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Abstract
The prediction of hospital patients and outpatients with suspected arboviral infection individuals in research-limited

settings of the urban areas is defined as a challenging process for clinicians. Dengue, Chikungunya, and Zika arboviruses

have gained attention in recent years because of the high prevalence in the society and financial burden of major global

health systems. In this study, we proposed a machine learning algorithm based prediction model over retrospective medical

records, which are named as SISA (the Severity Index for Suspected Arbovirus) and SISAL (the Severity Index for

Suspected Arbovirus with Laboratory) datasets. Therefore, we aim to inform the clinicians about the use of machine

learning with transfer learning success for diagnosis and comprehensive comparison of the classification performances over

the SISA/SISAL datasets in the resource-limited settings that may cause to the small datasets of arboviral infection. In this

study, Convolutional Neural Network and Long Short-Term Memory have achieved 100% accuracy and 1 of area under the

curve (AUC) score, Fully Connected Deep Network has provided 92.86% accuracy and 0.969 AUC score in the SISAL

dataset with transfer learning. Moreover, 98.73% accuracy and 0.988 AUC score were obtained by Convolutional Neural

Network and Long Short-Term Memory for the SISA dataset. Furthermore, Linear Discriminant Analysis (shallow

algorithm) has provided reaching up to 96.43% accuracy. Notably, deep learning based models have achieved improved

performances compared to the previously reported study.
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1 Introduction

Recently, critical decisions of clinicians in an effective way

are becoming important due to the shortage and resource-

limited settings while facing with arboviral infections or

Covid-19 infections [1, 2]. Levels of illness while deciding

the length of patient staying and accurate prediction of

hospital or outpatients are the main management of

healthcare facilities. Triage of a suspicious patient with

arbovirus infection is a challenging process for clinicians to

determine the status of whether a patient should be hospital

patient or outpatient [1, 3].

The series of potential pathogens causing analogous

symptoms such as undiscerned febrile illness have a shared

consensus in tropical medicine protocols. Dengue virus

(DENV), Chikungunya virus (CHIKV), and Zika virus

(ZIKV) are the types of Arthropod-borne viruses (ar-

boviruses) caused by mosquito vectors (Aedesa egypti and

Ae. albopictus). Clinical variables are commonly presented

as myalgias, rash, arthralgias, and fever. The emergence of

the DENV virus (in tropical Americas), CHIKV virus (in

Saint Martin during 2013), and ZIKV virus (in Brazil

during 2015) had gained international attention because of

the expected transmission risk and high prevalence infec-

tions to other people in the society [1]. Between 2014 and

2018, 86,036 cases were reported as arboviral infections in

Ecuador. Moreover, molecular or particular diagnostic

tools (i.e., ELISA or PCR) and clinical laboratories for
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physicians at the outside of the urban areas are provided

under the limitations or unavailable. The overall cost of the

dengue illness was noted around 9 billion dollars over the

healthcare system of the USA in 2013. The retrospective

medical records of our study and previous reported study

[1] were collected from the 543 subjects of suspected

arboviral infection in Machala City, which is in southern

coastal Ecuador amid November-2013 to September-2017

for model prediction. These obtained data were named as

SISA (the Severity Index for Suspected Arbovirus) and

SISAL (the Severity Index for Suspected Arbovirus with

Laboratory) datasets. The SISA dataset was created with

demographic and symptom data, and the SISAL dataset

was combined with laboratory data in addition to demo-

graphic and symptom data.

Machine learning algorithms (ML) have growing

attention in predicting medical records in recent years. The

main aim of the machine learning algorithms is to recog-

nize the pattern of data in accurate classification perfor-

mances. In this study, Fully Connected Deep Network

(FCDN), Convolutional Neural Networks (CNN), Long

Short-Term Memory (LSTM), Support Vector Machine

(SVM), and Linear Discriminant Analysis (LDA) tech-

niques were used to process the datasets for predicting the

case of hospitalization or not. FCDN has a wide range of

uses and is the most fundamental element of deep learning.

It does not make any special assumptions about data, so

this network is applicable in a wide range of fields. CNN is

a state-of-the-art deep learning method that outperforms

shallow neural network algorithms at a high level of pre-

dictive accuracy. CNN has a diverse application domain,

including image processing, natural language processing,

data classification reaching to the inspired outcomes as

well as using in the diagnosis of disease, and triage pre-

diction [1, 4, 5]. LSTM is a type of Recurrent Neural

Network (RNN). The design of neurons in LSTM has

recurrent connections enabling the network in useful tasks

via extraction attributes of sequence labeling such as

medical records [6]. The kernel version of MLs can be

considered as SVM and LDA in the literature [7]. These

two algorithms were also implemented on SISA and SISAL

datasets to gain insight into outcomes for the classification

performances of kernel-based algorithms.

According to the previously reported study [1], k

Nearest Neighbors, Bagged Trees, Elastic Net Regression,

Random Forest, Generalized Boosting models, and neural

networks were used as machine learning algorithms on

both datasets (SISA and SISAL). The noted results were

given between 89.8 and 96.2% (accuracy) and 0.50–0.91

(AUC score) on the SISA dataset, and 64.3–92.6% (accu-

racy) and 0.62–0.94 (AUC score) on the SISAL dataset,

respectively. In our retrospective-based study (dataset

access with ‘‘https://www.openicpsr.org /openicpsr/project/

115165/version/V2/view’’), multiple machine learning

algorithms were trained and tested to develop robust and

reference models in arboviral infection datasets for helping

clinicians in the prediction of hospital or outpatient sub-

jects. Moreover, receiver operating characteristic (ROC)

curves and the area under the curve (AUC) scores were

obtained and assessed in association outcomes of the MLs.

