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When a clinical trial is subject to a series of interim analyses as a result of which
the study may be terminated or modified, final frequentist analyses need to take
account of the design used. Failure to do so may result in overstated levels of
significance, biased effect estimates and confidence intervals with inadequate
coverage probabilities. A wide variety of valid methods of frequentist analysis
have been devised for sequential designs comparing a single experimental treat-
ment with a single control treatment. It is less clear how to perform the final
analysis of a sequential or adaptive design applied in a more complex setting,
for example, to determine which treatment or set of treatments amongst several
candidates should be recommended. This article has been motivated by consid-
eration of a trial in which four treatments for sepsis are to be compared, with
interim analyses allowing the dropping of treatments or termination of the trial
to declare a single winner or to conclude that there is little difference between
the treatments that remain. The approach taken is based on the method of
Rao-Blackwellization which enhances the accuracy of unbiased estimates avail-
able from the first interim analysis by taking their conditional expectations given
final sufficient statistics. Analytic approaches to determine such expectations are
difficult and specific to the details of the design: instead “reverse simulations”
are conducted to construct replicate realizations of the first interim analysis
from the final test statistics. The method also provides approximate confidence
intervals for the differences between treatments.
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1 INTRODUCTION

This article is motivated by a design for a trial in sepsis,1 with the objective of comparing four treatments for sepsis in
respect of survival of the patient to 28 days, analyzed as a binary response and referred to as “success”. Although one of
the treatments is standard care, it is given no special privileges: all four treatments are dealt with in the same way. At
each of a series of interim analyses, all pairwise comparisons of remaining treatments are made. Any treatment that is
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worse than any other according to predetermined criteria is eliminated from the trial. If only one treatment remains, it
is declared the winner and the trial stops. If all remaining treatments are sufficiently similar to one another, they are
declared joint winners and the trial stops. Otherwise the trial continues to the next interim analysis. At the end of such a
trial, how should the differences between the performances of the treatments be estimated, bearing in mind the potential
biases introduced by the elimination and stopping rules?2

Estimation following a sequential trial has a rich statistical literature. For the case of trials comparing two treatments,
methods may be based on orderings of the final sample space3-6 or on direct adjustment of the maximum likelihood
estimate to reduce its bias.7 Overviews of alternative approaches are available.8,9 For adaptive designs, which are not
entirely predefined, estimation methods can be devised by extending the ordering approach10,11 or through shrinkage
approaches.12,13 In this article, an approach based on Rao-Blackwellization14,15 will be developed. This is a method that
has been adopted by previous authors for certain specific designs.16,17

It is difficult to generalize approaches based on orderings of the final sample space to trials of multiple treatments
because there are so many possible final samples and it becomes unclear how to determine which provide stronger evi-
dence favoring a given alternative over the null than the sample observed. Direct adjustment of maximum likelihood
estimates depends on knowledge of the distribution of the final sample statistics around the stopping boundary. While
this can be characterized for a comparison of two treatments that relies on a single test statistic, it is far more challenging
to achieve for multiple treatments compared in respect of several pairwise test statistics. Here the Rao-Blackwellization
approach will be developed. This is based on the expected value of an unbiased estimate computed at the first interim
analysis (and thus unaffected by any stopping rules), conditional on sufficient statistics computed at the end of the study.
Rather than finding this test statistic and its SE analytically, it will be determined by reverse simulation. That is, start-
ing with the final values of the numbers of patients and the numbers of successes for each treatment (and when present,
within each stratum), hypergeometric sampling will be used to create possible samples at each earlier interim analy-
sis until that at the first interim has been recreated. Only those sequences that are consistent with continuation to the
observed end of the sequential procedure are accepted. The mean and variance of unbiased estimates from each accept-
able replicate simulated first interim analysis are then used to provide unbiased estimates and approximate confidence
intervals that allow for the sequential nature of the design.

The approach developed has the potential for implementation following a wide range of multiple treatment trials and
flexible adaptive designs. It is often easier to work backwards from the end of the trial and determine which sequences
of data would have led to continuation to the final sample, than to project such sequences from the outset. Much of the
development and evaluation of the method will be made in the context of a conventional sequential comparison of just
two treatments because that setting is simpler analytically and computationally, and because it allows comparisons to be
made with more established methods.

