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Abstract: In this paper, a novel direction-of-arrival (DOA) estimation for unknown (anonymous)
emitter signal (ES) based on time reversal (TR) and coprime array (CA) is proposed. The resolution
and accuracy of DOA estimation are enhanced from two aspects: one is from the view of array
arrangement: the new distribution of CA is designed to reduce the holes, increase the degree of
freedom (DOF) and apertures by rotating and translating only one subarray, which simplifies the
operation. The other one is from the view of the algorithm: a neoteric DOA estimation algorithm
with noise suppression based on TR, Capon and adaptive neuro-fuzzy inference system (ANFIS) is
proposed for solving the wide sidelobe, multipath effect, low resolution and accuracy produced by
conventional algorithms, in particular, those cannot work effectively under the existed hole condition.
Furthermore, the resubmitting distorted noise and channel noise are suppressed effectively, which
is not taken into considered in the conventional Capon algorithm. Simulation results including
the resolution, accuracy, root mean square error (RMSE), Cramér-Rao lower bound (CRLB) and the
compared analyses on uniform linear array (ULA), nested array (NA) and minimum redundancy
array(MRA) demonstrate the performance advantages of the proposed DOA estimation algorithm
even at very low signal-to-noise ratio (SNR) condition.

Keywords: coprime array; direction-of-arrival; low signal-to-noise ratio; multipath; noise suppression;
time reversal

1. Introduction

Presently, with the continuous appearance of new wireless communication and position systems,
locating the emitter signal (ES) plays a more and more important role in public security, fraud detection,
and intelligent transportation systems [1–3]. Moreover, because of the ever-increasing number of
different emitters and waveforms as well as increasing data processing demands, the location technique
for ES becomes more difficult than before [4,5] and very essential. Based on this, direction of arrival
(DOA) estimation becomes a good candidate for precise attainment of ES direction and persuades
considerable contemplation of researchers for years [6,7]. Recent years, there are many DOA estimation
methods springing up, such as estimation of signal parameter via rotational invariance technique
(ESPRIT) [8], multiple signal classification (MUSIC) [9] and decomposition of reverse time operator
(DORT) [10]. However, these subspace methods present a high complexity due to the fact that
they strongly rely on eigenvalues or singular value decomposition for differentiating the signal or
noise subspace. Besides, these subspace methods have to calculate the sample covariance matrix
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every snapshot, which leads to a high amount of internal processing. While, compared with these
algorithms, Capon [11] algorithm has more superiority in DOA estimation [12–14]. Besides, Most DOA
estimation algorithms attempt to eliminate the effect of multipath using deconvolution with the
approximated channel impulse response or channel equalization, which treats multipath as clutter or
noise. These approaches result in the loss of some useful information on ES, and the resolution and
accuracy are limited. Unlike these methods, one of effective approaches to address this problem is to
take advantage of time reversal (TR) technology which performs a good robustness in rich multipath
environment and treats multipath as useful echo [15–17]. Thus, the improved Capon DOA estimation
algorithm based on TR is researched in this paper.

Furthermore, the performance of antenna array is also able to be optimized pertaining to
enhancing the resolution and accuracy of detecting sources. An effective way is to increase the
number of degrees of freedom (DOF) by designing a large aperture array [18]. Higher DOF means
more sources can be recognized. Thus, one of the design crux is to acquire as high DOF as possible.
In addition, resolution will be deteriorated under low signal-to-noise ratio (SNR) condition [19,20].
Therefore, noise suppression is another key aspect needed to be considered as well.

1.1. DOF Design and Method of Increasing Effective Aperture of Array for DOA Estimation

Various non-uniform linear antenna (ULA) arrays are designed for increasing DOF and effective
apertures of array. These methodologies have been reported in the literature, such as coprime array
(CA) [21,22]. As shown in Figure 1, a conventional CA consists of a coprime pair of uniform linear
subarrays (ULSAs) with 2Mc and Nc elements, where Mc and Nc are coprime. The unit spacing between
two consecutive elements is Ncd in the subarray B, while the unit spacing between two consecutive
elements is Mcd in the other ULSA, therein d is typically set to λ/2, and λ is the wavelength of
impinging narrowband ES. These two ULSAs are share the same first element namely the element
positioned “0”. Thus, we can educe that the total number of the elements of CA is 2Mc + Nc − 1 and
the elements’ position set is S = {Mcncd, 0 ≤ nc ≤ Nc − 1} ∪ {Ncmcd, 1 ≤ mc ≤ 2Mc − 1}. According
to the property of coprime positive integers reported in [23], the kd can be chosen any integer between
−McNc and McNc. In other words, based on 2Mc + Nc − 1 elements, the corresponding array has
(2McNc + 1) DOF which denotes the number of consecutive elements, and 2(2Mc − 1)Nc + 1 =

4McNc − 2Nc + 1 apertures without considering the holes. As a result, an array with considerably
larger aperture is achieved using coprime arrangement, compared with that generated by actual
number of elements and that constructed by ordinary ULA with the equal number of elements.

……

……

0 Mcd 2Mcd (Nc‐1)Mcd

Ncd 2Ncd (2Mc‐1)Ncd

Mcd

Ncd

Subarray A

Subarray B

Figure 1. Elements’ positions of the CA.

However, the created large aperture virtual array is not a filled ULA (it exists some holes),
which will leads other problems in DOA estimation, for example, MUSIC and DORT do not outfit in
the CA encompassing holes condition [21], because they need to acquire eigenvalues and eigenvectors
from covariance matrix generated by the recorded data, and the corresponding virtual array from
the covariance matrix must be full rank [18,23]. Moreover, the case that just consider the consecutive
virtual array elements and ignore the discontinuous elements of virtual array will lead the loss of
virtual apertures. Therefore, new investigations on DOA estimation algorithm based on CA are
significant and meaningful. Recovering as many holes as possible [24,25] is one method. For example,
Mahmum et al. [21] translocated one subarray and rotated axis with a compression of the other subarray
for producing plenty of consecutive lags, which can be used to obtain high DOF; array interpolation
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algorithm [24–26] and sparse recovery algorithm [27] are used to exploit all the information in CA
and reduce the negative influence of holes. However, the sparse recovery method can increase the
recoverable sparsity level only under the assumption that the received data are zero-mean, statistically
uncorrelated random variables [28–31]. Thus, when it comes to unknown ES with unknown mean
and correlation between each other, this algorithm is not suitable. Additionally, the aforementioned
techniques need extra tuned parameters which are difficult to maintain.

Although the number of holes can be reduced, the array is still not filled. Thus, the key to solving
this problem is to develop a new DOA estimation algorithm based on CA, namely, this new algorithm
is suitable for CA (especially has holes) and so forth. Besides, increasing the number of DOF of CA is a
good choice for enhancing the resolution and accuracy of DOA estimation. Thus, the other problem
solved in this paper is to achieve an optimal method of high DOF with easy operation for CA.

