 ± 1.3, p = 0.048)

scores were higher at admission in patients with poor compared to good pial collaterals. Ret-

inal vessel multifractals: D0 (1.673±0.028vs1.652±0.025, p = 0.028), D1 (1.609

±0.027vs1.590±0.025, p = 0.044) and f(α)max (1.674±0.027vs1.652±0.024, p = 0.019)

were higher in patients with poor compared to good pial collaterals. Furthermore, support

vector machine learning achieved a fair sensitivity (0.743) and specificity (0.707) for differ-

entiating patients with poor from good pial collaterals. Age (p = 0.702), BMI (p = 0.422), total

cholesterol (p = 0.842), triglycerides (p = 0.673), LDL (p = 0.952), HDL (p = 0.366), systolic

blood pressure (p = 0.727), HbA1c (p = 0.261) and standard retinal metrics including CRAE

(p = 0.084), CRVE (p = 0.946), AVR (p = 0.148), tortuosity index (p = 0.790), monofractal Df
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(p = 0.576), lacunarity (p = 0.531), curve asymmetry (p = 0.679) and singularity length (p =

0.937) did not differ between patients with poor compared to good pial collaterals.

Conclusions

This is the first translational study to show increased retinal vessel multifractal dimensions in

patients with acute ischemic stroke and poor pial collaterals. A retinal vessel classifier was

developed to differentiate between patients with poor and good pial collaterals and may

allow rapid non-invasive identification of patients with poor pial collaterals.

Introduction

Acute ischemic stroke is the second most common cause of death, and survivors are left with

significant disability [1]. Ischemic stroke typically occurs due to occlusion of a cerebral artery

or an embolus from the heart or neck vessels [2]. Irrespective of the cause of ischemia, ade-

quate pial collateral flow can offset the severity of ischemic brain injury [3]. In experimental

studies of stroke, the infarct volume correlated more strongly with collateral number, diameter

and penetrating arteriole number than with middle cerebral artery territory [4].

The pial collateral circulation is a network of leptomeningeal arteries that cross-connect the

outer-most branches of adjacent arterial trees [5], but their extent is determined by genetic

and environmental factors that vary widely in the population [6]. Rarefaction of collaterals is

associated with ageing and multiple cardiovascular risk factors [7]. Indeed, individuals with

ischemic stroke and poor pial collaterals sustain larger infarcts, respond poorly to reperfusion,

have increased risk for and severity of intracerebral hemorrhage and suffer increased morbid-

ity and mortality [8–11]. In this respect, the identification of patients with poor pial collaterals

may allow risk stratification and targeted strategies to reduce risk factors associated with rare-

faction of collaterals in patients at risk of acute ischemic stroke.

Currently, a direct assessment of the pial collaterals status can only be undertaken after pre-

sentation with a stroke, using Computed Tomography Angiography or magnetic resonance

imaging of the brain. In this context, the retinal and neocortical vasculature share many ana-

tomic similarities during development and maturation [12] and retinal fundus images have

been used to identify alterations in the retinal vasculature to predict stroke [13, 14]. Indeed,

retinal vessel width differs between subtypes of stroke [13–15] and in those with recurrent

stroke [16, 17]. Interestingly, Prabhakar et al. [18] showed that retinal vessel metrics e.g. retinal

vessel diameter, tortuosity and fractal dimensions, which capture the complexity of the vascu-

lar tree may predict pial collateral status and neurological outcomes in mice models of acute

ischemic stroke.

This proof-of-concept study has assessed for the first time whether retinal fundus imaging

can be utilized to quantify retinal vessel metrics and geometric complexity using fractal dimen-

sions to identify patients with acute ischemic stroke and poor pial collaterals.