It is worth noting that SISA and SISAL datasets were

investigated to provide sufficient impact in literature for

FCDN, CNN, LSTM with transfer learning among the

arboviral infectious realm. Improved results under the

limited resources and associated medical records were

obtained and explored for prediction hospital person or

outpatient in arboviral infection patients.

This article focuses on the introduction of the MLs with

transfer learning effect to help the clinician decisions better

over arboviral infections on limited setting resources and

small volume datasets. More precisely, we describe the

performance, characteristics, development, and evaluation

of ML models that can directly assist clinicians in diag-

nosing arboviral infectious diseases, predicting severity,

and deciding whether to hospitalize or not.

2 Materials and methods

2.1 Description of the dataset

The retrospective medical records, including the SISA

(Severity Index for Suspected Arbovirus) and SISAL

(Severity Index for Suspected Arbovirus with Laboratory)

datasets, were collected to predict the status of patients

whether they should be hospital or outpatient [1]. Hence

the resource-limited settings and the density of emergency

departments can be arranged in an effective way for health

care systems. The datasets were extracted as a part of the

ongoing surveillance study at Ecuador Machala. The

datasets include demographic data, past medical histories,

symptom data, and laboratory outcomes for individuals

with a suspected arbovirus. The SISA dataset includes 543

subjects, and 28 features of each record were estimated

during the evaluation process. These features are presented

under the demographic, symptom, and medical history

information. Pregnancy status and laboratory results were

omitted in the feature set. Furthermore, 9 records of sub-

jects with missing information were not included in the

study. As a final SISA dataset, a total of 534 records,

including 59 hospital patients and 475 outpatient subjects,

were used. For the SISAL dataset, 39 outpatients, and 59

hospital individuals were estimated among 98 records.

Then 33 features other than pregnancy status were exam-

ined in the evaluation of this dataset [1]. Table 1 presents

the list of processed features. Moreover, general schematic

14976 Neural Computing and Applications (2021) 33:14975–14989

123

https://www.openicpsr.org


of the clinical decision support system based on the

machine learning was shown in Fig. 1.

2.2 Convolutional neural networks

CNN, a typical multi-layered neural network structure, is

often used to analyze image-related applications [8, 9]. The

basic working principle of CNN architectures can be

summarized as extracting the features of the image taken

from the input layer and classifying the extracted features

in fully connected layers. CNNs are largely similar to

feedforward neural networks. However, the main differ-

ence of CNN based machine learning models from tradi-

tional machine learning methods is that there are

convolution layers in CNN that automatically extract fea-

tures. CNN models consist fundamentally of convolution,

pooling, and fully connected layers [8, 9].

The size of the filter and the number of maps generated

are used to define the convolution layer. This layer is the

fundamental unit consisting of filters that aim to extract

different features related to lines, corners, and edges of

input images [10]. These filters, including pixel values, are

slid across the image matrix. During the sliding process,

the values of the image matrix are multiplied by the values

in the filter, and the values obtained are summed, and the

net result is found. This process is applied to the whole

image to obtain feature maps, and thereby a new matrix is

created. Subsequent feature map values are calculated as

given in Eq. (1) [10].

yl ¼
XN�1

n¼0

xnhl�n ð1Þ

where yl is the signal of the feature map or output vector, xn
denotes the number of elements in the time series of a

Table 1 The list of processed features

Demographic data Presenting symptoms Past medical history Laboratory data

Age (years) Temperature (�C) Allergies (%) Hemotocrit (%)

Height (cm) Fever in past 7 days Hypertension (%) WBC count (cells/ML)

Weight (kg) Head pain (%) Asthma (%) Neutrophills (%)

Mua circumference (cm) Nausea (%) Cancer (%) Lymphocytes

Waist circumference (cm) Muscle or joint pain (%) Diabetes (%) Platelet count

Gender Rash (%) Dengue in the household (%)

Bleeding (%) Dengua (%)

Rhinorrhea (%)

Vomiting (%)

Drowsiness or lethargy (%)

Coughing (%)

Abdominal pain (%)

Diarrhea(%)

Retro-orbital pain (%)

Positive tourniquet test (%)

Dataset Access (https://www.openicpsr.org/openicpsr/project/115165/version/V2/view)

Fig. 1 The schematic of the

clinical-decision support system

in predictions of hospital patient

or outpatient for arboviral

infected patients using machine

learning over the SISA/SISAL

medical records
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signal, hl�n means the kernel or filter, and the subscripts

indicate the nth vector variable.

A further important layer of CNN is the pooling layer,

which takes small rectangular blocks for reducing the

dimension of the outputs from the convolutional layer

[8, 10]. Thus, the computational requirements are pro-

gressively mitigated, and the likelihood of overfitting is

minimized. In this study, the max-pooling operation, which

selects only the largest value in each feature map, is used.

The fully connected layer is a typical neural network

that connects all the neurons of the previous layer to each

of its own neurons. The principal aim of the artificial neural

network is to combine features into more attributes in order

to estimate the classes with greater accuracy. This research

contains two forms of activation functions: (1) Rectified

Linear Activation Unit (ReLU) and (2) Softmax [10].

ReLU performs a threshold operation for each input vari-

able that removes negative values by setting them to zero

that imparts nonlinear properties to the network architec-

ture. Then Softmax is used to predict which class the input

image (hospital patient/outpatient) belongs to according to

the probability value for classes [10].