1.2. High Resolution and Accuracy Algorithms for DOA Estimation

To enhance the resolution and accuracy of DOA estiomation, in addition to optimizing the
arrangement of the array, improving the performance of DOA estimation algorithm is another effective
way. For obtaining useful transmission and reflection parts of ES, and forbidding the negative effect of
multipath diversity on DOA estimation, this paper considers TR as a good candidate, because TR is
able to take advantage of multipath which is recognized as clutter or noise and ignored/mitigated
in other most DOA estimation algorithms, such as MUSIC, DORT, back projection [32,33]. In the
basic procedure of TR [15,17,34–36], these recorded signals from observation space are time-reversed,
energy normalized and retransmitted (can be achieved numerically or actually) through the same
medium from the same receivers (act as transmitters in this stage). Due to the spatial reciprocity
principle, space and time focusing will occur at the location of original emitter [37]. Thus,
the corresponding focusing amplitude or time can be used to locate original emitter. Furthermore,
based on the TR algorithm, multistatic data matrix which is prerequisite in MUSIC, DORT is not
necessary. Therefore, it can be concluded that TR is able to be operated in the CA (has holes)
condition. However, compared with the general ULA, CA with the equal number of array elements
has larger apertures. Although it is able to increase the useful received signal, it also increases the noise
information which may result in a reduction of SNR on the contrary [38]. Thus, suppressing noise and
enhancing SNR are another key problems to be solved in order to improve the resolution and accuracy
of DOA estimation. Faced with the random and irregular noise, an effective way to suppress noise
is to use adaptive noise suppression methods. Here, we believe that adaptive neuro-fuzzy inference
system (ANFIS) is a good choice because of its outstanding performance in noise cancellation for image
reported in [39–41]. However, they assume the information signal (original emitter) is zero mean,
which is not suitable for all situations, especially for unknown ES with unknown mean. Thereupon,
we take the pre-tested detection echo as the initial value of noise. These noise will be trained and
cancelled through ANFIS, combined with the property that noise discussed here is background noise,
namely the noise is Gaussian distribution with zero mean and uncorrelated with the useful signal.

1.3. Contributions of This Paper

In order to enhance the resolution and accuracy of DOA estimation, the main contributions of this
paper can be summarized as the following two points: from the view of array arrangement, we design
a virtual large aperture linear array based on CA; from the view of algorithm, we proposed a noise
suppression DOA estimation algorithm based on TR and Capon. The detailed contributions of this
paper are as follows:
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(1) An optimized CA (OCA) with higher DOF is designed. By properly designing the inter-space
between elements of only one subarray, which is easy to operate, a large aperture array can
be obtained.

(2) For the sake of solving the problem of wide sidelobe and multipath effect, a DOA estimation
algorithm based on TR and Capon is proposed (called TR-Capon-DOA algorithm here) for passive
array to detect active targets. Furthermore, on the basis of TR-Capon-DOA algorithm, and in
order to reduce the negative influence of noise on locating ES, a DOA estimation method with
noise suppression is developed (called TR-NS-Capon-DOA here), combined with ANFIS. In the
ANFIS, the distorted noise in the resubmitting stage and channel noise are considered.

(3) TR-NS-Capon-DOA, TR-Capon-DOA with the conventional counterpart–Capon algorithm are
compared. The performance of these DOA estimation algorithms with ULA, CA, OCA, NA and
MRA are analyzed for locating different unknown ES from different directions under the
conditions of a multipath environment. Moreover, the corresponding root mean square error
(RMSE), Cramér-Rao lower bound (CRLB) and computational complexity are also discussed.

1.4. Organizaton of This Paper

The remainder of this paper is organised as follows. Section 2 provides the system model and
methodology used throughout this paper. A comparative analysis of TR-NS-Capon-DOA, TR-Capon-DOA
and Capon theory is also presented in Section 2. The corresponding numerical experiments and analyses
are discussed in Section 3. Finally, Section 4 concludes this paper. Moreover, Tables 1 and 2 respectively
summarize the abbreviations and the meaning of symbol and notation used in this paper, Table 3
summarizes the whole process.

Table 1. Abbreviation used in the paper.

Abbreviation Full Writting

ANFIS Adaptive neuro-fuzzy interference system
CA Coprime array
CRLB Cramér-Rao lower band
DCA Difference coprime array
DNB Distorted noise base
DOA Direction of arrival
DOF Degree of freedom
ES Emiiter signal
OCA Optimized coprime array
RMSE Root mean square error
SNR Signal-to-noise ratio
TR Time reversal
TR-Capon-DOA Direction of arrival estimation based on time reversal and Capon
TR-DOA Direction of arrival estimation based on time reversal

TR-NS-Capon-DOA Direction of arrival estimation based on time reversal and Capon with the property of
noise suppression

ULA Uniform linear array
ULSA Uniform linear subarray
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Table 2. Meaning of symbol and notation used in the paper.

Symbol/Notaion Meaning

j j =
√
−1

(·)T transpose operator
(·)∗ conjugate operator
(·)H conjugate transpose operator
(·)−1 inverse operator
E[·] expectation operator
d·e upward rounding operator
Tr[·] the trace of a matrix
⊗ Kronecker product
Φ[h1, · · · , h2] get the h1 th element to the h2 th element from matrix Φ

Table 3. Summarized steps of the proposed algorithm.

Step Operation

Step 1 Construct the CA/OCA and the DOA estimation system model.
Step 2 DOA estimation using conventional algorithm–Capon
Step 3 DOA estimation using the proposed TR-Capon-DOA algorithm
Step 4 DOA estimation using the proposed TR-NS-Capon-DOA algorithm

Step 5

Analyze the performance (including the resolution, accuracy, RMSE, CRLB
and computational complexity) of the proposed TR-Capon-DOA and
TR-NS-Capon-DOA algorithms with the comparison of conventional Capon
mehtod under the condition of different arrangements of array, unknown ES
and multipath.

2. System Model and Methodology

In this section, we introduce the proposed OCA first. Then, the proposed DOA estimation
theory based on TR and Capon is dissected. Thereafter, in order to improve the performance of DOA
estimation further, the noise suppression is considered and TR-NS-Capon-DOA algorithm combined
with ANFIS is proposed. Therein, the principle of ANFIS and its function are expatiated. It is worth
mentioning that the distorted noise happening in the resubmitting stage is figured out. At last,
the performance of these proposed methods including suppressing noise is analyzed compared with
the conventionally typical DOA estimation algorithm–Capon.

2.1. DOF Design and Method of Increasing Effective Aperture of Array for DOA Estimation

The layout of conventional CA is shown in Figure 1. For example, we choose Mc = 3 and
Nc = 8 as the coprime integers, it can be found that Mc and Nc satisfy Mc < Nc. Moreover, the total
number of array elements is N = 2Mc + Nc − 1 = 13. Generally, the conventional CA was proposed
to actualize a longer consecutive virtual ULA with larger aperture from the difference copime array
(DCA). The positions of corresponding DCA generated by this configuration can be expressed as

SDCA = {±(nc Mcd−mcNcd)}
(0 ≤ nc ≤ Nc − 1), (0 ≤ mc ≤ 2Mc − 1)

(1)

According to [23], the corresponding number of consecutive elements is at least 2McNc + 1 = 49,
namely DOF = 49. In this case the number of effective DOF is 53 shown in Figure 2. Note that the
CA and OCA are both 1-D linear arrays. In addition, there are 4McNc − 2Nc + 1 = 81 apertures
with 14 holes appearing at labelled red positions also shown in Figure 2. Thus, the number of
effective apertures is 67. During the analysis, we find some elements’ positions are calculated more
than once, and the holes are never calculated. Based on this finding, in order to obtain consecutive
elements as many as possible on the premise of unchanging the total number of element, a new
method is proposed here to enhance the DOF for achieving the high resolution and accuracy. Firstly,
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rotate the axis of subarray A from positive to negative, that is, the positions of subarray A is changed
into [−(Nc − 1)Mcd,−(Nc − 2)Mcd, · · · , Mcd, 0], so that the position of the maximum aperture is
able to be extended to [(Nc − 1)Mc + (2Mc − 1)Nc], which is always lager than that of original
DCA-max((Nc − 1)Mc, (2Mc − 1)Nc). Then, translate the elements’ positions of subarray A by the
factor-FA which can be optimized by

arg max
FA

g(−Adis + FAd, Bdis) (2)

where Adis and Bdis represent the position matrices of subarrays A and B respectively, and function
g(a, b) is denoted to compute the maximum consecutive value of matrix (a− b), which corresponds
to the number of the consecutive elements of DCA. Also, the translation factor-FA of subarray A
can be obtained by calculating the optimal value of Equation (2). It is easy to summarize that the
relative higher DOF can be obtained after optimizing. Besides, we do not take any operations on
subarray B. Thus, the operation is simplified without changing the arrangements of both subarrays
simultaneously. Furthermore, the closed-form expression for the array configuration of the proposed
OCA is SOCA = {[−Mcnc + FA]d, 0 ≤ nc ≤ Nc − 1} ∪ {Ncmcd, 0 ≤ mc ≤ 2Mc − 1}. Thus, we can
obtain the positions of new DCA as