Materials and methods

Thirty-five patients with MCA occlusion and 21 age-matched healthy control participants

were recruited. Exclusion criteria included patients with stroke secondary to non-vascular dis-

order, intracerebral hemorrhage, a known history of ocular trauma or surgery, high refractive

error and glaucoma.
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Acute ischemic stroke was confirmed clinically and radiologically using American Heart

Association (AHA) criteria [19]. The pial collateral status was established using multi-modal/

dynamic CTA according to the criteria of Tan et al. [20]. The ordinal collateral score ranges

from 0 to 3: 0 = absent collateral supply to the occluded MCA territory (defined as “poor”),

1 = collateral supply filling�50% but>0% of the occluded MCA territory, 2 = collateral sup-

ply filling >50% but<100% of the occluded MCA territory and 3 = 100% collateral supply of

the occluded MCA territory (defined as “good”).

Clinical and demographic (blood pressure, HbA1c, lipid profile) data were obtained at

admission. Clinical outcome measures National Institutes of Health Stroke Scale (NIHSS) [21]

and modified Rankin Scale (mRS) [22] were obtained for all patients at admission and dis-

charge from the hospital. This assessed the quantity of the impairment caused by stroke, and

degree of disability or dependence in daily activities, respectively. This study adhered to the

tenets of the declaration of Helsinki and was approved by the Institutional Review Board of

Weill Cornell Medicine (15–00021) and Hamad General Hospital (15304/15). Informed, writ-

ten consent was obtained from all patients before participation in the study after assessment of

speech, comprehension, and reasoning by a consultant neurologist.

Retinal imaging and vascular measurements

A spectral-domain optical coherence tomography (OCT) system (Spectralis OCT; Heidelberg

Engineering GmbH, Heidelberg, Germany) with a 30˚ field-of-view was used to obtain non-

mydriatic optic disc (OD) centered high resolution retinal fundus images (768x768 or

1536x1536) of both eyes. A trained grader masked to the participant’s characteristics, analyzed

1–3 retinal images from each eye using semi-automated MONA REVA vessel analysis software

(version 2.1.1) developed by VITO (Mol, Belgium; http:\\mona.health) [23]. The FracLac

plugin in FIJI software was used to calculate multifractal metrics. Vessel parameters from both

eyes were averaged.

Selection of consistent and similar retinal regions across all fundus images was obtained in

MONA REVA by defining an annular region centered on the optic disc, with the inner and outer

radii of the annulus set at 1.5 and 3.0 times the radius of the optic disc, respectively. Next, the

MONA REVA algorithm automatically segmented the retinal vessels. The segmentation algorithm

is based on a multiscale line filtering algorithm inspired by Nguyen and coworkers [24]. Post-pro-

cessing steps such as double thresholding, blob extraction, removal of small connected regions and

filling holes were performed. Retinal vessel diameters, tortuosity, monofractal dimension and lacu-

narity were calculated in the software using predetermined regions of interest (ROIs) (Fig 1).

The diameters of the retinal arterioles and venules that passed completely through the cir-

cumferential zone 0.5 to 1 disc diameter from the optic disc margin (ROI 1) were calculated

automatically. The trained grader verified and corrected vessel diameters and vessel labels

(arteriole or venule) with the MONA REVA vessel editing toolbox. The diameters of the 6 larg-

est arterioles and 6 largest venules were used in the revised Parr-Hubbard formula for calculat-

ing the Central Retinal Artery Equivalent (CRAE) and Central Retinal Venular Equivalent

(CRVE) [25]. The arteriovenous ratio (AVR) is the ratio between CRAE and CRVE. The tortu-

osity index was computed as the mean tortuosity of the branch segments, where the tortuosity

of a branch segment is the ratio of the line traced on each vascular tree along the vessel axis

from 1.5 to 3.0 times the OD radius (ROI 2) and the line connecting the end points. Tortuosity

of individual vessel segments was calculated as reported by Lisowska and co-workers [26]. The

tortuosity index for the vessel network is similar to Prabhakar et al. [18].

The monofractal dimension Df was computed using the sliding box-count method on ROI

2 of the segmented image. Boxes with side length δ slide across the image and for each δ the
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number of boxes (N) required to cover the segmented image is recorded. The fractal dimen-

sion Df is expressed as follows [27].