In this study, the CNN model proposed for this study has

5 learnable layers (3 convolution layers and 2 fully con-

nected layers). The convolution layers contain three phases

as convolution, ReLU, and max-pooling. The first 2 con-

volution layers have 32 feature maps, and the third con-

volution layer has 64 feature maps, respectively. The filter

size is 2 9 2, and the stride size of 1 pixel is used. The

convolution layers are followed by 2 fully connected layers

consisting of 70 nodes and 1 node, respectively. The

softmax classification layer is connected to the output of

the second fully connected layer. The training process was

carried out in 400 epochs. The CNN architecture used in

this study is shown in Fig. 2.

2.2.1 Data to image conversion

In both datasets, we apply the features to CNN after con-

verting them to grayscale images. First of all, each column

in the dataset is normalized for this process. The column

vector A, with A 2 Rnxm and its nominalized form Â can be

represented as in equations:

A ¼ a1 a2 . . . am½ � ð2Þ

Â ¼ â1 â2 . . . âm½ � ð3Þ

Here, the normalization process of each column can be

defined as follows:

âi ¼
ai �min Að Þ

max Að Þ �min Að Þ ð4Þ

where ai is input value in the column vector A. After the

datasets are normalized as described above, the feature

vector of each patient in 1 9 33 dimensions is converted to

11 9 3 matrices. Here, all values for ‘‘Laboratory Data’’

information in the SISA dataset are assigned to ‘‘0’’. Fig-

ure 3 shows sample representations created at this stage for

SISA and SISAL datasets. Then, by adding ‘‘0’’ values to

the end of the rows and columns of the matrix, 15 9 15

size greyscale representations are obtained.

2.3 Long short-term memory network

LSTM is a special type of recurrent neural network (RNN)

structure used in deep learning [11, 12]. If there is a cor-

relation between the data memorized at different times, this

is called ‘‘long-term dependency’’ [13]. While it is aimed

to store and transmit state information of the artificial

neural network while processing on arrays in RNNs, it is

not possible to transmit without disturbing long-term

Fig. 2 CNN model architecture
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dependencies as a result of continuous processing of state

information. In other words, while short term dependencies

in the array are transferred successfully, there is a problem

in transferring long term dependencies. The LSTMs are a

state-of-the-art technique and specifically structured to

address the problem of long-term dependence [11, 13].

LSTM module consists of 3 separate gates. The names

of these gates are forget, input, and output [11]. Forget gate

decides how much of the information will be forgotten and

how much of it should be transferred to the next stage. It

has a sigmoid layer that produces a value between 0 and 1

for this process. 0 means that no part of the information

will be transmitted, and 1 means that all information must

be transmitted. It is possible to express the mathematical

model of the forget gate as follows [11]. In general, W

means the weight vector, b is the bias term, r defines the

sigmoid activation function for nonlinearity, xt is the input

sequence, ht�1 is the output of the neuron at time t � 1 for

feedback into the neuron. Moreover, it; ft and ot define

input, forget and output gate, respectively.

ft ¼ r Wf � ht�1; xt½ � þ bf
� �

ð5Þ

The next step is to decide what information should be

stored. At this stage, firstly, the 2nd sigmoid layer, which is

called the input gate, decides which values should be

updated. The next tanh layer forms a vector of the new

candidate values of the memory cell expressed as ~Ct, and

then these two operations are combined. This process is

expressed mathematically as follows [11]:

it ¼ r Wi � ht�1; xt½ � þ bið Þ ð6Þ
~C ¼ tanh WC � ht�1; xt½ � þ bCð Þ ð7Þ

After this, the new status information of the memory cell

(Ct) must be calculated. In this case, the new status infor-

mation of the memory cell is determined as follows [11]:

Ct ¼ ft � Ct�1 þ it � ~Ct ð8Þ

At the last stage, the output of the system (ht) is cal-

culated. This is done at the output gate and the output of the

system ht can be calculated as follows [11]:

ot ¼ r Wo � ht�1; xt½ � þ boð Þ ð9Þ
ht ¼ ot � tanhðCtÞ ð10Þ

The basic schematic representation of the LSTM is

given in Fig. 4. In this study the LSTM model consists of 3

learnable layers. Each of the first two layers consists of 100

LSTM units. These are followed by a fully connected layer

of 1 neuron. Finally, there is the softmax classification

layer. For SISA and SISAL datasets, the input shape of

28 9 1 and 33 9 1 is used, respectively. The training

process is carried out in 500 epochs.

2.4 Fully connected deep network

Fully Connected Deep Networks (FCDN) are the most

basic elements of deep learning and have been used in a

large number of applications until today. The main

advantage of these networks is that they are ‘‘structure

agnostic’’ [14]. That is, they do not make any special

assumptions about the input. Being structure agnostic

makes these networks applicable in a wide range of fields.

However, the performance of FCDNs tends to be lower

than networks adapted to the nature of the problem in a

specific area [14].

Fig. 3 Sample Image representations of data (left: SISA, right: SISAL)

Fig. 4 Schematic of the LSTM
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FCDN is formed by the combination of a number of

fully connected layers. In fact, the fully connected layer is

a function from x 2 Rm to Rn. Here the size of each output

depends on the size of each input.

Where x 2 Rm is the input for the fully connected layer

and yi 2 Rm is the i-th output of the fully connected layer,

here yi is calculated as follows:

y ¼ f w1x1 þ � � � þ wmxmð Þ ð11Þ

Here, wi is the learnable parameters in the network, and f

is the nonlinear function. In this case, the entire output y

can be expressed as:

yi ¼

f w1;1x1 þ � � � þ w1;mxm
� �

�
�
�

f wn;1x1 þ � � � þ wn;mxm
� �

0

BBBB@

1

CCCCA
ð12Þ

Figure 5 shows a representation of the FCDN model

with fully connected layers used in this study. The model

consists of an input layer, three hidden layers, and an

output layer. While the first hidden layer consists of 20

neurons, the second and third hidden layers consist of 10

neurons each. ReLU is used as the activation function in

hidden layers. There is 1 neuron in the output layer, and the

sigmoid is used as the activation function in this layer.