SDCA = {±(−nc Mcd + FAd−mcNcd)}
(0 ≤ nc ≤ Nc − 1), (0 ≤ mc ≤ 2Mc − 1)

(3)

Here, we also take Mc = 3 and Nc = 8 for example. According to Equation (2), the optimal
FA = 8, and the new distribution of DCA is shown in Figure 3. In this construction, the number of
effective DOF is 79, which is larger than that built by the conventional DCA. Moreover, there are
107 apertures also with 14 holes and the number of effective apertures is 93, which is 26 more than the
original value. Furthermore, the number of holes before position “40” is 2, which is smaller than that
of original DCA. In other words, compared with original DCA, although the total number of holes
is the same, larger aperture is able to be achieved using the optimized OCA. In addition, from the
view of obtaining the same aperture, the number of holes is reduced using the proposed optimized
DCA arrangement.

‐1

d

0 3 541 2‐5 ‐4 ‐3 ‐2

‐10‐6 ‐7 ‐8 ‐9 8 6710 9

‐11‐15 ‐14 ‐13 ‐12 13 151411 12

‐20‐16 ‐17 ‐18 ‐19 18 161720 19

‐21‐25 ‐24 ‐23 ‐22 23 252421 22

‐30‐26 ‐27 ‐28 ‐29 28 262730 29

‐31‐35 ‐34 ‐33 ‐32 33 353431 32

‐40‐36 ‐37 ‐38 ‐39 38 363740 39

Figure 2. The distribution of the conventional DCA. Therein, the red circle represents the hole, and the
white circle indicates the element of virtual ULA constructed by DCA.
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Figure 3. The distribution of the proposed DCA. Therein, the red circle represents the hole, and the
white circle indicates the element of virtual ULA constructed by DCA.

For comparison, the minimum redundancy array (MRA) and nested array (NA) are researched.
As we know, there are no closed-form expressions for the positions of elements in an MRA. While,
the positions of elements can be figured out with exhaustion method. Here, the total number of
antenna elements is N = 13. In addition, literature [42] reports the minimum redundancy will
lie between 1.217 and 1.332. Therefore, the maximum number of apertures (greatest multiple of
the unit spacing) is 64, when N = 13 and minimum redundancy is 1.218. Note that the layout of
MRA is not unique, and the spacing configuration of MRA used in this paper can be adopted as
{0, 1, 2, 3, 8, 8, 8, 8, 5, 5, 7, 7, 2} according to A.T. Moffet who invented this configuration of array [42].
In addition, An NA generated by the parameter pair (2Mc, Nc) is given by {0, 1, · · · , 2Mc − 1} ∪
{2Mc, 4Mc + 1, · · · , 2Nc Mc − 1} [9]. Therefore, the position sets consist of NA and MRA are as follows:
(1). NA(5,8):[0, 1, 2, 3, 4, 5, 11, 17, 23, 29, 35, 41, 47]d, and the corresponding position set of difference
array is [−47, −46, −45, −44, −43, −42, −41, −40, −39, −38, −37, −36, −36, −35, −34, −33, −32,
−31, −30, −30, −30, −29, −28, −27, −26, −25, −24, −24, −24, −24, −23, −22, −21, −20, −19, −18,
−18, −18, −18, −18, −17, −16, −15, −14, −13, −12, −12, −12, −12, −12, −12, −11, −10, −9, −8,
−7, −6, −6, −6, −6, −6, −6, −6, −5, −4, −4, −3, −3, −3, −2, −2, −2, −2, −1, −1, −1, −1, −1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 7, 8, 9, 10, 11, 12,
12, 12, 12, 12, 12, 13, 14, 15, 16, 17, 18, 18, 18, 18, 18, 19, 20, 21, 22, 23, 24, 24, 24, 24, 25, 26, 27, 28,
29, 30, 30, 30, 31, 32, 33, 34, 35, 36, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]d, thus, DOF = 169; (2).
MRA 13 [64]: [0, 1, 3, 6, 14, 22, 30, 38, 43, 48, 55, 62, 64]d, and the corresponding position set of difference
array is [−64, −63, −62, −61, −61, −59, −58, −56, −55, −54, −52, −50, −49, −48, −48, −47, −45,
−43, −42, −42, −42, −41, −40, −40, −38, −37, −37, −35, −34, −34, −33, −32, −32, −30, −29, −29,
−27, −26, −26, −25, −24, −24, −24, −22, −21, −21, −21, −19, −19, −18, −17, −16, −16, −16, −16,
−14, −14, −13, −13, −12, −11, −10, −9, −8, −8, −8, −8, −7, −7, −6, −5, −5, −5, −3, −3, −2, −2,
−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 5, 5, 5, 6, 7, 7, 8, 8, 8, 8, 9, 10, 11, 12, 13, 13, 14, 14,
16, 16, 16, 16, 17, 18, 19, 19, 21, 21, 21, 22, 24, 24, 24, 25, 26, 26, 27, 29, 29, 30, 32, 32, 33, 34, 34, 35, 37,
37, 38, 40, 40, 41, 42, 42, 42, 43, 45, 47, 48, 48, 49, 50, 52, 54, 55, 56, 58, 59, 61, 61, 62, 63, 64]d, thus,
DOF = 5 × 2 + 13 = 23. It can be seen that many antenna elements are placed so near that the mutual
coupling effects raise. Hence, although the DOF in the proposed OCA case is lower than that in the
NA case, the performance of DOA estimation using NA is not necessarily superior to that using OCA,
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which will be proved by simulation. Additionally, the DOF of MRA is lower than that of the proposed
OCA, thus, the performance obtained by MRA is worse than that acquired by OCA.

2.2. High Resolution and Accuracy Algorithm for DOA Estimation

The system model and setup of our proposed approaches are shown in Figure 4. The system
model operates in a rich multipath environment. Because of multipath, a passive antenna array
receives and records the superposition of several delayed and attenuated replicas conformed
by the signal from one or several ESs. Assume the signals have no relative motion, and the
position and geometry of array are known. Let K uncorrelated narrowband ESs from directions
θ = [θ1, θ2, · · · , θK] = [θ(1,1,1), · · · , θ(1,M(1,N),N), θ(2,1,1), · · · , θ(2,M(2,N),N), · · · , θ(K,1,1), · · · , θ(K,M(K,N),N)]

impinge on the array. Notation θ(k,m,n) is the DOA from ES k traveling via path m to antenna n,
corresponding delay and attenuation are denoted by τ(k,m,n) and A(k,m,n) respectively. M(k,n) represents
the total number of paths between ES k and antenna n.

……

Ɵ(1,1,1) Ɵ(k,m,n) 

……

Ɵ(1,p,1) 

Antenna array

 emitter signal

d

Figure 4. System model for DOA estimation. Background scatter is denoted by rectangle.

The 1 ≤ k ≤ Kth ES fk(t) (with Fourier transform of Fk(ω)) is recorded by all array elements after
propagating through multipath environment with random medium. The recorded sum signal from K
ESs at antenna n (1 ≤ n ≤ N) is given by

rn(t) =
K

∑
k=1

M(k,n)

∑
m=1

A(k,m,n) fk(t− τ(k,m,n)) + v(k,m,n)(t) (4)

where t = 1, 2, · · · , Q, Q denotes the total number of snapshots; v(k,m,n)(t) (with Fourier transform
of V(k,m,n)(ω)) is additive white Gaussian noise (AWGN), which is a good candidate to simulate
background noise and v(k,m,n)(t) ∼ N(0, σ2

(k,m,n)) [15] used as observation noise here. Note that the
noise is unrelated and independent of the path and source, and the subscript (k,m,n) here is used to
point out the channel where noise exists.