Df ¼ lim
d!0
�
logðNÞ
logðdÞ

Lacunarity is computed like Df but uses the standard deviation of the pixel count for boxes

with side length δ that slide across the image [18].

Multifractals give additional and more fine-grained insights into the retinal vessel structure

as they can provide information on its geometrical features and spatial distribution [27]. The

generalized dimension Dq can be expressed as follows [28].

Dq ¼
1

q � 1
lim
ε!0

lnZðq; εÞ
lnε

with Z(q, ε) the partition function, q the order of the moment of the measure and ε is the side

length of the boxes used to cover the image.

Multifractal analysis was performed on the entire segmented vessel image (Fig 1) [29]. Set-

tings for the FracLAc plugin of ImageJ were as follows: box-counting method, 10 grid posi-

tions, scaled series for calculating grid calibers, and Q range of −10, +10, and 0.1. We

calculated the generalized dimensions (Dq) for q = 0, 1, and 2, which are the capacity dimen-

sion (D0), which captures how much the data fills the physical space and provides global infor-

mation about the structure; the information dimension (D1), which captures the data density

and quantifies the degree of disorder in the distribution; and correlation dimension (D2),

which measures how scattered the data is with a higher value indicating more compact data.

For a multifractal structure, the following applies: D0�D1�D2 [30, 31].

Three additional multifractal metrics were derived: the curve asymmetry, which indicates

the degree of fluctuation in different fractal exponents, the singularity length (Δα) and f (α)max.

Fig 1. Calculation of retinal vessel metrics with MONA REVA software and FracLac plugin in FIJI software. The

concentric circles on the segmented images indicate the regions of interest (ROIs) in which the metrics were

calculated. R is defined as the radius of the optic disc (inner red circle). For ROI 1 and ROI 2, radii of the larger circles

are a multiple of R. The entire segmented without the optic disc is ROI 3. Note: the segmented image is a representative

example and not the segmented image of the shown greyscale image.

https://doi.org/10.1371/journal.pone.0267837.g001
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The curve asymmetry:

A ¼
a0 � amin

amax � a0

A = 1 Symmetric

A > 1 Left skewed! stronger presence of high fractal exponent and significant

fluctuations

A < 1 Right skewed! greater presence of low fractal exponent and low fluctuations

The singularity length Δα = αmax−αmin represents multifractality and when the singularity

length increases, the pixel distribution of the image gets more complex and the multifractality

gets stronger. f(α)max represents the maximum of the singularity spectrum and approximates

the fractal dimension at Q = 0 (Q is the set of points where the Holder exponent is zero).

Statistical analysis

All statistical analyses were performed in Orange (version 3.27.0; https://orange.biolab.si/).

Orange is an open source machine learning, data mining and data visualization package [32].

The components of Orange are called widgets that run Python modules in the background.

Analyses range from simple data visualization, subset selection, and preprocessing, to empiri-

cal evaluation of learning algorithms and modeling. The visual programming is implemented

through an interface in which workflows are created by linking widgets.

Data are expressed as mean ± standard deviation (SD). Group comparisons were performed

using independent t tests with p� 0.05 as threshold for statistical significance. Spearman’s ρ
was calculated as a nonparametric measure of rank correlation between two variables. Explor-

atory data mining was done using Principal Component Analysis (PCA), which computes the

PCA linear transformation of the input data to identify clusters of similar samples (individuals

with poor collaterals and individuals with good collaterals) based on the retinal metrics. Super-

vised learning was performed to develop a classification model to differentiate individuals with

poor collaterals from individuals with good collaterals. Selection of retinal metric features was

based on group comparisons. Goodness of fit of logistic regression and support vector

machines were evaluated based on classification accuracy, sensitivity and specificity using

leave-one-out cross-validation. This splits the dataset according to the number of subjects in

the dataset. One subject is randomly selected for testing purpose while the other subjects are

used to train the model. This procedure is iterated until all subjects have been used as test data-

set. This methodology is efficient for replicability assessment in small data sets and is relevant

for clinically relevant use-case scenario of diagnosis [33, 34]. The data used for statistical analy-

sis in this study is available (https://doi.org/10.6084/m9.figshare.16574498.v1).