In the next section the trial design described in Magaret et al1 is reviewed. Instead of using the elimination and stopping
rules proposed in that article, the performance of alternative rules based on the triangular test8 is examined. It must
be emphasized that this design serves here only as an illustration of the new estimation approach. The latter could be
applied to a wide range of multiple treatment designs and indeed other forms of flexible adaptive design. In Section 3, the
simple comparative triangular design that forms the basis of the four treatment evaluation is extracted and examined in
isolation, and in Section 4, naïve and orderings-based analyses are developed in the two-treatment context, together with
two forms of the Rao-Blackwellization approach. The new method is applied to simulated data from the four treatment
design in Section 5, and to simulated data from a simpler design for a smaller trial in Section 6. Section 7 draws together
conclusions from this work.

2 A DESIGN FOR THE COMPARISON OF FOUR TREATMENTS

The design introduced by Magaret et al1 comprised up to four successive analyses based on constant nominal 𝛼-levels.
Here the overall structure of that design is retained but a different approach is taken to the elimination and stopping rules:
one which will allow the extraction of a simple triangular test8 for examination in the central sections of this article. The
design examined in this article was accepted for use by the investigators and was written into the protocol. For reasons
unconnected with the trial design or any other statistical considerations, the trial did not actually run.

Treatment effects are expressed in terms of odds ratios for success. The value 1.5 is taken to be of clinical importance.
The probability of success (survival to 28 days) for a patient receiving treatment Ti is denoted by pi, i= 1,… , 4. The log-odds
ratio for treatment Ti relative to Tj is denoted by 𝜃ij = log[{pi (1− pj)}/{pj(1− pi)}]. The design seeks to satisfy the following
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requirements. Type I error requirement: For any treatment Ti, if there is another treatment Tj, i≠ j such that pi = pj, then
the probability that the trial finds Ti to be the sole winner is to be ≤0.025. Power requirement: For any pair of treatments
Ti and Tj, if Ti is superior to Tj to the extent that 𝜃ij = log(1.5), then the probability that Tj would be eliminated from the
study is to be ≥0.90.

Interim analyses occur whenever 36 new patient outcomes become available on each of the treatments remaining
in the study. The maximum sample size is set at 2772. Patient responses and interim analyses continue until the trial
stopping rules are satisfied or else it is impossible to assign 36 more patients to all remaining treatments within this quota.
The probability that not all treatment comparisons will be resolved after 2772 patient responses have been observed is
small. If all four treatments were to remain in the trial, the maximum number of interim analyses would be about 20:
more could occur if treatments were eliminated.

At the kth interim analysis, every pair of treatments Ti and Tj will be compared in terms of the statistics Zijk and V ijk
where

Zijk =
njkSik − nikSjk

nik + njk
and Vijk =

niknjk(Sik + Sjk)(nik + njk − Sik − Sjk)
(nik + njk)3 . (1)

Here nik denotes the number of patient responses available for patients on Treatment Ti, and Sik the number of those
who have survived to Day 28. For a stratified version of the procedure, the statistics shown are computed separately within
each stratum, and then summed over strata to provide the values of Zijk and V ijk to be used. Notice that alternative and
equivalent formulations for these two statistics are:

Z𝑖𝑗𝑘 =
n𝑖𝑘n𝑗𝑘

n𝑖𝑘 + n𝑗𝑘

(
S𝑖𝑘

n𝑖𝑘

−
S𝑗𝑘

n𝑗𝑘

)
and V𝑖𝑗𝑘 =

n𝑖𝑘n𝑗𝑘

n𝑖𝑘 + n𝑗𝑘

(S𝑖𝑘 + S𝑗𝑘

n𝑖𝑘 + n𝑗𝑘

)(
1 −

S𝑖𝑘 + S𝑗𝑘

n𝑖𝑘 + n𝑗𝑘

)
.

The first shows that Zijk is the difference between the proportions of successes on treatments Ti and Tj, multiplied by
a factor that increases as sample size increases and is equal to 1∕4 (nik +njk) when nik = njk. The second shows that V ijk is
the product of the overall success rate and the overall failure rate on the two treatments multiplied by that same factor. It
can be shown that V ijk always increases between interim analyses.

