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Abstract 

Transformer is the latest deep neural network (DNN) architecture for sequence data learning that has revolutionized 
the field of natural language processing. This success has motivated researchers to explore its application in the 
healthcare domain. Despite the similarities between longitudinal clinical data and natural language data, clinical data 
presents unique complexities that make adapting Transformer to this domain challenging. To address this issue, we 
have designed a new Transformer-based DNN architecture, referred to as Hybrid Value-Aware Transformer (HVAT), 
which can jointly learn from longitudinal and non-longitudinal clinical data. HVAT is unique in the ability to learn 
from the numerical values associated with clinical codes/concepts such as labs, and also the use of a flexible 
longitudinal data representation called clinical tokens. We trained a prototype HVAT model on a case-control dataset, 
achieving high performance in predicting Alzheimer's disease and related dementias as the patient outcome. The result 
demonstrates the potential of HVAT for broader clinical data learning tasks. 

 

1. Introduction 
Transformer is a deep neural network (DNN) architecture for learning from sequence data with natural language data 
as a primary example. Since its invention in 2017,1 Transformer has become the state-of-the-art approach in many 
natural language processing (NLP) tasks due to their excellent performance.2-7 The Transformer architecture is based 
on an attention mechanism, which allows the model to focus on different parts of the input sequence, thus capturing 
long-range dependencies and improving the quality of predictions. 

One of the most successful applications of Transformer in NLP is the Bidirectional Encoder Representations from 
Transformers (BERT) model.2 BERT is a pre-trained language model that has achieved state-of-the-art performance 
on a wide range of NLP tasks, including text classification, question-answering, and named entity recognition. Another 
popular Transformer-based language model is the Generative Pre-trained Transformer (GPT),3-5 which has been used 
for various language generation tasks, such as machine translation and text summarization. The recently emerged 
chatbot known as ChatGPT, which has gone viral on the internet since its launch,8 was developed based on GPT to 
generate human-like responses to user input.9 

The success of Transformer-based models in NLP has inspired researchers to explore their application in other 
domains such as healthcare. Longitudinal clinical data, which reside mostly in electronic health records (EHR), are 
also a type of sequence data, and in many ways similar to natural language data.10,11 In natural language, a sentence, 
for example, can be viewed as a sequence of words where the order of the words impacts its meaning. Thus, the 
positions of the words in a sentence are a critical component of the data. In clinical data, coded and/or textual data are 
recorded along with timestamps. Clinical concepts, which can be either defined using codes or extracted from the texts 
to represent diagnoses, medications, lab tests, vital signs, etc., play a similar role to the words in a sentence. The 
timestamps, which determine the temporal order of the clinical concepts, play a similar role to the word positions. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 14, 2023. ; https://doi.org/10.1101/2023.03.09.23287046doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.03.09.23287046
http://creativecommons.org/licenses/by-nc/4.0/


Hence, it is a natural question whether the Transformer architecture can also be applied to clinical data and achieve 
excellent learning performance as well. 

To answer this question, we must be aware that clinical data are much more complex than natural language data in 
several ways: 1) the time gaps between consecutive codes/concepts are irregular, while the position gaps between 
consecutive words are always one; 2) multiple codes/concepts may share the same time point, while no two words 
take the same position in a sentence; 3) a code/concept can have an associated numerical value (e.g., a lab test has a 
lab value), while no words have associated values; and 4) there are non-longitudinal data that are often needed for 
learning in addition to longitudinal data. These differences between clinical data and natural language data have made 
it a challenge to apply Transformer to clinical data for effective learning. 

It is worth noting that there are Transformer-based clinical NLP models, which were obtained by fine-tuning the BERT 
model using clinical texts as specialized natural language data.12,13 These models are designed to deal only with 
unstructured text data, while we focus more on structured clinical data, including structured raw EHR data and data 
processed from both structured and/or unstructured raw data and presented in a structured form. 