Besides that, Adam optimizer was used in the training

phase of the model.

2.5 Support vector machine

Support Vector Machine is a powerful machine learning

algorithm that is characterized as a kernel-based classifier

[10]. SVM has many diverse application fields extending

from biosignal classification to pattern recognition. The

approach in this supervised learning algorithm is based on

determining the support vectors to discriminate decision

boundaries named as a hyperplane. The nearest support

vectors extending to both sides of hyperplanes are called

margin. The gaining of generalization ability in SVM is to

find maximum margin and optimal hyperplane. The

mathematical background of SVM is represented in

Eqs. (13–15) [10].

X tf g ¼ rt ¼ þ1; xt 2 C1
rt ¼ �1; xt 2 C2

�
ð13Þ

g xð Þ ¼ wTxt þ w0 � þ 1; xt 2 C1
wTxt þ w0 � � 1; xt 2 C2

�
ð14Þ

rtðwTxt þ w0Þ� þ 1 ð15Þ

where in Eqs. 13–15, g xð Þ defines the hyperplane, w0 is the

localized hyperplane, and w means the orientation.

Learning rate, initializations, and convergence checking

are not required in SVM while carrying out the parameters.

Figure 6 shows the fundamental notions of SVM structure

and classification process [10].

2.6 Linear discriminant analysis

Linear Discriminant Analysis is derived from the Kernel

Fisher Discriminant analysis and uses a kind of projection

technique by reducing the data dimension [15]. Maximiz-

ing the between-class distance and minimizing within-class

distance is the main aim of LDA. When the classes of the

samples are defined as C1 and C2, and LDA aims to find

the projection direction (w) for maximum separability of

the spatial pattern as possible. Mathematical formulations

of LDA can be represented in Eqs. (16–18).

z ¼ wTx ð16Þ

where x (data samples) are projected onto w, and the LDA

representation is shown in Fig. 7 [7]. Where m1 to m1

Fig. 5 FCDN model architecture with fully connected layers

Fig. 6 SVM and maximizing the hyperplane margin for data

classification
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stands for means of samples in C1 before and after,

respectively. Hence, m1 2 <d and m1 2 <. Then m2 and

m2 have a similar manner for C2. Scattered samples around

the means are s21 and s22 [7]. When the training sample is

defined as X xt; rtf g:

X tf g ¼ rt ¼ 1; xt 2 C1
rt ¼ 0; xt 2 C2

�
ð17Þ

J wð Þ ¼ wTSBw

wTSWw
¼ wT m1� m2ð Þj j2

wTSWw
ð18Þ

where SB and SW are called as between-class scatter matrix

and within-class scatter matrix in J wð Þ, respectively [7].

2.7 Performance evaluation metrics

In our retrospective-based study, several appropriate met-

rics were used to evaluate the performances of machine

learning algorithms for prediction hospitalization or out-

patient in arboviral infection patients over the medical

records. These performance evaluation metrics can be lis-

ted as k-fold cross validation, classification accuracy

(ACC), sensitivity (SENS) and specificity (SPEC) analysis,

receiver operating characteristics (ROC), area under the

curve (AUC).

SISA and SISAL datasets for traditional validation were

partitioned to 70 (training)—30% (test) and 85% (train-

ing)—15% (test), respectively. Moreover, the k-fold cross-

validation method was used to achieve unbiased training/

testing data division besides the traditional validation. This

approach is a common methodology used for training and

test data separation [16, 17]. The aim of this process is to

submit each data in the prepared dataset for testing and

training [16]. In this technique, the dataset is split into

k-subsets by the stated k number. The classifier is trained

with k - 1 subsets, and an error value is calculated by

testing the classifier with the remaining subset. The process

is repeated k times so that each sample in the dataset is both

trained and tested. The error is determined by taking the

average value of the errors obtained for each subset

[16, 17].

Formulas used to calculate classification accuracy,

which can be considered a starting point for performance

evaluation are given as follows [10, 18]:

Accuracy Nð Þ ¼
P Nj j

i¼1 estimate nið Þ
Nj j ; ni 2 N ð19Þ

Estimate nð Þ ¼ 1; if estimate nð Þ ¼ cn
0; otherwise

�
ð20Þ

Classification Accuracy MLð Þ ¼
P kj j

i¼1 Accuracy Nið Þ
kj j

ð21Þ

where N denotes the classified (test) dataset, cn is the class

of the value of n, Estimate(n) refers to the classification

result of n, and the k value is the k-fold cross-validation

parameter utilized in algorithms.

In order to make robust predictions, we need to deter-

mine whether the proposed algorithm is a sufficiently

successful model. Accuracy alone is not a satisfactory

parameter when determining the adequacy of the model.

From this perspective, the terms sensitivity and specificity

should also be defined. The term ‘‘sensitivity’’ refers to the

ratio of correctly predicted true positives, while the term

‘‘specificity’’ is the ratio of correctly predicted true nega-

tives. The equations of sensitivity and specificity are given

as follows [10]:

Sensitivity ¼ TP

TPþ FN
ð22Þ

Specificity ¼ TN

TNþ FP
ð23Þ

where;

True Positive (TP): The number of hospitalization

decisions for patients who need to be hospitalized,

True Negative (TN): The number of outpatient decisions

for outpatients,

False Positive (FP): The number of hospitalization

decisions for outpatients,

False Negative (FN): The number of outpatient deci-

sions for patients who need to be hospitalized.