At the kth interim analysis, it is concluded that Ti is better than Tj if Zijk ≥ 10.90266+ 0.12380V ijk, no different from
Tj if Zijk ∈ (10.90266− 0.37140V ijk, −10.90266+ 0.37140V ijk), and worse than Tj if Zijk ≤−10.90266− 0.12380V ijk. If the
interval used to judge no difference is empty because the left-hand limit is larger than the right-hand limit, then the
no difference conclusion is not possible. Whenever one treatment is found to be worse than another according to this
criterion, that treatment is eliminated from the trial. Randomization continues between the remaining treatments, and
interim analyses continue to take place whenever 36 new outcomes have become available for each remaining treatment.
The trial stops when only one treatment remains, or when all remaining treatments are found to be no different from
one another. For the purposes of the simulations conducted here, the trial also stops if a further interim analysis would
require the total number of patients to exceed 2772, although in practice investigators might choose an alternative strategy
as discussed later in this section.

The elimination and stopping rules, as they relate to a comparison between one pair of treatments, are shown in
Figure 1. Each interim analysis is governed by discs shown on the boundaries, and at the kth interim analysis the value
of Zijk is plotted against that of V ijk, and the conclusion indicated is drawn. The design has been developed from a double
triangular design devised to compare two experimental treatments.8,18 The boundaries are computed to satisfy the type I
error and power requirements mentioned above, interpreted for the simple case of two treatments. Computation is based
on the SEQ function of SAS, following References 19 and 20 but using the four boundary option of SEQ. The increment
in information between interim analyses for this double triangular test is V = 4.40337. When p1 = 0.40 and p2 = 0.50 or
when p1 = 0.50 and p2 = 0.60 (both corresponding to an odds ratio of 1.5), this corresponds to an increase in sample size
between interim analyses of 35.58 per treatment, which is rounded up to 36 in this application.

Applied to the case of four treatments, the type I error and power requirements specified at the beginning of this
section are valid. The probability that T1 is declared the sole winner, when in fact p1 = p2, is greatest when the success
rates on T3 and T4 are both zero so that there is no chance of them being declared either sole or joint winners. There would
also be a negligible chance that they would be declared no different from T1 or from T2 or from both. In this circumstance,
the probability that T1 would be declared the sole winner is therefore equal to the probability of T1 being found better
than T2 in the double triangular test when 𝜃12 = 0: that is 0.025. Furthermore, the probability that T1 is eliminated, when
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F I G U R E 1 The elimination and stopping rule for a single pair of treatments

𝜃12 = log(1.5) is least when the success rates on T3 and T4 are both zero so that there is no chance that T1 would be
eliminated relative to them. In this circumstance, the probability that T1 would be eliminated is therefore equal to the
probability of T2 being found better than T1 in the double triangular test when 𝜃12 = log(1.5): that is 0.900.

Properties of the design estimated from million-fold simulations, are shown in Table 1 below. In each of the Cases
1 to 12, one set of treatments share a high success rate and the rest share a low rate, with the odds ratio between the
two rates being 1.5. In Cases 13 to 16, all success rates are equal. Also shown are “Mixed Cases”. For these, we imagine
that the trial is conducted at four centers each recruiting equal numbers of patients. In the simulations, the 36 patients
recruited to each treatment for each new interim analysis are distributed amongst the centers at random. The four centers
in the mixed cases each have a different set of success probabilities, namely the four sets shown in the cases above. In the
simulations for the mixed cases, the statistics Z and V given in (1) are stratified for center: that is the four within-center
values of Z and V are calculated and then summed to provide the values to be compared with the stopping boundaries.

In Cases 1 to 4 and Mixed Case I, the probability that T4 is correctly eliminated exceeds 0.90, as specified in the power
requirement. This is true for T2 and T3 as well, although these results are not shown: in general the full results reflect the
symmetry of each scenario. Treatment T1 is correctly selected with a probability exceeding 0.80: this is a desirable feature,
although not part of the formal specification. In Cases 5 to 8 and Mixed Case II, the probability of wrongly declaring T1 to
be the winner is no more than 0.026, (essentially) satisfying the type I error requirement. The probability of eliminating
T4 is well above the value of 0.90 of the power requirement. The probability of correctly declaring T1 and T2 to be joint
winners is above 0.90, except for Case 8 where it is 0.885. In Cases 9 to 12 and Mixed Case III, the probability that T1 wins
is 0.005 and the probability that T4 is eliminated is greater than 0.975. The probability of correctly identifying the three
joint winners is greater than 0.814. Finally, in Cases 13 to 16 and Mixed Case IV, the probability that T1 wins is 0.002 or
less in all cases. The probability of correctly identifying all four treatments as no different is greater than 0.748, except for
case 16 where it is 0.591.