In recent years, several Transformer-based DNN architectures for structured EHR data learning were developed, 
which partially addressed the differences between clinical data and natural language data. Li et. al. proposed an 
architecture named BEHRT for pre-training using unlabeled data, which were further trained for disease prediction.14 
Their model used only diagnoses and patient ages as input data. They represented patient data as a sequence of 
diagnostic codes, together with sequence orders of the visits and patient ages at the visits. Patient age was used both 
as a risk predictor and a source of temporal order information for the diagnoses. Their embedding layer used multiple 
types of embedding including concept embedding (for diagnoses), positional encoding (for visit sequence orders), age 
embedding, and segment embedding (for distinguishing adjacent visits). Rasmy et. al. similarly designed Med-BERT 
but for learning from a much larger vocabulary of diagnostic codes.15 In addition, they removed the use of ages, hence 
their data representation contained no temporal order information but only sequence order information. Pang et. al. 
introduced CEHR-BERT as an improvement on both BEHRT and Med-BERT.16 They expanded the vocabulary to 
include not only diagnoses but also medications, procedures, etc. and used both age embedding and time embedding 
to incorporate time information for each concept in the sequence. Kodialam et. al. proposed SARD architecture, which 
was also inspired by BEHRT.17 Their embedding is at the visit level, with each visit embedding being the sum of all 
embeddings of the concepts recorded during that visit. They used temporal encoding similar to the positional encoding 
in the original Transformer model to incorporate time information. 

In this paper, we present a novel Transformer-based DNN architecture for joint learning from both longitudinal and 
nonlongitudinal clinical data. We referred to it as the Hybrid Value-Aware Transformer (HVAT). We also present a 
proof-of-concept experiment where a prototype HVAT model was developed using a dataset created in a prior study 
about Alzheimer's Disease and Related Dementias (ADRD), to demonstrate the use and the capability of HVAT. Our 
design is different from the aforementioned architectures (e.g., BEHRT, etc.) in several ways. First, our architecture 
has a hybrid structure allowing for joint learning from both longitudinal and non-longitudinal data. Second, our 
architecture can learn from the clinical concepts/codes with numerical values from the longitudinal data. Third, we 
used a simpler but more flexible longitudinal data representation and embedding method. 

 

2. Methods 

2.1 HVAT Architecture 

Based on the original Transformer architecture,1 we design the HVAT architecture for learning from both longitudinal 
and non-longitudinal clinical data. The HVAT architecture has two branches at the input end to receive longitudinal 
and non-longitudinal data, respectively (Figure 1). The main branch, taking longitudinal data as input, is called a 
Value-Aware Transformer (VAT). The second branch, taking non-longitudinal data as input, is a feed-forward neural 
network (FFNN) with a residual connection.18 The two branches join together at their last layers using a summation 
operation, followed by another FFNN with a residual connection, and lastly followed by the output layer, which is a 
single-node layer with the sigmoid function as the nonlinear activation function. The sigmoid function is defined as 
𝜎(𝑥) = 𝑒'/(1+ 𝑒'). The output is a single value 𝑝 between 0 and 1. This type of output layer can be used for 
predicting binary outcomes coded by 0 and 1, respectively. The adverse outcome is usually coded by 1. The loss 
function is the binary cross-entropy function. 

2.2 Input Data Representation 
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Non-longitudinal clinical data are represented in the usual tabular format, i.e., one vector per patient, and the vectors 
are all of the same dimension. Such a representation is commonly used in traditional statistical modeling (e.g., logistic 
regression) and traditional machine learning (e.g., support vector machine). 

For longitudinal clinical data, the representation is inspired by how the natural language data is represented and used 
by the original Transformer model. In natural language, a sentence is represented as a sequence of word tokens, and 
each word token is simply a word paired with its position in the sentence. Therefore, the repeated words in a sentence 
are considered different tokens. For example, in the sentence "to go or not to go", there are 4 words (i.e., "to", "go", 
"or", "not") but 6 tokens:  

(1,"to"), (2,"go"), (3,"or"), (4,"not"), (5,"to"), (6,"go"). 

In general, word tokens generated from a sentence are written in the form (𝑖, 𝑤), where 𝑖 is the position of the word 
𝑤 in the sentence. Longitudinal clinical data are represented in a similar format through the following steps. 

 

 
Figure 1. The HVAT architecture. The arrows indicate data flow directions. The left side (i.e., left to the words 
"Transformer Blocks") is an overview of the HVAT architecture. The right side is a zoomed-in view of the part on the 
left side (enclosed by red dashed lines), which illustrates how the token embedding layer processes longitudinal data 
through three embeddings: concept embedding, temporal encoding, and value embedding. 
 