In the frequency domain, Equation (4) can be expressed as

Rn(ω) =
K

∑
k=1

M(k,n)

∑
m=1

A(k,m,n)Fk(ω)e−jωτ(k,m,n) + V(k,m,n)(ω) (5)

Using matrix notation, Equation (5) can be rewritten as

Rn(ω) = [AnFΓn + Vn]I (6)

where An = [A(1,1,n), A(1,2,n), · · · , A(K,M(K,n),n)] is defined as a (1 × ∑K
k=1 M(k,n)) vector containing

all attenuation factors of paths between all ESs and antenna n and can be obtained by log-normal
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shadowing model [43]. F = diag[

M(1,n)︷ ︸︸ ︷
F1(ω), · · · , F1(ω),

M(2,n)︷ ︸︸ ︷
F2(ω), · · · , F2(ω), · · · ,

M(K,n)︷ ︸︸ ︷
FK(ω), · · · , FK(ω)]

is defined as a (∑K
k=1 M(k,n) × ∑K

k=1 M(k,n)) diagonal matrix containing all ESs,

Γn = diag[ejωτ(1,1,n) , ejωτ(1,2,n) , · · · , e
jωτ(K,M(K,n) ,n)

] as a (∑K
k=1 M(k,n) × ∑K

k=1 M(k,n)) diagonal matrix
of delays can be obtained by finite-difference time-domain (FDTD) method [44] (here τre f = τ(k,M(k,1),1))

combining with antenna theory [45], therein τ(k,M(k,n),n) =
dnsinθ(k,M(k,n) ,n)

c + τre f , dn represents the
distance between antenna n and antenna 1 (reference element) and can be obtained according to the
array arrangement, Vn = [V(1,1,n), V(1,2,n), · · · , V(K,M(K,n),n)] as a (1×∑K

k=1 M(k,n)) expresses vector of

noise, and I is a (∑K
k=1 M(k,n) × 1) unit vector. Thus, we can get R(ω) = [R1(ω), R2(ω), · · · , RN(ω)]T ,

which is defined as a (N × 1) vector representing recorded signal of array.

2.2.1. Conventional Capon DOA Estimation

The conventional Capon algorithm can be considered as an optimizer that attempts to maintain
a fixed power while rejecting the noise and clutter maximally in the direction from the signal of
interest. Therefore, the weight vector W can be obtained by solving the solution to the following
minimization problem:  min

W
= W H(ω, θ)B(ω, θ)W(ω, θ)

s.t.W H(ω, θ)a(ω, θ) = 1
(7)

where B(ω, θ) = E[R(ω)RH(ω)], the steering vector a(ω, θ) = [ejv1sinθ , ejv2sinθ , · · · , ejvN sinθ ] is

(N × 1) dimension, therein, vn =
ωdn

c
without τre f which has no influence to the weight vector

W and the optimal θ. The solution to (7) is

W(ω, θ) =
B−1(ω, θ)a(ω, θ)

aH(ω, θ)B−1(ω, θ)a(ω, θ)
(8)

Thus, substituting (8) to (7), we can get the power spectrum as

P(ω, θ) =
1

aH(ω, θ)B−1(ω, θ)a(ω, θ)
(9)

At a specific frequency, several frequencies, a specific frequency range, or several frequency bands,
the DOAs can be obtained by selecting K values of θ corresponding to K maximal values of P(ω, θ).

2.2.2. TR-Capon-DOA Estimation

According to the principle of TR [37], time reverse the recorded signal rn(t) in time domain is
equivalent to take phase conjugated operation on R(ω) in frequency domain. Therefore, the time
reversed representation of Rn(ω) can be expressed as R∗n(ω). Assuming this TR signal is numerically
resubmitted to the same multipath environment. The rebroadcasting signal at the kxth (1 ≤ kx ≤ K)
ES position from the nth antenna element is given by

RTRnkx
(ω) =

M(kx ,n)

∑
mx=1

gn A(kx ,mx ,n)e
−jωτ(kx ,mx ,n)R∗n(ω) + V(kx ,mx ,n)(ω) (10)

where gn =

√√√√‖ K
max
k=1

Fk(ω)‖2

‖Rn(ω)‖2 is used as energy normalization factor. The Equation (10) can be

rewritten as Equation (11).
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RTRnkx
(ω)

=

M(kx ,n)

∑
mx=1

gn A(kx ,mx ,n)e
−jωτ(kx ,mx ,n) [

K

∑
k=1

M(k,n)

∑
m=1

A(k,m,n)e
jωτ(k,m,n) F∗k (ω) + V∗(k,m,n)(ω)] + V(kx ,mx ,n)(ω)

= [gn

M(kx ,n)

∑
mx=1

|A(kx ,mx ,n)|2F∗kx
(ω)]︸ ︷︷ ︸

use f ul−signal

+ [gn

M(kx ,n)

∑
mx=1

A(kx ,mx ,n)e
−jωτ(kx ,mx ,n)V∗(kx ,mx ,n)(ω)]︸ ︷︷ ︸

noise1

+ gn

M(kx ,n)

∑
mx=1

K

∑
k=1

k 6=kx

M(k,n)

∑
m=1

A(kx ,mx ,n)A(k,m,n)e
−jω(τ(kx ,mx ,n)−τ(k,m,n))F∗k (ω)

︸ ︷︷ ︸
clutter1

+ gn

M(kx ,n)

∑
mx=1

K

∑
k=1

k 6=kx

M(k,n)

∑
m=1

A(kx ,mx ,n)e
−jωτ(kx ,mx ,n)V∗(k,m,n)(ω)

︸ ︷︷ ︸
clutter2

+

M(kx ,n)

∑
mx=1

V(kx ,mx ,n)(ω)︸ ︷︷ ︸
noise2

(11)

It can be found that the rebroadcasting signal focuses at the original ES position, namely the
signal from the kxth ES in the receiving stage focuses on the kxth ES position in the resubmitting
stage, which constructs the useful signal. Although there are clutter conformed by the resubmitting
signal from other paths, and noise built by transmission environment, the DOA of the kxth ES can be
obtained by enough elements. Besides, if the kxth emitter source does not radiate electronmagnetic
wave in the receiving stage, there is no focusing phenomenon appearing at the kxth ES position in
the resubmitting process. In other words, the focusing will not happen at other non-ES’s positions.
According to Equation (11), we can conclude that with the complementary time delay, TR is able to
achieve channel matching, which is equivalent to beamforming used in signal processing for array.
Besides, the focused performance will be better by befittingly increasing the number of multipath.
Note that because the attenuation must be considered, the number of multipath is not the more the
better. In summary, in the light of the advantages of TR as described above, we propose TR-DOA
estimation method to enhance the resolution and accuracy of DOA estimation.

Using matrix notation, and based on Equations (10) and (11), the rebroadcasting signal considered
all ESs can be expressed as

RTRn(ω) = [gn AngΓnR∗n + Vn]I (12)

Thus, we can get RTR(ω) = [RTR1(ω), RTR2(ω), · · · , RTRN (ω)]T , which is defined as a (N × 1)
vector representing TR-processed signal of array. According to Equation (7), and combine with Capon,
the TR-Capon-DOA takes the form min

WTR
= WTR

H(ω, θ)BTR(ω, θ)WTR(ω, θ)

s.t.WTR
H(ω, θ)aTR(ω, θ) = 1

(13)

in which BTR(ω, θ) = E[RTR(ω)RH
TR(ω)], and aTR(ω, θ) = a(ω, θ) is the TR steering vector. The TR

weight vector and TR power spectrum can be expressed respectively as

WTR(ω, θ) =
B−1

TR(ω, θ)aTR(ω, θ)

aH
TR(ω, θ)B−1

TR(ω, θ)aTR(ω, θ)
(14)

PTR(ω, θ) =
1

aH
TR(ω, θ)B−1

TR(ω, θ)aTR(ω, θ)
(15)
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The values of DOAs are obtained from θ corresponding to K peaks of Equation (15).