Average total sample sizes at termination are around 1400 to 2400. Sample sizes are smaller when success probabilities
are close to 1∕2, and larger when they are close to 1 or to 0. They are also smaller when there is a single treatment that
is more efficacious than the others, or when there are two good treatments. Cases where three or all four treatments are
equally efficacious require larger sample sizes before a conclusion is reached. Ethically, this is sound, as if all treatments
are the same, no group of patients is being disadvantaged by being in the trial. The full results show that sample sizes on
poor treatments tend to be small and those on good treatments to be large, indicating the effectiveness of eliminating poor
treatments. The percentage of inconclusive trials (trials where after 2772 patients uncertainty between at least one pair
of treatments remains) was 26.6% in Case 16. In all other cases, such percentages are small or negligible. If the trial ends
without either identifying a single winner or concluding that there is no difference between the remaining treatments,
then investigators can accept the result available, or else recruit additional patients to force a conclusion.

The construction of the decision rules of the design guarantees that it is not possible to declare two treatments to be
no different from one another during the first six interim analyses (see Figure 1). It is possible to stop at any analysis
to conclude that one of the treatments is better than all of the others, but the evidence has to be very strong. Minimal
evidence for T2 to be eliminated relative to T1 at the first interim analysis requires 23 successes out of 36 on T1 and none
on T2: the corresponding one-sided nominal P-value lies well below 0.00001. In fact, under most realistic scenarios, the
probability of stopping at one of first three interim analyses is negligible.
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T A B L E 1 Properties of the four treatment design from million-fold simulations

Case p1 p2 p3 p4 E(n) win1 elim4 nod still

1 0.500 0.400 0.400 0.400 1426 0.819 0.920 0.045 0.000

2 0.600 0.500 0.500 0.500 1427 0.819 0.919 0.044 0.000

3 0.692 0.600 0.600 0.600 1537 0.816 0.916 0.043 0.004

4 0.771 0.692 0.692 0.692 1765 0.802 0.902 0.039 0.039

Mixed Case I (Cases 1-4) 1531 0.819 0.918 0.043 0.004

5 0.500 0.500 0.400 0.400 1389 0.025 0.975 0.901 0.000

6 0.600 0.600 0.500 0.500 1411 0.025 0.975 0.903 0.000

7 0.692 0.692 0.600 0.600 1540 0.026 0.974 0.901 0.002

8 0.771 0.771 0.692 0.692 1803 0.026 0.966 0.885 0.024

Mixed Case II (Cases 5-8) 1524 0.026 0.975 0.901 0.001

9 0.500 0.500 0.500 0.400 1540 0.005 0.988 0.861 0.000

10 0.600 0.600 0.600 0.500 1583 0.005 0.988 0.861 0.000

11 0.692 0.692 0.692 0.600 1752 0.005 0.987 0.857 0.003

12 0.771 0.771 0.771 0.692 2066 0.005 0.975 0.814 0.057

Mixed Case III (Cases 9-12) 1722 0.005 0.987 0.857 0.003

13 0.500 0.500 0.500 0.500 1795 0.002 0.066 0.785 0.001

14 0.600 0.600 0.600 0.600 1862 0.002 0.066 0.782 0.005

15 0.692 0.692 0.692 0.692 2071 0.002 0.064 0.748 0.053

16 0.771 0.771 0.771 0.771 2381 0.001 0.056 0.591 0.266

Mixed Case IV (Cases 13-16) 2028 0.002 0.066 0.757 0.036

Note: win1 = proportion of runs in which T1 wins; elim4 = proportion of runs in which T4 is eliminated; nod = proportion of runs in
which: for Cases 1-8 and Mixed Cases I-II, T1 and T2 are declared no different from one another; for Cases 9-12 and Mixed Case III, T1,
T2 and T3 are declared no different from one another; for Cases 13-16 and Mixed Case IV, all treatments are declared no different from
one another; still = proportion of runs in which not all treatment comparisons are resolved after 2772 responses.