First, for each patient, we specify a time window for the patient history. We refer to the endpoint of the time window 
as the index time/date. The time window is divided into smaller equal-length intervals, and the intervals are indexed 
by natural numbers 1, 2, 3, ..., from the latest to the earliest. These natural numbers are called temporal indices. The 
time window can vary from patient to patient, but the length of the small intervals is always the same for all patients. 
This step essentially normalizes the time information of the longitudinal data for all patients. How to choose the length 
of the intervals should depend on the specific tasks. For example, if the task is to predict outcomes for patients in an 
intensive care unit (ICU) stay, a good choice for the length may be at the scale from an hour to a day. If the task is to 
predict a disease that takes years to develop, then a good choice for the length may be at the scale from a month to a 
year. 

Next, for each patient, the longitudinal data from the time window specified for the patient is represented as a sequence 
of clinical tokens, whose length may vary by patient. A clinical token is a triple (𝑡, 𝐶, 𝑣), where 𝑡 is a temporal index, 
𝐶 is a clinical concept, and 𝑣 is either a numerical value associated with 𝐶 or the default value zero. A clinical concept 
is defined as a clinically meaningful feature or variable identified or extracted from the clinical data. Examples of a 
clinical concept include: a disease, which may be represented by one diagnostic code or a group of related diagnostic 
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codes, the prescription and use of a medication, a lab test, which may be represented by one lab code or a group of lab 
codes, a hospitalization, etc. Some clinical concepts have associated numerical values (e.g., lab tests have lab values) 
while others do not (e.g., diagnoses do not have associated values). Even if some clinical concepts have associated 
values in records, they can still be used as concepts without values. If 𝐶 is a clinical concept with associated values, 
then 𝑣 in the triple (𝑡, 𝐶, 𝑣) is the associated value of 𝐶 at temporal index 𝑡. If 𝐶 is a clinical concept without values, 
then 𝑣 takes the fixed value 0. If a concept 𝐶 occurs multiple times over the same time interval indexed by 𝑡, only one 
token for this concept is generated for temporal index 𝑡, and if the multiple occurrences of this concept have multiple 
associated values, then the associated value 𝑣 in the clinical token (𝑡, 𝐶, 𝑣) is the value aggregated from the multiple 
values. The aggregation method depends on the particular concept and application. Below we give an example of 
representing longitudinal clinical data as clinical tokens. 

Example: Suppose the time window for a patient is from 1/1/2012 to 12/31/2012, hence the index date is 12/31/2012. 
Within the time window, the patient had two diagnoses, Diabetes and Hypertension, on 1/19/2012; two lab tests, 
Calcium and Glucose, on 4/15/2012, with values 9.5 and 199, respectively; and three diagnoses, Diabetes, 
Hypertension and A-fib, on 10/8/2012. We choose the length of the time interval to be one month (or 30.5 days). Then 
the sequence of clinical tokens for this patient is:  

(3, Diabetes, 0), (3, Hypertension, 0), (3, A-fib, 0), (9, Calcium, 9.5), (9, Glucose, 199), (12, Diabetes, 0),  
(12, Hypertension, 0). 

Comparing the sequence of clinical tokens generated from the clinical data of a patient with the sequence of word 
tokens generated from a sentence in natural language, we see both similarities and differences (Table 1).  

 
Table 1. A summarization of the similarities and differences between the representations of longitudinal clinical data 
and natural language data. 

Similarities Differences 
1. The temporal index 𝑡 is analogous to the word 

position 𝑖 and the clinical concept 𝐶 is analogous 
to the word 𝑤. 

2. The same clinical concept (resp. word) can occur 
at multiple but different temporal indices (resp. 
positions). 

3. Every combination of temporal index (resp. 
position) and clinical concept (resp. word) can 
occur at most once in the sequence. 

1. Clinical concepts can have associated numerical 
values while words do not;  

2. For a sequence of word tokens, the positions are 
consecutive integers with each integer occurring only 
once, while for a sequence of clinical tokens, the 
temporal indices from the sequence of clinical tokens 
are not necessarily consecutive integers: some 
integers can occur multiple times as temporal indices 
(though for different clinical concepts), and some 
integers may not occur at all. 

 
 
Therefore, the representation of longitudinal clinical data is similar to but also more complicated than the 
representation of natural language data. 