Results

Thirty-five patients with acute ischemic stroke were age-matched with twenty-one healthy

controls (48.1 ± 10.6 vs 44.3 ± 10.6 yrs., p = 0.200). Patients with acute ischemic stroke were

classified into those with poor (n = 15) and good (n = 20) pial collaterals.

Clinical, metabolic and neurological disability according to pial collateral

status

Clinical and metabolic parameters and neurological disability are given in Table 1. Age

(48.9 ± 10.5 vs 47.5 ± 10.4, p = 0.702), BMI (27.5 ± 3.2 vs 28.5 ± 4.3, p = 0.422), total cholesterol

(4.70 ± 1.12 vs 4.62 ± 0.96, p = 0.842), triglycerides (1.57 ± 0.68 vs 1.47 ± 0.62, p = 0.673), LDL

(3.06 ± 0.91 vs 3.08 ± 0.87, p = 0.952), HDL (0.93 ± 0.26 vs 0.85 ± 0.17, p = 0.366), systolic
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blood pressure (143.2 ± 18.4 vs 145.9 ± 27.7, p = 0.727), HbA1c (7.0 ± 3.3 vs 5.9 ± 1.1,

p = 0.261) and number of smokers (p = 0.205) did not differ significantly between patients

with poor compared to good pial collaterals. The National Institute of Health Stroke Scale

(NIHSS) (14.7 ± 5.5 vs 10.1 ± 5.8, p = 0.026) and modified Rankin Scale (mRS) (2.9 ± 1.6 vs

1.9 ± 1.3, p = 0.048) scores were higher at admission, but not at discharge (NIHSS: 7.5 ± 5.7 vs

3.9 ± 4.3, p = 0.082, mRS: 2.1 ± 1.7 vs 1.5 ± 2.1, p = 0.384), in patients with poor compared to

good pial collaterals.

Retinal vessel metrics in patients with acute ischemic stroke compared to

controls

The arterio-venular ratio (0.675 ± 0.049 vs 0.703 ± 0.042, p = 0.026) and tortuosity index

(0.890 ± 0.019 vs 0.903 ± 0.011, p = 0.002) were lower and CRVE (275.9 ± 21.4 vs 259.1 ± 25.6,

p = 0.016) was higher in patients with acute ischemic stroke compared to controls. CRAE

(p = 0.313), monofractal Df (p = 0.067), capacity dimension (D0) (p = 0.821), information

dimension (D1) (p = 0.640), correlation dimension (D2) (p = 0.477), curve asymmetry

(p = 0.139), singularity length (p = 0.108) and f(α)max (p = 0.784) did not differ between

patients with acute ischemic stroke compared to healthy controls (Table 2).

Retinal vessel metrics in patients with poor compared to good pial

collaterals

CRAE (p = 0.084), CRVE (p = 0.946), AVR (p = 0.148), tortuosity index (p = 0.790), monofrac-

tal Df (p = 0.576), curve asymmetry (p = 0.679) and singularity length (p = 0.937) did not differ

between patients with poor compared to good pial collaterals. Capacity dimension (D0)

(1.673 ± 0.028 vs 1.652 ± 0.025, p = 0.028), information dimension (D1) (1.609 ± 0.027 vs

1.590 ± 0.025, p = 0.044), correlation dimension D2 (1.581 ± 0.027 vs 1.564 ± 0.025, p = 0.071)

and f(α)max (1.674 ± 0.027 vs 1.652 ± 0.024, p = 0.019) were higher in patients with poor com-

pared to good pial collaterals. Because mRS and NIHSS differed significantly between patients

with poor and good collaterals, possible correlation with retinal metrics was tested. Spearman’s

ρ was <0.2 in all cases and values were not significant.