It can be seen that the procedure presented here achieves the type I error and power requirements specified, and has
other desirable properties in terms of high probabilities of appropriate conclusions and relatively low expected sample
sizes. It must be stressed that these interim analyses are very simple to carry out. The following information on all patients
randomized 28 days ago or earlier is all that is needed: Patient identification number; Treatment center and any other
baseline stratification factors; Date of randomization; Treatment arm (T1, T2, T3 or T4); and Survived to Day 28 (YES or
NO). All but the last are available for a month before the patient is to be included in interim analyses. More extensive
reviews of the data might be planned, perhaps to coincide with every fourth or every fifth interim analysis. Interim anal-
yses are to be conducted whenever the average number of patient responses per remaining treatment collected since the
previous interim analysis reaches 36. Ideally, this should be 36 patients per treatment, but the formulae given at (1) can
be used when sample sizes are unequal, and the accuracy will remain good provided that sample sizes per treatment are
approximately equal. The method is also likely to be forgiving of slight slippage from an average of exactly 36 new patients
per treatment.

3 CONVENTIONAL POST-TRIAL ESTIMATION FOR A SIMPLE
TRIANGULAR TEST

Now consider a comparison between just two treatments, T1 and T2. A series of up to 20 interim analyses are con-
ducted, at the kth of which the statistics Z12k and V 12k defined in (1) will be computed. Here, they will be denoted
simply as Zk and V k, and the log-odds ratio 𝜃12 by 𝜃. The trial will be stopped with the conclusion that T1 is better than
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T2 if Zk ≥ 10.93898+ 0.123134V k, or with the conclusion that T1 is no better than T2 if Zk ≤−10.93898+ 0.369402V k.
The design is constructed using published code,19,20 and the risk of one-sided type I error is set to 0.025 and the
power for an odds ratio of 1.5 to 0.90. Note that the boundaries differ slightly from those used in the four treatment
case, because the latter were based on the properties of pairwise double triangular tests. Here, T1 can be thought
of as the experimental treatment and T2 as the control: the design is asymmetric in dealing with the treatments.
The maximum value of V is V 20 = 88.8380, at which point the stopping boundaries meet. Hence V 1 = 4.4419.
For p1 = 0.60 and p2 = 0.50, so that 𝜃 = log(1.5), the total sample size per interim analysis is approximately 72
(36 per treatment). In simulations reported here, additional interim analyses are conducted beyond the 20 initially
planned, up to a maximum of 25, if increments in V fall short of the anticipated value of 4.4419 and no bound-
ary has been reached. In practice, if increments in V are observed to be low, then sample sizes per interim can be
increased.

Table 2 shows the results of 12 simulated realizations of this triangular design, ordered by increasing strength of
evidence that T1 is better than T2. Also given are results of a naïve analysis in which the sequential nature of the design is
ignored, and a valid analysis based on the ordering of Fairbanks and Madsen.21 For the naïve analysis, the estimated value
of 𝜃 is taken to be θ̂ = Z*/V* with SE = 1/

√
V*, and the corresponding 95% confidence interval (𝜃L, 𝜃U) is (θ̂ ± 1.96SE),

where Z* and V* are the values of Z and V found from the final dataset. The orderings analysis is computed following
References 19 and 20. In each computation the value of V i is taken to be equal to i*V 20/20. In practice the true values of
the V i would be used, but the approximation is used here for simplicity, and to allow readers to check the computation
of the estimates. The analysis methods developed in the next section do not depend on the intermediate values of the
V i. The bias-adjusted estimate7 has no corresponding accurate method for computing confidence intervals and for that
reason, it is not explored here.

The orderings analysis provides valid P-values and reduces estimates of 𝜃 when the upper boundary is crossed and
increases them in the case of the lower boundary. It provides totally satisfactory results based on the actual sequential
design used. However, it is difficult to see how it might be generalized for use following a sequential comparison of more
than two treatments.