For each patient, a special token is added to the sequence of clinical tokens generated from the patient's data. The 
special token takes the form (0, 𝑆, 0), where 𝑆 is an artificial concept defined to be different from all the clinical 
concepts. The output corresponding to the special token by the VAT branch will be a summarization of all the clinical 
tokens in the sequence, which is made possible by the attention layers in the Transformer blocks. Then this output, 
which is always a vector of a preset dimension regardless of the sequence length, and the output by the FFNN branch 
are summed together at the summation layer where the two branches join. Readers who are familiar with the BERT 
model will recognize that this special token plays the same role as the [CLS] token used in the BERT model.2 

2.3 Token Embedding 

When a clinical token (𝑡, 𝐶, 𝑣) is fed into the VAT branch, it is first transformed by the token embedding layer into a 
vector of dimension 𝑑. The token embedding is defined based on three more basic embeddings: temporal embedding, 
concept embedding, and value embedding (Figure 1). Their specific definitions are given below:  

1) The temporal embedding, which maps each temporal index 𝑡 to a vector 𝑇𝐸(𝑡) of dimension 𝑑, is defined by  
𝑇𝐸(𝑡) = [sin(𝑡𝜔<) , cos(𝑡𝜔<), sin(𝑡𝜔?) , cos(𝑡𝜔?),⋯ , sin(𝑡𝜔A/?), cos(𝑡𝜔A/?)] , 𝑡 = 0, 1, 2,⋯ 
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where 𝜔D = 10000E?D/A for 𝑘 = 1,⋯ , 𝑑/2 (𝑑 is preset to be an even number). Note that the temporal embedding 
is not changed during the learning process. 

2) The concept embedding, which is learned from the data, maps each concept 𝐶 to a vector 𝐶𝐸(𝐶) of dimension 𝑑.  
3) The value embedding, which is also learned from the data, maps each concept 𝐶 to a second vector 𝑉𝐸(𝐶) of 

dimension 𝑑. The purpose of the value embedding is to provide a basis vector to incorporate the value associated 
with 𝐶 into the token embedding. 

The token embedding of the token (𝑡, 𝐶, 𝑣) is defined by 
𝐸(𝑡, 𝐶, 𝑣) = 𝑇𝐸(𝑡) + 𝐶𝐸(𝐶) + 𝑣 × 𝑉𝐸(𝐶) 

The token embeddings of all the tokens in a sequence are fed into the VAT branch simultaneously (Figure 1). In 
practice, 𝑣 should be concept-wise normalized values rather than the raw values in the token embedding. 

 
3. Experiment 

3.1 Dataset and Cohort 

The data source was the Veterans Affairs (VA) Corporate Data Warehouse, a nationwide EHR database for U.S. 
Veterans. We used the dataset created in a prior study which was focused on the association between physical fitness 
and ADRD risks.19 The study adopted the Exercise Treadmill Test (ETT) as the indicator for physical fitness, which 
was measured in Metabolic EquivalenTs (METs) (1 MET = 3.5 ml of oxygen utilized per kilogram of body weight). 
A natural language processing (NLP) model was developed20 and applied to all the medical notes in the database to 
extract MET values contained within those notes. For the initial cohort, we identified over 0.8 million patients who 
had at least one MET value between 2.0 and 23.9. 

We employed a case-control design, where the cases were those who received an ADRD diagnosis, and the controls 
were those who did not. For the case group, we sampled from the initial cohort 50,000 patients who received an ADRD 
diagnosis on or before 12/31/2019. For the control group, we randomly sampled 50,000 Veterans from the initial 
cohort who were alive on 12/31/2019 and had never received any ADRD diagnosis by that date. The final cohort, 
having a total of 100,000 patients, was defined to be the combination of the case group and the control group. We 
defined the endpoint to be the date of the first ADRD diagnosis for each case and to be 12/31/2019 for each control. 
Then we defined the index date to be 3 months prior to the endpoint for everyone. The time window was defined to 
be from 1/1/2000 up to the index date. The time window was divided into intervals of one year long for the temporal 
index assignment. 

To develop the HVAT model, we randomly split the cohort into three subsets: training (80%), validation (10%), and 
testing (10%), where each subset has an equal number of cases and controls. 

3.2 Data Preparation 

The outcomes were the case statuses, which were coded as: case = 1 , control = 0 . The predictors from non-
longitudinal data included age (at index date), sex, race, and ethnicity. The predictors from longitudinal data included 
MET, Body-Mass Index (BMI), 15 diagnoses, 400 medications, and 400 note titles. 