Table 1. Demographic, metabolic and clinical characteristics of the participants (n = 35) with acute ischemic stroke with good and poor pial collaterals expressed as

mean ± SD.

Parameters All stroke (n = 35) Good collaterals (n = 20) Poor collaterals (n = 15) p-value

Age (years) 48.1 ± 10.6 47.5 ± 10.4 48.9 ± 10.5 0.702

BMI (kg/m2) 28.0 ± 3.9 28.5 ± 4.3 27.5 ± 3.2 0.422

Systolic blood pressure (mmHg) 144.8 ± 24.6 145.9 ± 27.7 143.2 ± 18.4 0.727

HbA1c (%) 6.4 ± 2.4 5.9 ± 1.1 7.0 ± 3.3 0.261

mRS at admission 2.3 ± 1.5 1.9 ± 1.3 2.9 ± 1.6 0.048�

mRS at discharge 1.7 ± 2.0 1.5 ± 2.1 2.1 ± 1.7 0.384

NIHSS at admission 12.1 ± 6.2 10.1 ± 5.8 14.7 ± 5.5 0.026�

NIHSS at discharge 5.6 ± 5.4 3.9 ± 4.3 7.5 ± 5.7 0.082

Total cholesterol (mmol/l) 4.66 ± 1.05 4.62 ± 0.96 4.70 ± 1.12 0.842

Triglycerides (mmol/l) 1.52 ± 0.66 1.47 ± 0.62 1.57 ± 0.68 0.673

LDL (mmol/l) 3.08 ± 0.90 3.08 ± 0.87 3.06 ± 0.91 0.952

HDL (mmol/l) 0.89 ± 0.22 0.85 ± 0.17 0.93 ± 0.26 0.366

� Statistically significant differences between groups tested using t-test at p � 0.05 (data in bold). Clinical data has some missing values: mRS at admission (n = 34), mRS

at discharge (n = 30), NIHSS at admission (n = 35; no missing values), NIHSS at discharge (n = 27).

https://doi.org/10.1371/journal.pone.0267837.t001
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Machine learning to differentiate patients with poor and good pial

collaterals using retinal vessel metrics

Unsupervised Principal Component Analysis was used to assess which metrics can differenti-

ate patients with poor from good pial collaterals. Three principal components explained a

cumulative variance of 75.1% and achieved a fair separation between patients with good and

poor collaterals (Fig 2). Principal components are linear combinations of individual retinal

metrics that capture better variance in the dataset than individual metrics. Possible correlation

of each of the principal components with mRS and NIHSS were therefore evaluated. Spear-

man’s ρ ranged between 0.13 and 0.22 for mRS at admission, between 0.19 and 0.28 for mRS at

Table 2. Retinal vessel metrics comparing controls to patients with acute ischemic stroke and between patients with good and poor collaterals expressed as

mean ± SD.

Retinal Parameters Control (n = 21) All stroke (n = 35) P-value Good collaterals (n = 20) Poor collaterals (n = 15) P-value

Vessel width

CRAE (μm) 181.4 ± 15.3 185.4 ± 11.6 0.313 182.6 ± 13.0 189.1 ± 8.0 0.084

CRVE (μm) 259.1 ± 25.6 275.9 ± 21.4 0.016� 276.1 ± 19.9 275.6 ± 23.2 0.946

Arteriovenous ratio 0.703 ± 0.042 0.675 ± 0.049 0.026� 0.664 ± 0.041 0.690 ± 0.055 0.148

Tortuosity index 0.903 ± 0.011 0.890 ± 0.019 0.002� 0.891 ± 0.020 0.889 ± 0.017 0.790

Monofractal Df 1.368 ± 0.038 1.389 ± 0.045 0.067 1.392 ± 0.048 1.384 ± 0.041 0.576