2.2.3. Suppressing Noise DOA Estimation Based on TR

In order to improve the performance of DOA estimation further, the noise need to be suppressed,
which is also the purpose of this paper. Actually, there are two kinds of noise as shown in Equation (11).
Therein, the noise2 part is background noise without any distortion following the Gaussian distribution.
This kind of noise can be measured by pre-test. The noise 1 and clutter2 parts put together as the
other kind of noise, which is distorted because of rebroadcasting. Besides, this kind of noise is random
and difficult to find its property because of high level of uncertainty. Moreover, it is shown that the
spectrum of noise overlaps that of useful signal substantially, which invalidates the common filtering
techniques to cancel noise. Thus, in this section, adaptive noise cancellation is used to suppress
this kind of noise. In order to estimate the received noise, which is different from the original noise
because of noise distortion happening during the retransmission process, a clean version of noise
that is independent and uncorrelated of the useful signal need to be picked up. However, the noise
cannot be accessed directly since it is an additive component of the overall received signal. Fortunately,
this distorted noise can be recovered with the adaptive fuzzy system trained with a neural network
called ANFIS here as shown in Figure 5. ANFIS model combines the fuzzy system and neural network
capabilities. This neuro-fuzzy system is a system that uses a learning algorithm derived from or
inspired by neural network theories that determine rules created by fuzzy system with analyzing
samples. The specific processes are given below.

Channel

TR-received 
-ES fk(t)

Channel
Noise 

+
Received Signal

vn(t)

rn(t)=yn(t)+vn(t)

ANFIS -
en(t)=rn(t)-vnp(t)

               =yn(t)+vn(t)-vnp(t)
vnp(t)

yn(t)

  
 

 
 

K

k

M

m
nmk

nk

tv
1 1

,,

,

Figure 5. Schematic diagram for noise suppression using ANFIS

This ANFIS has two inputs: the noise and the error signal en(t). Therein, the measurable
background noise can be used as the initial value of noise. Although it is not accuracy enough,
it will be corrected during the training process and replaced with vnp(t) after going through ANFIS,
that is, vnp(t) will be used as the next initial noise. The error signal en(t) represents the difference
between received signal rn(t) and pure received signal from ES yn(t). ANFIS accepts en(t) to control
and adjust the weights that decide the output of ANFIS, here is denoted as vnp(t). Moreover, the output
of ANFIS needs to be adjusted approximately equal to the distorted noise vn(t), in order to retrieve
useful received signal–ES yn(t) after several circles.

Mathematically, the received signal can be expressed as rn(t) = yn(t) + vn(t) =

yn(t) +∑K
k=1 ∑

M(k,n)
m=1 h(k,m,n)(v(k,m,n)(t), v(k,m,n)(t− 1), v(k,m,n)(t− 2), · · · ), where the function h(k,m,n)(·)

represents the non-linear operation corresponding to the mth path from ES k to antenna n where
the noise v(k,m,n)(t) goes through. If h(k,m,n)(·) was known exactly, it would be easy to recover the
TR-resubmitting signal from ES k by subtracting vn(t) from rn(t) directly, because of the measurable
background AWGN v(k,m,n)(t). However, h(k,m,n)(·) is usually unknown in advance and could be time
varying due to changes in the environment. Thereupon, ANFIS is adopted here to solve this problem.
The ANFIS architecture can identify the near optimal membership functions of fuzzy systems in order
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to achieve the desired output of the whole noise suppression system, here is en(t). More specifically, the
learning rule of the neural network tries to minimize the error [en(t)]2 = [rn(t)− vnp(t)]2 = [yn(t) +

vn(t)− vnp(t)]2 = [yn(t) + vn(t)− ∑K
k=1 ∑

M(k,n)
m=1 x(k,m,n)(v(k,m,n)(t), v(k,m,n)(t − 1), v(k,m,n)(t − 2), · · · ),

where the function x(k,m,n)(·) is the non-linear function implemented by the fuzzy system in ANFIS.
The structure of fuzzy system is shown in Figure 6. This fuzzy system uses fuzzy theory and
membership function. Firstly, compare the input variables with the membership functions of desired
signal vnp(t) on the premise part. Therein, the membership functions of the fuzzy sets used in fuzzy
rules are defined in the database block, such as trapezoidal, or triangular or bell-shaped membership

functions. Here uses bell-shaped membership whose expression is µAi =
1

1 + [(
vnp(t)− ci

ai
)2]bi

,

therein, Ai is the linguistic label (small, large, etc.), {ai, bi, ci} is the parameter set. As the values of these
parameters change, the bell-shaped functions vary accordingly, therefore, exhibiting various forms of
membership functions on linguistic label Ai. The membership function specifies the degree to which
the given v satisfies the quantifier Ai. Moreover, the membership values can also be obtained through a
specific T-norm operator which is usually multiplication or min. The return value is the degree of match
with decisions. Secondly, combine with membership values, get weight (obtained in decision-making
unit) of each fuzzy if-then rule (contained in rule base) as Wi = µAi (vnp(t))× µBi (en(t)), where Bi is
another linguistic label, so that the qualified fuzzy or crisp consequent of each rule is generated after
several loops. Namely, the final output of this fuzzy system is the weighted average of all the rule

outputs computed as vnp(t) =
∑I

i=1 Wivnpi (t)

∑I
i=1 Wi

, therein, I and W denote the total number of training

and weight respectively. At last, aggregate the qualified consequents to produce a crisp output, which
is relatively accurate TR-resubmitting signal of ES k, namely en(t) ≈ yn(t). Furthermore, several loops
will be taken if necessary.

Fuzzification 
Interface

Input
Rule base

Decision-making 
unit

Database
Defuzzification 

Interface
Output

Figure 6. Structure of fuzzy system

In summary, the steps of ANFIS [46] are shown as follows:

(a). Compare the input variables with the membership functions on the premise part, so that the
membership values or compatibility measures of each decision can be obtained. This step is
always called fuzzification. This step needs a fuzzification interface block which transforms the
crisp inputs into degrees of match with decisions.

(b). Combine the membership values on the premise part to get weight of each fuzzy if-then rule.
Therein, the membership values can be obtained through a specific T-norm operator which is
usually multiplication or min. Then, generate the qualified fuzzy or crisp consequent of each fuzzy
if-then rule depending on weight.This step need three functional blocks-a rule base, a database,
a decision-making unit. Therein, a rule base contains a plenty of fuzzy if-then rules; a database
defines the membership functions of the fuzzy sets used in fuzzy rules; and a decision-making
unit performs the inference operations upon the rules and gets the weight. Usually, the rule base
and the database are jointly referred to as the knowledge base.

(c). Aggregate the qualified consequents to develop a crisp output. This step is called defuzzification
which need a defuzzification interface block. This block transforms the fuzzy results of the
inference into a crisp output.
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After processing the received signal rn(t) by employing ANFIS, we use en(t) as received signal,
and then estimate the DOA with the help of TR-Capon-DOA algorithm discussed above.

According to the analysis above, the TR-NS-Capon-DOA can be obtained. Firstly,
denote C(ω) = [Er1(ω), Er2(ω) · · · ErN(ω)]T , which is a (N× 1) vector, therein, Ern(ω) is the Fourier
transform (presentation in frequency domain) of en(t). The following process is similar to Section 2.2.2.
As a result, the weight vector and power spectrum can be got respectively as

WC(ω, θ) =
B−1

C (ω, θ)aC(ω, θ)

aH
C (ω, θ)B−1

C (ω, θ)aC(ω, θ)
(16)

PC(ω, θ) =
1

aH
C (ω, θ)B−1

C (ω, θ)aC(ω, θ)
(17)

in which Bc(ω, θ) = E[C(ω)CH(ω)], and aC(ω, θ) = a(ω, θ) is the steering vector. The values of
DOAs are acquired from θ corresponding to K peaks of Equation (17).