Age was used as a numerical variable. Sex was a binary variable coded as: female = 1, male = 0. Race was a multi-
category variable with 4 categories: Black, White, Other, and Unknown. Taking White as the reference category, we 
converted race into 3 dummy variables named as: Race_Black (vs. White), Race_Other (vs. White), and 
Race_Unknown (vs. White). Ethnicity was a multi-category variable with 3 categories: Hispanic, Non-Hispanic, and 
Unknown. Taking Non-Hispanic as the reference category, we converted ethnicity to 2 dummy variables named as: 
Ethnicity_Hispanic (vs. Non-Hispanic), and Ethnicity_Unknown (vs. Non-Hispanic). 

Among the features from longitudinal data, only MET and BMI were used as clinical concepts with values; all other 
features were used as clinical concepts without values. When there were multiple BMI values over the same time 
interval, we used the mean function for aggregation. When there were multiple MET values over the same time 
interval, we used the maximum function for aggregation. The 15 diagnoses were defined based on manually selected 
ICD-9-CM and ICD-10-CM codes. The 400 medications and 400 note titles were selected out of the total of thousands 
of medications and note titles using a feature selection method described below. 

3.3 Feature Selection 
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Since both medications and note titles were used as clinical concepts without values, the information they carry is in 
their presence-absence status. For simplicity, we only considered the presence-absence status over the entire time 
window for each patient. 

For each feature (a medication or a note title), we first calculated the 2x2 contingency table as follows: 

 # in Cases # in Controls 
Presence 𝑎 𝑏 
Absence 𝑚− 𝑎 𝑛 − 𝑏 

 
where 𝑚 and 𝑛 are the total numbers of cases and of controls, respectively. Features having distinct distributions in 
cases and controls are useful for prediction. For such a feature, the prevalence ratio (PR) defined as N

O
/ P
Q
 is expected 

to be distant from 1, or equivalently, the (natural) log of PR (LogPR) is expected to be distant from 0.  

Next, we calculated the adjusted estimates of LogPR and its standard error SE, respectively, using the Walters 
formula:21 

LogPR = log W
𝑎 + 0.5
𝑚+ 0.5

Z − log W
𝑏 + 0.5
𝑛 + 0.5

Z ,							SE = ^ 1
𝑎 + 0.5 −

1
𝑚 + 0.5+

1
𝑏 + 0.5 −

1
𝑛 + 0.5 

The equations were defined even when one of 𝑎 and 𝑏 was zero, thanks to the added small value 0.5. Then the 
confidence interval of LogPR at (1 − 𝛼)-level was 

[LogPR − 𝑧a/? × SE,	LogPR+ 𝑧a/? × SE] 
where 𝑧a/? is the z-critical value corresponding to 𝛼/2.  

We defined a feature ranking score using one of the two limits of the confidence interval: when LogPR ≥ 0, the score 
was the lower limit, and when LogPR < 0, the score was −1 times the upper limit. We found that this score could be 
expressed conveniently in one equation as 

Score = |LogPR| − 𝑧a/? × SE 
where |	∙	| indicates the absolute value. Features with both a larger absolute value of LogPR and a smaller SE were 
ranked higher by this score. This score provides a balance between the two conditions, and the balance can be adjusted 
by changing 𝛼. A score less than 0 indicates that the LogPR is not significantly different from 0 at level 1 − 𝛼. 

In this study, we estimated the feature ranking scores using the training set only, which meant 𝑚 = 𝑛 = 40,000. We 
chose 𝛼 = 0.05, so 𝑧a/? = 1.96. Then we selected the top 400 medications and the top 400 note titles ranked by the 
scores for model development. All of the selected features had a score greater than 0, which indicated that all of the 
selected features had a nonzero LogPR with statistical significance at 𝑎	95% confidence level. 

3.4 Model Configuration 

A HVAT model was developed using the final cohort to distinguish the cases from the controls. For the VAT branch, 
we used 𝑁 = 2 Transformer blocks. We used multi-head attention with 2 heads within the Transformer blocks. For 
the token embedding, we set the dimension 𝑑 = 32, which was also equal to the dimension of the output vector by 
the VAT branch. For all the dropout layers in the entire neural network, we set the dropout rate at 0.1. We used the 
rectified linear unit (ReLU) function22 as the nonlinear activation function in the entire neural network, except that for 
the output node, it was the sigmoid function. 