T A B L E 2 Details of 12 realizations of the triangular design and of two simple forms of analysis

Terminal data Naïve analysis Orderings analysis

Case int* n* S1* S2* Z* V* b* P-val �̂� 𝜽L 𝜽U P-val 𝜽M 𝜽L 𝜽U

1 2 144 35 59 −12.0 8.160 0 1.000 −1.471 −2.157 −0.784 1.000 −1.470 −2.156 −0.783

2 3 216 68 87 −9.5 10.943 0 0.998 −0.868 −1.461 −0.276 0.997 −0.857 −1.454 −0.256

3 4 288 102 118 −8.0 12.986 0 0.987 −0.616 −1.160 −0.072 0.983 −0.599 −1.149 −0.044

4 10 720 284 285 −0.5 29.833 0 0.537 −0.017 −0.376 0.342 0.485 0.007 −0.358 0.378

5 8 576 201 201 0.0 30.359 0 0.500 0.000 −0.356 0.356 0.464 0.017 −0.344 0.382

6 13 936 275 259 8.0 57.337 0 0.144 0.140 −0.119 0.398 0.089 0.187 −0.084 0.468

7 9 648 252 222 15.0 31.819 1 0.004 0.471 0.124 0.819 0.007 0.454 0.097 0.807

8 6 432 120 88 16.0 26.963 1 0.001 0.593 0.216 0.971 0.003 0.563 0.168 0.949

9 6 432 161 130 15.5 23.745 1 0.001 0.653 0.251 1.055 0.002 0.623 0.205 1.034

10 5 360 135 108 13.5 19.744 1 0.001 0.684 0.243 1.125 0.002 0.676 0.231 1.120

11 5 360 124 92 16.0 21.600 1 0.000 0.741 0.319 1.162 0.001 0.704 0.260 1.137

12 3 216 82 55 13.5 12.527 1 0.000 1.078 0.524 1.631 0.000 1.075 0.519 1.629

Note: Terminal values of the number of interim analyses, total sample size, the numbers of successes on T1 and T2, and of the statistics Z and V are shown as
int*, n*, S1*, S2*, Z*, and V*, respectively. Patients are evenly divided between the two treatments so that n1* = n2* = 1∕2n*. b* denotes the boundary crossed,
with 0 denoting the lower boundary and 1 the upper boundary. For the naïve analysis, the estimated value of 𝜃 is Z*/V* with 95% confidence interval
(𝜃L, 𝜃U) = (θ̂ ± 1.96/

√
V*). The orderings analysis is based on the ordering of Fairbanks and Madsen21 and computed following.19,20
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4 POST-TRIAL ESTIMATION BASED ON RAO-BLACKWELLIZATION FOR
A SIMPLE TRIANGULAR TEST

The Rao-Blackwellization approach14,15 is based on the estimate θ̂1 = Z1∕V1 deduced from the data available at the first
interim analysis, which is unbiased for 𝜃 as it does not depend on the stopping rule in any way. Consequently, the estimate
θ̃ = E(θ̂1|Z∗, V∗), is also unbiased for 𝜃 and has smaller variance. The statistics (Z*, V*) are jointly sufficient for 𝜃, as will
be demonstrated in Section 4.1 below. They are not complete, so that it cannot be claimed that θ̃ is the minimum variance
unbiased estimate. However, a less universal statement can be made, as follows. The estimate θ̃ is truncation-adaptable,
meaning that it depends only on the form of the interim analyses that were performed and not on those that were planned
to take place but did not. (Orderings analyses are also truncation-adaptable, but the bias-adjusted method7 is not.) The
estimator θ̃ achieves minimum variance within the class of unbiased truncation-adaptable estimators.22

Now E(θ̃) = 𝜃, and

var(θ̃) = var{E(θ̂1|Z∗, V∗)} = var(θ̂1) − E{var(θ̂1|Z∗, V∗)} = (1∕V1) − E{var(θ̂1|Z∗, V∗)}.

In order to compute confidence intervals, it will be assumed that the pivot {θ̃ − E(θ̃)}∕
√

var(θ̃) follows a standard
normal distribution and that E{var(θ̂1|Z∗, V∗)} can be reliably estimated by var(θ̂1|Z∗, V∗). Thus, the SE of θ̃ is given by

SE(θ̃) =
√

{(1∕V1) − var(θ̂1|Z∗, V∗)}, (2)

and an approximate 95% confidence interval for 𝜃 is (θ̃±1.96SE(θ̃)). It is unlikely that either of the assumptions on which
this approach is based are more than approximately true. The accuracy of the derived confidence intervals should be
evaluated by simulation for any given application. The theoretical basis for the unbiasedness of the estimate θ̃ is far
stronger than that for the accuracy of the confidence interval.