Compared with some conventional methods, such as signal classification and decomposition
of operator theories, the proposed algorithm does not need to construct the multistatic data matrix
and analyze the eigenvalue and eigenvectors of multistatic data matrix in the signal process stage.
Furthermore, just only consider Fourier transform which is also needed in the conventional theories.
Therefore, the proposed theory is less algorithm complexity.

2.2.4. DOA Estimation Performance Based on RMSE and CRLB

This section introduces the root mean square error (RMSE) and Cramér-Rao lower bound (CRLB)
to evaluate the performance of DOA estimation. Therein, the average RMSE considers all snapshots,
and its formula deduced from the kth ES is defined as

RMSEk =

√√√√ 1
Q

Q

∑
nkt=1

|θntk
− θ̂ntk

|2 (18)

where θntk
is the true DOA value and θ̂ntk

is the estimated DOA value at the ntk snapshot.
The CRLB provides a lower bound on the covariance matrix of any unbiased estimator [47,48].

Here, we assume that θ̂ = [θ̂1, θ̂2, · · · , θ̂K] is the estimated value of directional vector
θ = [θ1, θ2, · · · , θK].

Additionally, the precision can also be judged by the Fisher information matrix (FIM) I(θk)

and stochastic CRLB of directional vector θk, which is the inversion of the FIM. According
to [24], the FIM is a function of B(ω, θ) = E[R(ω)RH(ω)], BTR(ω, θ) = E[RTR(ω)RH

TR(ω)],
and Bc(ω, θ) = E[C(ω)CH(ω)] for corresponding methods, and its general expression is

FIM = QTr[
∂R
∂ξi

]H(BT ⊗ B)−1[
∂R
∂ξ j

] (19)

where ξi and ξ j are the i th and j th elements of ξ = [θ, ρ, σ2]. Let Φn be a (∑K
k=1 M(k,n) × 1)

matrix made from the diagonal elements of [Γn ⊗ ΓH
n ] which is the (∑K

k=1 M(k,n) × ∑K
k=1 M(k,n))

diagonal matrix [24,49], and ρk = [Φ1[∑k−1
z=1 M(z,1) + 1, · · · , ∑k−1

z=1 M(z,1) + M(k,1)], Φ2[∑k−1
z=1 M(z,2) +

1, · · · , ∑k−1
z=1 M(z,2) + M(k,2)], · · · , ΦN [∑k−1

z=1 M(z,N) + 1, · · · , ∑k−1
z=1 M(z,N) + M(k,N)]] is a (∑N

n=1 M(k,n) ×
1) matrix. Then, we can get ρ = [ρ1, ρ2, · · · , ρK]. σ2 = [σ2

1 , σ2
2 , · · · , σ2

K], therein,
σ2

k = [σ2
(k,1,n), σ2

(k,2,n), · · · , σ2
(k,M(k,N),N)] is a (∑N

n=1 M(k,n) × 1) matrix. When the number of ES exceeds

the number of antenna elements, this FIM is singular (proof see [24]), resulting in the conventional
stochastic CRLB inapplicable. Thus, transform the FIM into a virtual array-based form, which keeps
nonsingular within a much broader range of conditions and overcomes the model mismatch issue
of the conventional stochastic CRLB. In particular, this form presents a relative lower bound for the
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estimation error even when the number of ES is larger than the number of antenna elements. In our
case, the representations can be expressed as

FIMCapon = Q[
∂R
∂ξ

]H(BT ⊗ B)−1[
∂R
∂ξ

]

FIMTR−Capon−DOA = Q[
∂RTR

∂ξ
]H(BT

TR ⊗ BTR)
−1[

∂RTR
∂ξ

]

FIMTR−NS−Capon−DOA = Q[
∂C
∂ξ

]H(BT
C ⊗ BC)

−1[
∂C
∂ξ

]

(20)

where 

∂R
∂ξ

= [
∂R
∂θ1

, · · · ,
∂R
∂θK

,
∂R
∂ρ1

, · · · ,
∂R
∂ρK

,
∂R
∂σ2

1
, · · · ,

∂R
∂σ2

K
]

∂RTR
∂ξ

= [
∂RTR
∂θ1

, · · · ,
∂RTR
∂θK

,
∂RTR
∂ρ1

, · · · ,
∂RTR
∂ρK

,
∂RTR

∂σ2
1

, · · · ,
∂RTR

∂σ2
K
]

∂C
∂ξ

= [
∂C
∂θ1

, · · · ,
∂C
∂θK

,
∂C
∂ρ1

, · · · ,
∂C
∂ρK

,
∂C
∂σ2

1
, · · · ,

∂C
∂σ2

K
]

(21)

Thus, we can obtain the CRLB for the k-th ES as

(CRLB)θk = [FIM−1](k,k) (22)

3. Numerical Experiment

In this section, the performance of DOA estimation based on the proposed TR-NS-Capon-DOA
algorithm, TR-Capon-DOA method and OCA configuration are investigated. The results are compared
with those obtained by the conventional Capon theory, ULA, CA, NA and MRA structures. Assuming
array contains N = 13 antennas, ESs may be linear frequency modulation (LFM) signal and nonlinear
frequency modulation (NLFM) signal or other kinds of signal, these signals are not able to be known in
advance. Here, we take LFM and NLFM for example to prove that the ability of the proposed methods
in obtaining the DOA of ES is independent of the type of ES. Therein, the representation of LFM is
f (t) = ej(2π fct+kpπt2), kp is chirp slope, fc = 0.1GHz is the carrier frequency, and the representation
of NLFM is f (t) = ejϕ(t), ϕ(t) = 2π( f + fc)t, fc = 0.1GHz is also the carrier frequency, and the total
number of snapshots is 9000. According to log-normal shadowing model, the amplitude loss of signal
versus distance is shown in Figure 7. Here, assuming the horizontal distance between ES and the first
antenna element equals to dh = 1km. Thus, the distance between ES and antenna 1 used as reference
element equals dh/sin(DOA).
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Figure 7. Amplitude loss of signal versus distance between ES and antenna.
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3.1. Multipath DOA Estimation with ULA

According to 1D-FDTD, reference time delay are τre f = 5.19µs and 6.3µs for DOA = 40◦ and 32◦

respectively. When SNR is −15 dB, the normalized power spectra produced by conventional Capon
DOA, TR-Capon-DOA and TR-NS-Capon-DOA algorithms are plotted in Figure 8, where for reference
two vertical dotted blue lines at 40◦ and 32◦ are drawn corresponding to the actual DOA values. It is
shown that there is only one peak at DOA = 36◦ presented in the conventional Capon DOA power
spectrum under the conditions of LFM and NLFM signals used as ESs, which is in the middle of
DOA = 32◦ and 40◦ with an error of 4◦. However, the TR-Capon-DOA algorithm produces a better
result, there are two peaks at DOA = 31.5◦ and 40.5◦ with an error of 0.5◦ in the LFM case, and two peaks
at DOA = 31.95◦ and 40.05◦ with an error of 0.05◦ in the NLFM case. Process the TR signal through
ANFIS, the more precise results can be obtained using TR-NS-Capon-DOA algorithm. There are two
peaks at DOA = 31.95◦ and 40.05◦ with an error of 0.05◦ in both cases. Although the same accuracy can
be obtained by using TR-Capon-DOA and TR-NS-Capon-DOA algorithms in NLFM case, the sidelobes
can be suppressed effectively and high resolution can be obtained obviously by TR-NS-Capon-DOA
methodology. Furthermore, when it comes to passive array, the estimation error of DOA can be
reduced and the estimation resolution of DOA can be improved by the proposed TR-Capon-DOA and
TR-NS-Capon-DOA methods compared with the conventional Capon method.
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Figure 8. 2-path normalized power spectra versus angles using conventional Capon DOA,
TR-Capon-DOA and TR-NS-Capon-DOA algorithms under the condition of SNR = −15 dB and
ULA, (a) LFM (b) NLFM.