Thanks to the ROC and AUC evaluation metrics, it is

possible to visualize the performance of the classifiers. The

ROC curve, a two-dimensional plot that shows whether a

Fig. 7 The task of classification in LDA via the projection of data

samples
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classifier is successful, is widely used in diagnostic

researches [19]. The ROC curve is plotted with the false

positive rate (X axis) and the true positive rate (Y axis). At

the end of the analysis, the value specified as AUC repre-

sents the area under the ROC curve and higher values

imply better classifier performance. The calculated AUC

value will always be across the interval [0, 1], and values

greater than 0.6 are considered ‘‘acceptable discrimina-

tion’’ [19].

3 Experimental evaluation

The primary purpose of this study is to help clinicians for

evaluating the hospitalization status of people with the

suspected arboviral virus using machine learning algo-

rithms. The system has two outcomes, namely, outpatient

or hospitalized treatment. Thus, it is aimed to make the

most accurate decision in a short time by providing a

system that will help physicians make decisions, especially

in regions with limited resources. Although the distinct

target of the proposed approach is resource-constrained

regions, it can also be used to assist decision-makers in si-

tuations that impose sudden burdens on global health sys-

tems such as the Covid-19 pandemic. Accordingly, tests

were carried out on two separate datasets named SISA and

SISAL introduced in the above sections.

Both datasets have their limitations. The first is that the

SISA dataset is an extremely class imbalance. If the

imbalance between classes is too high, machine learning

algorithms generally perform poorly for the minority class,

resulting in a low sensitivity problem [20]. Moreover, this

is a common problem in medical datasets. Another problem

is that the SISAL dataset is relatively small. In this case, it

makes it difficult to use methods that are applied very

successfully on many problems, such as deep learning

algorithms. Although deep learning algorithms have been

successfully applied in a wide range of fields, they require

relatively more data compared to traditional machine

learning algorithms [9, 21, 22].

In this study, an approach based on deep learning and

transfer learning methods is used to overcome the problems

mentioned above. Accordingly, tests are carried out with

FCDN, CNN, and LSTM deep learning models. Also, the

results obtained with the more traditional methods SVM

and LDA models are evaluated. Besides, a comparison is

presented with the previous study [1] in the same datasets.

In the comparison of the proposed approach, classification

accuracy (ACC), specificity (SPEC), sensitivity (SENS),

and area under the curve (AUC) values were used as

metrics.

Table 2 shows the results obtained using tenfold cross

validation on the SISA dataset. The best results for all

benchmarks were obtained with the LSTM model. In

LSTM model, for ACC, SENS, SPEC and AUC 98.70%,

91.23%, 99.47% and 0.988 values were obtained, respec-

tively. SVM and LDA produced almost the same ACC

values. ACC for SVM was 96.06%, while it was 96.08%

for LDA. The CNN model, on the other hand, exhibited

some success over SVM and LDA with 96.85%. For SPEC

values, very close values were obtained between 97.53%

and 99.47% in all models. With FCDN, scores of 97.59%,

82%, and 99.18% were obtained for ACC, SENS, and

SPEC, respectively. In AUC values, deep learning models

performed better than traditional methods. SENS value in

SVM and LDA was 76% and 81%, respectively. Here,

CNN improved 9.74% compared to LDA, while this rate

was 10.23% for LSTM. Deep learning models can auto-

matically learn the features needed for tasks such as clas-

sification and detection from data [8, 9]. Thus, it extracts

useful features from information such as symptom data,

demographic data, and historical medical data and learns

their relationship with the hospitalization state. Therefore,

deep learning works better than traditional machine

learning methods [10].

Table 3 shows the classic validation results of the SISA

dataset. Here, 85% of the data is used for training, and the

remaining 15% is used for testing. The same values were

obtained for all benchmark metrics except for the slight

difference in AUC for SVM and LDA. ACC for these two

models was 94.94%. On the other hand, CNN and LSTM

achieved a 3.79% improvement in ACC, reaching 98.73%.

FCDN achieved a 2.53% improvement in ACC compared

to SVM and LDA. With FCDN, the ACC value was

obtained at 97.47%. For CNN and FCDN, there was 5.71%

Table 2 SISA tenfold cross-validation results

SVM LDA FCDN CNN LSTM

ACC 96.06 96.08 97.59 96.85 98.70

SENS 76.0 81.0 82.0 90.74 91.23

SPEC 98.52 97.91 99.18 97.53 99.47

AUC 0.956 0.963 0.981 0.981 0.988

Table 3 SISA 85–15 classic validation results

SVM LDA FCDN CNN LSTM

ACC 94.94 94.94 97.47 98.73 98.73

SENS 80.0 80.0 85.71 85.71 100

SPEC 98.44 98.44 98.61 100 98.61

AUC 0.985 0.984 0.976 0.988 0.988
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increase in SENS compared to traditional methods, and a

result of 85.71% was obtained. However, a 20%

improvement was achieved for LSTM, resulting in a 100%

SENS value. Also, the SENS value of LSTM increased by

8.77% compared to the tenfold validation score. This may

be because the minority class is better adjusted in classical

validation [20]. However, ACC value for SVM, LDA, and

FCDN is somewhat low compared to tenfold validation

results. In this case, it can be interpreted that the adjust-

ment in the minority class negatively affects the perfor-

mance of SVM, LDA, and FCDN. CNN provides the best

score for SPEC with 100%, followed by LSTM and FCDN

with 98.61%. Similar values were obtained for AUC in all

models.