3.5 Model Training and Evaluation 

For model training, we set different learning rates for different parts of the HVAT model: 5x10-4 for the FFNN branch, 
5x10-5 for the VAT branch, and 1x10-4 for the remaining part of the model. The weights in all the layers were initialized 
as small random numbers using K. He's method.23 The weights were updated during training using mini-batch 
stochastic gradient descent with Nesterov momentum.24 The training set was divided into mini-batches consisting of 
varying numbers of patients. Patients within the same mini-batch had similar numbers of tokens in their respective 
sequences, and the total number of tokens in the mini-batch was equal or close to 10,000. Thus, the mini-batches with 
more patients all had shorter sequences and vice versa. 

The primary metric of model performance was the Area Under the receiver operating characteristics Curve (AUC). 
The training process was stopped when the performance on the validation set plateaued, which was defined as no 
improvement in AUC over 10 consecutive epochs. The final model was set to be the one with the highest AUC before 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 14, 2023. ; https://doi.org/10.1101/2023.03.09.23287046doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.09.23287046
http://creativecommons.org/licenses/by-nc/4.0/


the plateau. Its performance on the testing set was reported as the model performance. The threshold on the output 
scores that maximized the accuracy on the training set was chosen to calculate the sensitivity, specificity, and accuracy 
on the testing set. 

3.6 Ablation Study 

In addition to the HVAT model, we also trained two other models to show how different the contributions of the 
longitudinal data and non-longitudinal data, respectively, are to the model performance. One model was the HVAT 
without the FFNN branch, which we named "Without FFNN". This model only used longitudinal data as input. The 
other model was the HVAT without the VAT branch, which we named "Without VAT". This model only used non-
longitudinal data as input. Thus, we named the HVAT model "Full HVAT". 

3.7 Comparative Study 

We also trained a linear support vector machine (SVM) model on the training set for comparison. The linear SVM 
model used the same predictors as the HVAT model, except that the presence-absence statuses and associated 
numerical values were all aggregated on the entire time window for all patients. Thus, the temporal information within 
the time window is lost. 

 
4. Results 
The performance on the testing set in AUC of the three models, i.e., Full HVAT, Without FFNN, and Without VAT, 
is shown in Figure 2. 

 
Figure 2. The performance in AUC of the three models: Full HVAT, Without VAT and Without FFNN. 

 
The performance in AUC of the (Full) HVAT model and the SVM model on all three subsets is listed in Table 2. 

Table 2. Comparison of the performance in AUC between SVM and HVAT. 
Model Training Set Validation Set Testing Set 
HVAT 0.961 0.953 0.958 
SVM 0.902 0.888 0.898 

 
To report the performance of the HVAT model in other metrics, we first identified the threshold (= 0.6418) on the 
output scores that maximized the accuracy on the training set. Then we calculated the corresponding sensitivities, 
specificities, and accuracies on the three subsets using the threshold. The results are listed in Table 3. 

Table 3. The performance of the full HVAT model. 
Metric Training Set Validation Set Testing Set 
Sensitivity 0.863 0.852 0.853 
Specificity 0.934 0.920 0.928 
Accuracy 0.898 0.886 0.890 
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5. Discussion and Conclusion 

In this study, we designed HVAT, a novel DNN architecture for joint learning from longitudinal and non-longitudinal 
clinical data. The HVAT was based on the original Transformer architecture designed for learning from natural 
language data, and our design leveraged the similarities while also addressing the differences between clinical data 
and natural language data. We further conducted a proof-of-concept experiment, in which a prototype HVAT model 
was developed to classify the patients in an ADRD cohort. The model achieved an excellent performance. The ablation 
study showed that the performance of the model with only the longitudinal data as input was very close to that of the 
HVAT model, while the model with only the non-longitudinal data was not so. This suggested that the high 
performance of the HVAT model was mainly due to the longitudinal data, which further showed that the model could 
learn from longitudinal data. The comparative study showed that the high performance of HVAT was not only due to 
the selection of good features but also the leveraging of the temporal information in the longitudinal data and its 
association with the outcome. 