For investigating the effect of noise on DOA estimation, and the performance of the proposed
method on suppressing noise, the condition of SNR = −100 dB is analyzed and the results are shown
in Figure 9. It can be seen that the DOAs are unable to be estimated completely except with the help of
TR-NS-Capon-DOA algorithm. Furthermore, the DOA = 31.95◦ and 40.05◦ with an error of 0.05◦ are
achieved. In short, the proposed TR-NS-Capon-DOA algorithm can suppress the noise effectively and
achieve a high resolution and accuracy.
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Figure 9. 2-path normalized power spectra versus angles using conventional Capon DOA,
TR-Capon-DOA and TR-NS-Capon-DOA algorithms under the condition of SNR = −100 dB and
ULA, (a) LFM (b) NLFM.

Furthermore, for researching the performance of the proposed method in the cases of more
multipath, three paths are introduced for DOA = 40◦, 30◦, 20◦ with the reference time delay
τre f = 5.19µs, 6.6667µs and 9.7460µs respectively. Other parameters are set as the same as the
2-path case. Again, as Figure 10 shows, there are three peaks at DOA = 18◦, 31.15◦ and 43.2◦ presented
in the conventional Capon DOA power spectrum with errors of 2◦, 1.15◦ and 3.2◦ respectively in the
LFM case, and only two peaks at DOA = 24.75◦, and 41.4◦ with errors of 4.75◦, and 1.4◦ in the NLFM
case. It is also indicated that the TR-Capon-DOA algorithm is more accurate with narrower three
peaks at DOA = 20.7◦, 29.25◦ and 39.6◦, which has 0.7◦, 0.75◦ and 0.4◦ errors respectively in the LFM
case, and there are also three peaks at DOA = 19.8◦, 30.6◦ and 39.6◦ with errors of 0.2◦, 0.6◦ and 0.4◦

respectively in the NLFM case. Process the TR signal through ANFIS, the more precise results can be
obtained by TR-NS-Capon-DOA algorithm. There are three peaks at DOA = 19.8◦, 30.15◦ and 40.05◦,
whose errors are respectively 0.2◦, 0.15◦ and 0.05◦ in the LFM case, and there are also three peaks at
DOA = 19.8◦, 30.15◦ and 40.05◦ with errors of 0.2◦, 0.15◦ and 0.05◦ respectively in the NLFM case.
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Figure 10. 3-path normalized power spectra versus angles for conventional Capon DOA,
TR-Capon-DOA and TR-NS-Capon-DOA algorithms under the condition SNR = −15 dB and ULA,
(a) LFM (b) NLFM.
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Next, in order to investigate the performance of near DOA estimation. Repeat 3-path simulation
under the condition of DOA = 40◦, 32◦ and 24◦, and the corresponding time delay τre f = 5.19µs, 6.3µs
and 8.21µs respectively. As shown in Figure 11, in both cases, three DOAs cannot be recognized by
the conventional Capon algorithm because of insufficient precision, and TR-Capon-DOA algorithm
because of the existed noise. Specifically, DOA = 25.65◦ and 38.7◦ can be obtained by the conventional
Capon algorithm, DOA = 23.4◦ and 34.2◦ are got by TR-Capon-DOA algorithm in the LFM case,
DOA = 20.7◦ and 35.1◦ can be accessed by the conventional Capon algorithm, and DOA = 23.85◦ and
38.7◦ are achieved by TR-Capon-DOA algorithm in the NLFM case. However, much better results can
be obtained by the proposed TR-NS-Capon-DOA algorithm. Namely, DOA = 23.85◦, 31.95◦ and 40.05◦

with errors of 0.15◦, 0.05◦ and 0.05◦ in the LFM case, and DOA = 23.85◦, 32.4◦ and 39.6◦ with errors of
0.15◦, 0.4◦ and 0.4◦ in the NLFM case have already achieved.
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Figure 11. 3 near paths’ normalized power spectra versus angles for conventional Capon DOA,
TR-Capon-DOA and TR-NS-Capon-DOA algorithms under the condition of SNR = −15 dB and ULA,
(a) LFM (b) NLFM.

From the analysis and results, we can conclude that the proposed TR-NS-Capon-DOA estimation
algorithm has a superior performance compared with the conventional Capon, and even better than the
proposed TR-Capon-DOA algorithm, whose performance is better than that of the conventional Capon.
In addition, similar results were obtained with other numerical simulations under the conditions of
different multipaths, DOAs, SNRs and ESs containing frequency shift keying (FSK) ES, general pulse
ES, etc.

3.2. Multipath DOA Estimation with CA and Optimized CA

For investigating the influence of CA and OCA arrangements on the resolution and accuracy for
DOA estimation, the 2-path DOA estimation (DOA = 32◦ and 40◦) is researched for contrastive study.
Take the LFM used as ES for example, the results are shown in Figure 12, and the results generated by
other kinds of ESs including NLFM are similar. It can be seen that the extreme accurate and exceeding
high resolution DOA can be obtained by using three DOA estimation algorithms in both CA and
OCA cases. The results are much better than that produced by ULA. Moreover, hardly difference
exists between these two results in Figure 12, because the accuracy limit value is achieved, namely,
the accuracy is not able to be optimized further with the increasement of array aperture. However,
if the number of paths increases, especially, the near paths, the superiority of OCA appears. As shown
in Figure 13, 4 paths with DOA = 37◦, 39◦, 41◦ and 43◦, and the corresponding time delay τre f = 4.9µs,
5.1µs, 5.3µs and 5.5µs respectively. Under the condition of CA arrangement, using conventional
Capon algorithm, only two peaks can be obtained at DOA = 37.8◦ and 42.3◦, while four peaks at
DOA = 36.9◦, 39.15◦, 40.95◦ and 42.75◦ are able to be obtained by TR-Capon-DOA and four peaks
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at DOA = 36.9◦, 39.15◦, 40.95◦ and 43.2◦ can be accessed by TR-NS-Capon-DOA algorithm. It is
also obvious that although the accuracy is almost the same with the use of TR-Capon-DOA and
TR-NS-Capon-DOA estimations, the resolution got by TR-NS-Capon-DOA is higher than that obtained
by TR-Capon-DOA algorithm. Otherwise, under the condition of OCA arrangement, because larger
array aperture compared with CA arrangement is achieved and accuracy limit value is not reached,
four peaks (DOA = 36.9◦, 38.7◦, 41.4◦ and 43.2◦ obtained by the conventional Capon method, 36.9◦,
39.15◦, 40.95◦ and 43.2◦ got by using TR-Capon-DOA theory, and 36.9◦, 39.15◦, 40.95◦ and 42.75◦

accessed by making use of TR-NS-Capon-DOA methodology) are all obtained by taking advantage
of these three algorithms. Besides, the resolution based on TR is higher than that based on Capon.
Moreover, compared with TR-Capon-DOA, the TR-NS-Capon DOA has a better resolution, since the
small sidelobes are achieved. While, the accuracies obtained by these two TR methods are almost
the same, because the accuracy limit value reaches. It is worth mention that the resolution and
accuracy under the circumstance of OCA arrangement is higher than that in the case of conventional
CA arrangement. In a word, the proposed OCA can improve the resolution and accuracy of DOA
estimation greatly compared with conventional CA, especially, ULA.