As a result, compared to tenfold validation, in the tra-

ditional validation process, LSTM provided a significant

improvement in SENS versus an acceptable small drop in

SPEC. The reduction in the number of FN (The number of

outpatient decisions for patients who need to be hospital-

ized) here is much more critical in preventing situations

that could have fatal consequences. While doing this, it is

very important that SPEC values in both tables are better

than traditional methods in terms of preventing the waste of

resources. LSTM model gives much better results consid-

ering the results of the previous study [1] on these datasets,

Tables 2 and 3. LSTM is essentially a Recurrent Neural

Network (RNN) type. RNN has a looped neural network

structure designed for processing sequential data such as

health records. Thanks to the loop, unlike CNN and FCDN

structures, it takes into account not only existing inputs but

also historical information [12, 13]. This is similar to

looking at past records when evaluating patients’ current

status [20]. There is an important restriction for RNNs

called ‘‘long - term dependency’’ at this point. In case the

size of the sequential data increases, it becomes difficult to

reach important information in the early period. LSTM

overcomes this problem thanks to its special units. Storing

both long-term and short-term dependencies makes LSTM

models much more successful on sequential data. For many

real-world problems, the inputs or outputs do not have

sequences in most cases. However, an important point to

notice is that even if your inputs and outputs are fixed

vectors, this powerful formalism can be used to process

sequentially [23, 24].

Table 4 shows the tenfold validation results for the

SISAL dataset. ACC values of 94% and 93% were

obtained for SVM and LDA, respectively. However, the

ACC values of CNN and LSTM models trained directly

with the SISAL dataset without transfer learning (TL) are

significantly lower compared to traditional machine

learning methods. The main reason for this situation is that

the number of samples in the SISAL dataset is much lower

compared to the SISA dataset. Although deep learning

models have been used successfully in many different

tasks, they need relatively more data [9, 21, 22]. Accord-

ingly, the small size of the SISAL dataset has caused the

performance values to drop significantly. The FCDN value

obtained without transfer learning is also lower than SVM

and LDA. When compared to CNN and LSTM, it has

approximately 7% better performance. Consisting of a

small number of layers and neurons, narrow FCDNs are

generally sufficient to solve many problems in most cases

and are successful on small-sized datasets [25]. However,

TL approaches offer very serious opportunities in case the

data size is low [9]. Therefore, before training deep

learning models with SISAL dataset, we train with SISA

dataset. Input shapes are set in the same way in both

datasets. However, laboratory data values in the SISA

dataset are taken as ‘‘0’’ since they are found in a small

number of samples. FCDN, CNN, and LSTM models are

first trained with the SISA dataset. The values obtained

here constitute the starting weights of the model. After-

ward, training is carried out again with the SISAL dataset.

After the TL process, the CNN model’s ACC value

increased from 79.9 to 96%, while in the LSTM model it

increased from 80 to 97%. The performance of the FCDN

model increased from 87 to 92%. TL approach significantly

increases classification performance for all deep learning

models. However, the performance of the FCDN model is

slightly lower than other models. While FCDNs are

structure agnostic, which makes them widely applicable, in

most cases they perform less than special-purpose networks

[14]. The values obtained with LSTM and CNN models

after TL on the SISAL dataset are better than traditional

machine learning models, similar to Table 2 results. Here,

too, it was provided by the highest ACC in the LSTM-TL

model. CNN-TL and LSTM-TL models for SENS per-

formed quite similarly with 98.55% and 98.39%, respec-

tively. On the other hand, in SVM and LDA, 95% and

Table 4 SISAL tenfold cross-

validation results
SVM LDA FCDN FCDN (TL) CNN CNN (TL) LSTM LSTM (TL)

ACC 94.0 93.0 87.0 92.0 79.9 96.00 80.0 97.0

SENS 95.0 93.33 84.13 93.33 78.26 98.55 98.41 98.39

SPEC 92.50 92.50 91.89 90 83.87 90,32 48.65 94.74

AUC 0.963 0.942 0.829 0.902 0.889 0.981 0.891 0.981
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93.33% values were obtained for SENS, respectively. As in

the SISA dataset, LSTM and CNN models have also

increased SENS values here. The highest performance for

SPEC was achieved with LSTM-TL model with 94.74%.

The SPEC value of the CNN-TL model was 90.32%,

slightly below SVM and LDA. The highest values in AUC

values were provided by CNN-TL and LSTM-TL models

with 0.981. Figure 8 shows the performance of machine

learning algorithms for SISAL dataset with tenfold

validation.

Table 5 shows the classic validation results of the

SISAL dataset. Here, 70% of the data was used for edu-

cation, and the remaining 30% was used for testing. The

ACC values of LSTM and CNN models used without TL

have remained at a very low value, 75%. The performance

of FCDN without TL is better than LSTM and CNN

models with ACC 85.71%. However, with the TL trans-

action and much better adjustment of the distribution of the

minority class, both CNN-TL and LSTM-TL were suc-

cessfully implemented over the all test data and was pro-

vided an ACC value of 100%. Figure 9 and 10 show the

ROC curves for SISA and SISAL datasets obtained with

SVM and LSTM, respectively. The highest circumstance of

performances with TL (100% accuracies) was obtained by

CNN and LSTM deep models in SISAL. Although small

datasets are known to tend to reach overfitting situation in

deep models, the same small datasets also have the

potential to achieve higher predicted accuracy with pre-

trained deep models with a transfer learning strategy in

recent years [14, 25–27]. However, a relatively lower

accuracy (\ 100%) could be calculated if the dataset vol-

umes and features were higher. The small datasets tend to

reach high accuracy with shallow algorithms (SVM and

LDA) compared to the deep learning algorithms [25]. The

classification process has made by linear/quadratic kernels

and projection methods in SVM and LDA, respectively.