Lacunarity 0.986 ± 0.024 0.997 ± 0.025 0.088 0.995 ± 0.023 1.001 ± 0.028 0.531

Multifractal

D0 1.660 ± 0.019 1.661 ± 0.028 0.821 1.652 ± 0.025 1.673 ± 0.028 0.028�

D1 1.601 ± 0.019 1.598 ± 0.027 0.640 1.590 ± 0.025 1.609 ± 0.027 0.044�

D2 1.577 ± 0.024 1.572 ± 0.027 0.477 1.564 ± 0.025 1.581± 0.027 0.071

Curve asymmetry 0.361 ± 0.072 0.389 ± 0.061 0.139 0.385 ± 0.049 0.395 ± 0.073 0.679

Singularity length 0.902 ± 0.078 0.934 ± 0.061 0.108 0.934 ± 0.041 0.933 ± 0.080 0.937

f(α)max 1.660 ± 0.019 1.662 ± 0.027 0.784 1.652 ± 0.024 1.674 ± 0.027 0.019�

� Statistically significant differences between groups tested using t-test at p � 0.05 (data in bold).

https://doi.org/10.1371/journal.pone.0267837.t002

Fig 2. Planar projection of the Principal Component Analysis with 3 principal components represented

explaining a total variance of 75.1%. Patients with good collaterals are represented with blue circles and poor

collaterals with red circles.

https://doi.org/10.1371/journal.pone.0267837.g002
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discharge, between 0.02 and 0.33 for NIHSS at admission; and between 0.01 and 0.11 for

NIHSS at discharge. All correlations had p-values >0.05.

Further, a classification model utilizing the features (f(α)max, D0, and D1) which differed sig-

nificantly between the two groups was developed to differentiate between individuals with

poor and good collaterals. Models were built with f(α)max and D1 because f(α)max and D0 had

an almost perfect direct correlation. The logistic regression model did not converge and was

not further considered. However, the support vector machine learner with a linear kernel

already resulted in a classification accuracy of 0.686, sensitivity of 0.686 and a specificity of

0.631. The use of a sigmoid kernel function in the support vector machine learner further

improved the classification accuracy (0.743), sensitivity (0.743) and specificity (0.707). All

results are based on leave-one-out cross-validation that tests the collateral status of each indi-

vidual on the learner developed by using all other individuals. This procedure is iterated until

all subjects have been used as test dataset. Fig 3 visualizes the results of the scenario with the

sigmoid kernel function as a scatter plot of the individuals and the confusion matrix with the

performance of that classification model. There are 9 patients misclassified and data of these

patients were inspected to check if specific clinical profiles were overrepresented, but there was

no indication to support this.

Discussion

This translational study demonstrates increased retinal vessel multifractal dimensions in

patients with acute ischemic stroke and poor pial collaterals and presents a retinal vessel classi-

fier that differentiates patients with poor from good pial collaterals. Patients with acute ische-

mic stroke and worse pial collateral scores have evidence of a larger infarct volume and higher

modified Rankin scale score and NIHSS at discharge [35]. In contrast, a good pial collateral

status is associated with lower rates of symptomatic intracranial hemorrhage and mortality in

patients with acute ischemic stroke following reperfusion [36]. We also show that patients with

poor pial collaterals had a higher modified Rankin score and NIHSS at admission. However,

standard risk factors for stroke e.g., age, hypertension, lipids and HbA1c did not differ between

patients with good and poor pial collaterals. Previous studies have shown that metabolic syn-

drome and older age [37] but not diabetes [38] predict poor pial collateral status.

Fig 3. Scatterplot for the support vector machine learner and the corresponding confusion matrix based on leave-

one-out cross validation of the classification. Patients with good collaterals are represented with blue circles and poor

collaterals with red circles.