Compared to the other Transformer-based architectures for learning from clinical data, the HVAT is unique in that it 
can incorporate the numerical values associated with the clinical concepts as well as the non-longitudinal data with 
longitudinal data. The incorporation of numerical values in the architecture was made a key feature in our design 
because we realized that numerical values were common in clinical data and also crucial for outcome prediction. In 
our design, the values are incorporated into the token embedding as multipliers to the value embedding vectors, which 
is essentially equivalent to treating the clinical concepts with values as continuous variables. We admit that there is at 
least one other way to utilize the values: discretizing the range of values into multiple categories and then treating the 
concept with different categorized values as multiple different "concepts". That way is similar to the common approach 
used in statistical modeling which treats a continuous variable as a multi-categorical variable by discretizing the 
continuous values. We did not adopt the latter approach because we realized that it has several disadvantages compared 
to our approach. First, the total number of tokens would be increased because of the multiple different "concepts" 
representing different values, which would further increase the computational burden including memory allocation 
and running time. Second, the multiple different concepts would be considered completely unrelated by the model, 
therefore, the association of one value with the outcome learned from data cannot inform the association of a nearby 
value with the outcome when the two values happen to fall into different categories. This would be a prominent 
problem for those categories of values having much fewer samples than others. Third, there is usually no standard 
way to discretize the continuous values, and many other considerations including both clinical and mathematical ones 
must be taken for doing that. 

Another key component of our design of HVAT is the use of temporal indices for representing the occurrence time of 
the clinical concepts. The temporal indices essentially give an order for the time intervals within the time window of 
the patient history. There are two possible ways to order the time intervals: forward and backward. We chose the 
backward order because the time windows of the patients are supposed to be aligned along the end of the time window 
rather than the start, which is also why the end of the time window is defined as the index time/date. This way it makes 
the model easier to identify the relevant temporal patterns in the longitudinal data for predicting the outcomes. 

The flexibility in customizing the length of the time intervals makes our architecture advantageous over the others. 
Actually, all the other architectures organize the longitudinal data at the visit level, which is equivalent to setting the 
time intervals to be one day long for HVAT. However, for some tasks such as the experiment we did in this study, 
where we used up to 20 years of history, lengthy sequences would be generated if the time intervals are set to be too 
short such as one day long. For example, assume an average patient has 10 visits per year and 10 concepts per visit, 
then over 20 years the patient would have 2000 tokens in the sequence. If we set the time intervals to be one year long, 
then the patient would only have 200 tokens in the sequence. Considering that the computational time of Transformer 
is O(N2) where N is the sequence length,1 our architecture would consume only 1% of the computational time of the 
others. Actually, it was exactly by setting the time intervals to be one year long that we were able to complete the 
model training and inference in a reasonable time on an ordinary desktop computer while an excellent performance 
was still achieved. 

The ability to set the length for the time intervals also allows HVAT architecture to be useful in some situations where 
very short time intervals should be used. For example, in an ICU setting, the status of the patients may change from 
hour to hour, and to predict outcomes it may be best to set the time intervals to be one hour (or a few hours) long. It 
would be difficult for architectures designed for visit-level data structures to be applied to such situations. 
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Most of the other Transformer-based models were designed to work like the NLP model called BERT,2 whose main 
strength is its ability to pre-train the model without human labeling. The HVAT architecture also allows such pre-
training although that was not demonstrated in our study. We believe that it is possible to design pre-training strategies 
similar to the "masked language model" and the "next sentence prediction" to pre-train a HVAT model on clinical 
data. 

There are a few limitations in our study. First, we did not use certain important types of clinical concepts with values 
such as lab tests in the prototype model from the experiment. The lab values contain valuable information for outcome 
prediction. However, we find that the lab values are usually messier than other types of data such as diagnoses, and to 
use hundreds of lab tests as clinical concepts with values, it would take much effort and time to clean the lab data 
before they can be effectively used. Second, the prototype model is small in terms of the number of Transformer 
blocks, the dimension size of the embedding vectors, the number of attention heads, etc., compared to other 
Transformer-based models. This is mainly due to the limited computing resources available to us. However, the small 
model is sufficient for the purpose of prototyping. 

For future work, we plan to develop explaining methods for the HVAT models which can reveal the relevant temporal 
patterns learned by the model and apply it to risk factor analysis for ADRD and other adverse outcomes. We are also 
contemplating using HVAT to train a GPT-like model as a foundational model which can generate simulated 
longitudinal clinical data. 
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