This truth was verified and can be observed in Tables 4 and

5 (for small SISAL dataset) if transfer learning impact is

neglected on deep models.

It is quite clear that deep learning models are successful

in deciding the hospitalized status of individuals with a

suspected arboviral virus on both datasets. However, the

LSTM model was much more stable in all tests and showed

high performance. It also achieved a significant improve-

ment compared to the best SISA (ACC: 96.2%, AUC: 0.9)

and SISAL (ACC: 92.6%, AUC: 0.94) reported in research

paper [1]. In addition, the LSTM model proved to be much

more robust to the class imbalance problem. This is very

important in terms of reducing critical errors that may arise

from low SENS values. High SPEC values are also very

valuable in terms of preventing possible resource waste. In

addition to these, deep learning models have achieved

successful results with the TL approach on the low-size

SISAL dataset. Although deep learning models generally

require large data, they also provide very successful results

on very small datasets, especially with TL [14]. Successful

results of the TL approach are promising in future studies,

as this method can be applied among different diseases

with similar symptoms. In other words, data obtained from

one disease information can be used for another disease

that does not have much data.

Furthermore, according to reported previous research

paper about arbovirus [1], the highest variable influences

for the prediction of hospital subjects and outpatients were

remarked as the symptoms of drowsiness, bleeding, vom-

iting, and temperature for SISA. Besides, for the SISAL

dataset, lower hematocrit and platelet counts were observed

in the hospital individuals compared to outpatients [1].

Temperature vs. drowsiness (SISA) and hematocrit vs.

platelet count (SISAL) predictors were observed to repre-

sent the effects of these properties on the prediction by

creating scatter plots, as shown in Fig. 11. The relationship

between the variables confirms that the two classes are

almost easily distinguishable in the scatter plot diagrams.

Fig. 8 Performance of machine learning algorithms for SISAL with tenfold validation
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The level of statistical significance (p-value) is an

important parameter for decision making in medicine.

Hence, the features of 9–20 except feature-12 and feature-

19 show the highly significant different (p-value\ 0.001)

in the SISA dataset. These features include head pain,

nausea, muscle or joint pain, bleeding, rhinorrhea, vomit-

ing, drowsiness or lethargy, coughing, abdominal pain,

retro-orbital pain, respectively. Moreover, the feature-7

(temperature) has significantly different value (p-value =

0.013). The other features present no significant difference

(p-value[ 0.05).

In SISAL dataset, there are significant difference (p-

value\ 0.05) in the feature-6 (waist circumference), fea-

ture-7 (temperature), feature-9 (head pain), feature-10

Table 5 SISAL 70–30 classic

validation results
SVM LDA FCDN FCDN-TL CNN CNN (TL) LSTM LSTM (TL)

ACC 92.86 96.43 85.71 92.86 75.0 100.0 75.0 100.0

SENS 93.33 100 80.0 93.33 80.0 100.0 86.67 100.0

SPEC 92.31 92.31 92.31 92.31 69.23 100.0 61.54 100.0

AUC 0.974 0.985 0.895 0.969 0.821 1 0.733 1

Fig. 9 ROC curves of SVM algorithms for SISA (left) and SISAL (right) classic validation datasets

Fig. 10 ROC curves of LSTM algorithms for SISA (left) and SISAL (right) classic validation datasets
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(nausea), feature-11 (muscle or joint pain), feature-13

(bleeding), feature-16 (drowsiness or lethargy), feature-17

(coughing), feature-19 (diarrhea), feature-20 (retro-orbital

pain), feature-21 (positive tourniquet test), feature-22 (he-

matocrit) and feature-26 (platelet count) according to the

SISAL dataset predictors. Then the other features have no

significant difference at the p-value ([0.05).

4 Discussion

The purpose of this retrospective study is to enlighten to

the clinicians about the ML performances via developing a

robust and effective prediction system using the ML

models over the predictors of medical records (SISA and

SISAL datasets). The decision is to identify for hospital

patients or outpatients with arboviral infection in resource-

limited settings of rural locations. In view of these limi-

tations, investigated predictors include demographic data,

symptom data, and laboratory data [1]. The constructed

prediction model is based on FCDN, CNN, LSTM, SVM,

and LDA algorithms among the MLs.

It is a fact that deep learning models tend to achieve

more effective results with optimum solution in large

datasets. However, large datasets (such as SISA/SISAL

medical records) are not available or can be scarce in

limited-resource settings for clinicians especially such as

arboviral diseases [1]. In such cases, pre-training and

transfer learning can be a reasonable choice in deep

learning models with small datasets [14, 25–27]. Then

these deep learning models can generalize problems with

fine-tuning and can produce significant advanced perfor-

mances better than shallow algorithms implemented by the

previous report [1, 14, 25–27]. As our observation is the

same with this truth. According to the results, LSTM and

CNN with transfer learning (TL) have achieved better

performances than traditional (shallow) kernel-based

algorithms (ACC = 92.86% for SVM and ACC = 96.43%

for LDA) reaching up to the 100% ACC and AUC of 1 in

SISAL dataset for traditional validation. Using pre-trained

models of CNN-LSTM with transfer learning effect has

provided significant increments (ACC = 16.1–25, AUC =

0.09–0.267) on the lack of labeled SISAL datasets in

terms of the performances of MLs as in the boosting

strategy literature [14, 25–27]. TL approach has also

increased the performance of the FCDN model. However,

this rate of increase is lower compared to CNN and LSTM

(Table 6).

When TL is not used, its performance on very small

SISAL dataset is better than CNN and LSTM models.