(a)

(b)

Figure 12. 2-path normalized power spectra versus angles for conventional Capon DOA,
TR-Capon-DOA and TR-NS-Capon-DOA algorithms under the condition of LFM used as ES,
SNR = −15 dB and (a) conventional CA (b) Optimized CA.
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(a)

(b)

Figure 13. 4-path normalized power spectra versus angles for conventional Capon DOA,
TR-Capon-DOA and TR-NS-Capon-DOA algorithms under the condition of LFM used as ES,
SNR = −15 dB and (a) conventional CA (b) Optimized CA.

3.3. Multipath DOA Estimation with OCA, MRA and NA

In order to prove the superiority of the proposed OCA on DOA estimation further, the same DOA
estimation process is repeated with the configuration of MRA and NA. The results are as Figure 14
shown. It can be seen from Figure 14a that in 2-path environment, by using the conventional Capon
algorithm, the same resolution is obtained in the MRA, NA and OCA cases. While, the sidelobes
obtained in the proposed OCA case are smaller than those in NA case which are smaller than those
in MRA case. The reason is that compared with MRA, the DOF in OCA case is higher, and when it
comes to NA, the spacing between NA elements is small, which raises the mutual coupling effects [50],
and affect the performance of DOA estimation negatively [51]. Moreover, by taking advantage
of TR-Capon-DOA and TR-NS-Capon-DOA algorithms, the sidelobes in all three cases are further
narrowed. Because accuracy limit value is achieved, the same resolution and sidelobe are obtained in
all three cases.
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(a)

(b)

Figure 14. Normalized power spectra versus angles for conventional Capon DOA, TR-Capon-DOA
and TR-NS-Capon-DOA algorithms with the configurations of MRA, NA and OCA under the condition
of LFM used as ES, SNR = −15 dB and (a) 2-path (b) 4-path.

In contrast, in the 4-path environment shown in Figure 14b, the resolution and sidelobes are
different in these three cases, because of unreachable accuracy limit value. Specifically, they make
use of conventional Capon DOA algorithm, the four peaks of normalized power corresponding to
actual DOA values cannot be distinguished in MRA and NA cases, especially in MRA case. The results
will be better by TR-Capon-DOA and TR-NS-Capon-DOA algorithms except in MRA case. Only one
peak at DOA = 43.2◦ can be obtained and other three DOAs are lost in MRA case. On the contrary,
four DOAs can be recognized in both NA and OCA cases. More specifically, from the view of algorithm,
with the same array arrangement, and compared to the TR-Capon-DOA, TR-NS-Capon-DOA obtains
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the same resolution because of the reached accuracy limit value, and narrower sidelobes due to the
noise suppression. Besides, from the view of array arrangement, with the same algorithm, compared
to NA, the proposed OCA achieves a higher resolution and narrower sidelobes. The reason is the same
as the analysis in 2-path environment. As a result, the OCA and TR-NS-Capon-DOA proposed in this
paper has a better performance on DOA estimation.

Furthermore, the CRLB and RMSE are also analyzed. One-hundred Monte Carlo trails are
executed. Take the case of 2-path (DOA = 32◦ and 40◦) whose scenario is discussed above for example,
the other cases with different paths are similar. In Figures 15 and 16, at very low SNR condition,
the proposed TR-NS-Capon-DOA estimation algorithm has a lower CRLB compared with the other
two methods because of good noise suppression property. Different array configurations have the
similar CRLB with the same algorithm. In addition, these CRLBs decrease with the increasing of SNR.

(a) (b)

(c) (d)

Figure 15. CRLB versus SNR for conventional Capon DOA, TR-Capon-DOA and TR-NS-Capon-DOA
algorithms with the configurations of ULA, CA, OCA MRA and NA under the condition of LFM
used as ES and DOA = 32◦, (a) all methods and configurations; (b) the conventional method and all
configurations; (c) the TR-Capon-DOA method and all configurations; (d) the TR-NS-Capon-DOA
method and all configurations.
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(a) (b)

(c) (d)

Figure 16. CRLB versus SNR for conventional Capon DOA, TR-Capon-DOA and TR-NS-Capon-DOA
algorithms with the configurations of ULA, CA, OCA MRA and NA under the condition of LFM
used as ES and DOA = 40◦, (a) all methods and configurations; (b) the conventional method and all
configurations; (c) the TR-Capon-DOA method and all configurations; (d) the TR-NS-Capon-DOA
method and all configurations.

RMSE is demonstrated in Figure 17. Compared with the conventional Capon and TR-Capon
DOA methods, the proposed OCA configuration provides a faster convergence to the minimum.
Furthermore, the TR-NS-Capon-DOA algorithm has a better performance compared with the other
two methods because of excellent noise suppression. Moreover, by taking advantage of same array
configuration, the performance of TR-NS-Capon-DOA algorithm is superior to that of TR-Capon-DOA
algorithm, which is better than that of conventional Capon DOA theory. As a result, from the view of
array configuration, the obtained performance ranges from good to bad as OCA, NA, MA, CA and ULA;
from the view of algorithm, the obtained performance ranges from good to bad as TR-NS-Capon-DOA,
TR-Capon-DOA and conventional Capon DOA.

In the last example, we add the analysis of the computational complexity of the proposed
method against the others. Namely, we compare the computational complexity measured by the
computation time for 100 Monte Carlo trails on an Intel Core i7-7500U CPU, 8G RAM laptop,
where the sampling/searching interval is varied. The result is shown in Figure 18. The computational
complexities of these three algorithms all decrease when the sampling interval increases. This is because
the pre-defined sampling interval increase the computational cost when solving the corresponding
optimization problem. Additionally, during the signal processing, the TR-Capon-DOA algorithm needs
to reverse the received signal in time domain firstly, then take the Capon operation on the time-reversed
signal. Thus, the TR-Capon-DOA algorithm is a little more complex than the conventional Capon
DOA algorithm. The difference value of computation time is between 0.18 s to 2.8 s, and the
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computation time of TR-Capon-DOA algorithm is just several seconds. Besides, the difference between
TR-NS-Capon-DOA algorithm and TR-Capon-DOA algorithm is that the resubmitted distorted noise
and channel noise appearing in the resubmitting stage needed to be trained and suppressed in
TR-NS-Capon-DOA algorithm. However, this trained process can be executed during the pre-test stage
before the DOA estimation stage. Because the resubmitted distorted noise and channel noise do not
change with the unchanged channel and background noise. The distorted noise base (DNB) can be built
after enough trails during the pre-test stage. Then, during the DOA estimation stage, the resubmitted
distorted noise can be recognized very quickly through being compared with the data in DNB,
only in the order of millisecond according to the sample size of DNB. Thus, the computation time of
TR-NS-Capon-DOA algorithm is almost the same as that of TR-Capon-DOA algorithm. The efficiency
of TR-NS-Capon-DOA algorithm is also good. Moreover, the computation time of TR-NS-Capon-DOA
algorithm in Figure 18 includes the one -time trained time through ANFIS, which can be removed
by pre-test.
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Figure 17. RMSE versus SNR for conventional Capon DOA, TR-Capon-DOA and TR-NS-Capon-DOA
algorithms with the configurations of ULA, CA, OCA MRA and NA under the condition of LFM used
as ES (a) DOA = 32◦ (b) DOA = 40◦.
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Figure 18. Computation time comparison with different sampling interval.

4. Conclusions

For the sake of locating unknown active target using passive array in a multipath environment,
this paper proposes a high resolution and accuracy DOA estimation algorithm with the property of
noise suppression based on TR, Capon and OCA, gives analytical expressions, provides numerical
experiments and analyzes the performance. The TR-NS-Capon-DOA estimation algorithm has a higher
resolution, sharper peaks, narrower sidelobes and smaller errors compared with the conventional
Capon algorithm whose performance is even worse than that of TR-Capon-DOA estimator. It shows
that TR is an adaptive beamforming and channel matching technology, and can be used to enhance the
accuracy and resolution of DOA estimation.
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