https://doi.org/10.1371/journal.pone.0267837.g003
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Imaging techniques such as cerebral angiography (gold standard for the evaluation of pial

collateral status), CT Angiography, MRI- FLAIR, MRI-SWI and contrast-enhanced magnetic

resonance angiography have been used to visualize the pial collaterals [39]. While some of

these techniques require the use of contrast (CTA, contrast MRA, cerebral angiography), oth-

ers require patient cooperation and have limited availability. Furthermore, for the aforemen-

tioned techniques to show the pial collateral status, a large vessel stenosis or occlusion, as a

consequence of which pial collaterals channels open, is a pre-requisite. Therefore, there exists

a need for a reliable and non-invasive imaging biomarker that can assess the collateral status

before the vessel is occluded and/or stroke happens. In 2015, a seminal study undertook

detailed morphometric quantification of 21 retinal vessel parameters in flat-mounted retina of

mice models of ischemic stroke and identified 10 retinal vessel metrics that predicted the pial

collateral status, infarct volume and neurological outcomes [18]. Utilizing retinal fundus

images acquired after admission of patients with acute ischemic stroke, we show that an

increase in retinal vessel multifractal dimensions was associated with poor pial collaterals. Fur-

thermore, discriminative analysis identified patients with poor and good pial collaterals with

fair sensitivity and specificity. The higher multifractal values are indicative of more compact

and complex retinal vessels in patients with poor compared to good pial collaterals. A struc-

tural change in the retinal vessel tree, as quantified by fractal metrics, can indicate abnormali-

ties in vasculogenesis and angiogenesis. In diabetic retinopathy increased fractal values are a

marker for angiogenesis secondary to retinal hypoxia. Thus, changes in retinal fractal dimen-

sions in patients with ischemic stroke could reflect a surrogate response to hypoxic stimuli

observed in the cerebral vessels [40].

We have also shown that standard retinal vessel metrics such as venular widening and

lower arterio-venular ratio and tortuosity differ in patients with acute ischemic stroke com-

pared to healthy controls [41, 42], but do not differentiate patients with poor from good pial

collaterals. Previous studies utilizing retinal vessel imaging in large population-based studies

have demonstrated somewhat mixed associations between standard and more advanced met-

rics of retinal vessel complexity and stroke [43]. Stroke and the occurrence of white matter

lesions have been associated with retinopathy, retinal arteriolar narrowing, venular widening

and suboptimal retinal bifurcation [44–46]. Retinal arteriolar narrowing, venular widening

and increased retinal vascular fractal dimension have been associated with lacunar infarcts

[47], and recurrent stroke risk [17]. Standard retinal vessel metrics and arteriolar fractal

dimension are also associated with cerebral blood flow in healthy older adults [48]. However,

whilst a decrease in retinal arteriolar fractal dimension has been associated with cerebral

microbleeds [44], increased retinal fractal dimension has been associated with a 4-fold

increased risk of lacunar stroke [40]. Furthermore, in a large study of 557 patients with ische-

mic stroke decreased arteriolar and venular fractal dimension were associated with lacunar,

cardioembolic and large vessel occlusion stroke [41]. A recent systematic review has confirmed

an overall reduction in retinal vessel fractals in patients with stroke and dementia [49]. How-

ever, they showed variability in fractal outcomes in different studies which was attributed to

differences in populations studied, the equipment used to capture retinal images and segmen-

tation tools used to define and calculate the fractals [50]. We have recently shown that retinal

vessel multifractals are associated with glucose, hypertension and the WHO/ISH cardiovascu-

lar risk score [31] and that retinal vessel analysis is uniquely associated with blood pressure,

glycemic status and obesity [51]. The current data suggests that the differences in retinal vessel

fractals in patients with acute ischemic stroke may be further related to the pial collateral

status.

Limitations of the current study include the sample size of this pilot study and the assess-

ment of patients with moderate neurological disability as patients with more severe stroke
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could not undergo retinal fundus imaging. However, the retinal vessel analysis was performed

double blinded on high-definition retinal fundus images using semi-automated methods with

minimal manual grading input, making the analysis rapid and with minimal bias.

We show that retinal fundus imaging can be utilized to differentiate ischemic stroke

patients with poor from good pial collaterals. Larger studies are needed to confirm the current

data and to establish the clinical utility of retinal vessel fractal analysis in patients with intra or

extracranial vascular stenosis or occlusion, prior to ischemic stroke.
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