Hence, the potentials for applying deep learning with TL

over the small datasets (SISA/SISAL datasets) has been

shown in clear. In addition to this, catastrophic forgetting

in machine learning is an inevitable problem to construct a

general learning system with TL without losing old task

ability for sequential tasks, especially in changing goals

[28–30]. Firstly, the advantage is for deep models that our

goals (hospital patient/outpatient) are the same to construct

robust models with TL. However, this inevitable problem

has been handled to reduce with fine-tuning (early stoped

of training), rehearsal, sharp activation functions (applied

ReLU), well-balanced sets (used with tenfold cross-vali-

dation and 70–30 classic validation), hyper-parameters

with lower learning rate (used Adam Optimization with

low learning rate around 0.001), max-pooling operation in

CNN (implemented 2 layers) and employing difficult tasks

(leading to less forgetting and leading to better general-

ization) strategies [28–31].

The last option about the difficult task was that the

SISAL dataset includes laboratory predictors in addition to

the demographic data, symptoms, and past medical history.

Hence training a hard task later with more predictors in a

Fig. 11 Scatter plot representation for the highest variable influences in SISA and SISAL predictors
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sequence task during/after TL may have caused better

generalization because it can cover more error-surfaces

[28–31]. All these effects might have reduced the catas-

trophic forgetting without losing of generalization ability

and have provided higher outcomes with TL (in Tables 4

and 5). Furthermore, the previously reported study out-

comes were summarized and compared with our proposed

study in Table 7.

Generally, the rule of thumb for evaluating the AUC

scores addresses that prediction and diagnostic ability of

MLs have outstanding (AUC[ 0.9) and excellent dis-

crimination (0.8 C AUC[ 0.7) if the AUC scores range

between the stated values [19]. From this point of view,

AUC scores associated with SENS and SPEC values in all

datasets (both for tenfold and traditional validation) have

been obtained greater than 0.8 for all MLs except LSTM

(AUC = 0.733). The ROC curves approved as the gold

standard [19]. Then these curves have also consistent with

SENS, SPEC values, and AUC scores for both SVM and

LSTM. Furthermore, SISA results also suggest improved

outcomes (reached up to the 98.73% ACC for CNN and

LSTM) compared to the previous reported study [1].

5 Conclusion

The expectation of these improved outcomes aims to

implement and to compare deep learning (FCDN, CNN,

and LSTM) and kernel-based algorithms (SVM and LDA)

over the arboviral infection records as a clinical-decision

support system. Hospital systems, payers, and regulators

have taken into account reducing the length of stay (LOS)

and early admission with an uncertain utility [27, 32].

Hence, to be improved the performance of healthcare

systems, these model-based algorithms can effectively be

used when deciding accurately on the condition of hospital

subjects and outpatients in arboviral infections. Moreover,

it is imperative to diagnose these patients early. Hence

these machine learning-based prediction models may also

provide to reducing the time of triage and financial burdens

at the admission level over the clinical characteristics

[1, 32, 33]. In addition to helping decision of hospitaliza-

tion status, neurological disorders caused by arbovirus

infections may be enlightened, especially by using deep

learning and transfer learning models for hospital scene

and clinician [34, 35]. Future research using our model-

based approach could prospectively analyze patients with

Table 6 The statistical distribution of the SISA and SISAL datasets

SISA dataset (n = 534)

Par./Fea 1 2 3 4 5 6 7 8 9 10 11 12 13 14

std 17.03 0.50 23.12 22.42 5.67 17.63 0.83 0.24 0.45 0.51 0.44 0.47 0.27 0.44

p-value 0.781 0.244 0.106 0.550 0.481 0.070 0.013 0.361 1e3 0.001 0.001 0.087 0.001 0.001

Par./Fea 15 16 17 18 19 20 21 22 23 24 25 26 27 28

std 0.46 0.43 0.47 0.52 0.41 0.51 0.83 0.41 0.28 0.22 0.18 0.27 0.39 0.47

p-value 0.001 0.001 0.001 0.017 0.225 0.001 0.821 0.590 0.57 0.331 0.243 0.328 0.458 0.915

SISAL dataset (n = 98)

Par./
Fea

std p-
value

Par./
Fea

std p-
value

Par./
Fea

Std p-
value

Par./
Fea

std p-
value

Par./
Fea

std p-
value

1 13.86 0.655 9 0.50 0.001 17 0.37 0.044 25 17.36 0.278 33 0.47 0.579

2 0.50 0.266 10 0.47 0.001 18 0.48 0.257 26 96,064 0.001

3 15.85 0.766 11 0.50 0.001 19 0.44 0.002 27 0.44 0.604

4 19.29 0.988 12 0.38 0.682 20 0.50 0.001 28 0.26 0.337

5 5.08 0.665 13 0.38 0.010 21 0.86 0.033 29 0.14 0.778

6 18.53 0.173 14 0.30 0.007 22 4.57 0.029 30 0.20 0.227

7 0.96 0.018 15 0.50 0.035 23 4536 0.178 31 0.10 0.428

8 0.17 0.827 16 0.50 0.001 24 21 0.349 32 0.38 0.212

Where Par. defines the statistical parameters, Fea. shows the features of the dataset; std stands for standard deviation. If p-values are 0,001, this
means p\ 0,001. Mann–Whitney U test was used for statistical comparison of hospital patient and outpatient according to the features

(Significant at p-value\ 0.05 and No Significant at p-value[ 0.05). (The details of the SISA and SISAL datasets’ features can found in https://

www.openicpsr.org/openicpsr/project/115165/version/V2/view and in [1] reference)
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Covid-19 and stratify them according to risk factors whe-

ther a patient should be hospital person or outpatient

[2, 32].
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