Two methods for evaluating θ̃ and SE(θ̃) will now be developed. The first, Method RB1, is an analytical approach
depending on known properties of the triangular test. It is infeasible to generalize RB1 to the four treatment case, and it
is included here for comparison and checking. Method RB2 employs reverse simulation to recreate replicate observations
of Z1 and V 1, and is applicable in complicated situations such as a comparison of four treatments.

4.1 Method RB1

Denote the lower and upper stopping limits for Zk at the kth interim analysis by 𝓁k and uk, respectively, k = 1, 2, . . . . The
sequential design based on the first n of these interim analyses, which is then truncated, is denoted by Rn. The interim
analysis at which the design Rn actually stops will be denoted by K[n], and the corresponding final values of the test
statistics by Z[n] and V [n]. Eq. 5.38 of Reference 8 defines the function f [n] (z, k, 𝜃) to be

f[n](z, k, 𝜃) = lim
𝛿z→0

1
𝛿z

P(Z[n] ∈ (z, z + 𝛿z),K[n] = k), k = 1,… , n. (3)

The sequence of functions f [n](z, k, 𝜃) for z< 𝓁k or z> uk, k = 1,… , n − 1, and f [n](z, n, 𝜃), together provide a density
for the final position of the test statistics (Z[n], V [n]) over all of their possible final values. Using eq. 5.41 of Reference 8; it
can be shown that for any 𝜃, f[n](zn, n, 𝜃) = exp(zn𝜃 − 𝜃2Vn)f[n](zn, n, 0), as pointed out by Emerson and Kittelson.15

Now, let

F[n](zn, n, 𝜃) = ∫
zn

−∞
f[n](s, n, 𝜃)ds.

This is the probability that the design Rn stops at the nth interim analysis with Z[n] ≤ zn. In fact, it is the probability
that any design which shares with Rn the stopping limits for its first n interim analyses stops at the nth interim analysis
with Z[n] ≤ zn. This function can be evaluated using the SAS function SEQ. Note that

F[n](zn, n, 𝜃) = exp(zn𝜃 − 𝜃2Vn)F[n](zn, n, 0). (4)
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The probability that the design Rn stops at the nth interim analysis with Z[n] ∈ (zn − 𝛿z, zn + 𝛿z) is given by F[n](zn +
𝛿z, n, 𝜃) − F[n](zn − 𝛿z, n, 𝜃).

Next, consider the adjusted sequential test, in which the first lower limit is amended to be 𝓁1 + t, t ∈ (0, u1 −𝓁1). The
functions corresponding to f [n] and F[n] for this design will be denoted by f(t)[n] and F(t)

[n], respectively. Then, the probability
that the sequential design Rn starts with a value of z1 lying above 𝓁1 + t and then later stops at the nth interim analysis
with Z[n] ∈ (zn − 𝛿z, zn + 𝛿z) is given by F(t)

[n](zn + 𝛿z, n, 𝜃) − F(t)
[n](zn − 𝛿z, n, 𝜃). Denote the conditional probability that Z1

lies above 𝓁1 + t, given that the trial stops at the nth interim analysis with Z[n] ∈ (zn − 𝛿z, zn + 𝛿z) by S(t; 𝜃). Then S(t; 𝜃) =
P(Z1 > 𝓁1 + t|K[n] = n, Z[n] ∈ (zn − 𝛿z, zn + 𝛿z)). It follows, using, (4) that

S(t) =
F(t)
[n](zn + 𝛿z, n, 0) − F(t)

[n](zn − 𝛿z, n, 0)
F[n](zn + 𝛿z, n, 0) − F[n](zn − 𝛿z, n, 0)

, (5)

where the value of 𝜃 is suppressed in the notation for S. This confirms the sufficiency of the statistics Z[n] and K[n]. It can
be shown that

∫
u1−𝓁1

0
S(t)dt = E(Z1 − 𝓁1|K[n], Z[n]) and 2∫

u1−𝓁1

0
tS(t)dt = E{(Z1 − 𝓁1)2|K[n], Z[n]}. (6)

Suppose that a trial with stopping limits at the first n interim analyses of (𝓁1, u1), … , (𝓁n, un) stops with Zn = zn.
Thus K[n] = n and Z[n] = zn. The value of F[n](zn + 𝛿z, n, 0) − F[n](zn − 𝛿z, n, 0) can be evaluated using the SAS function
SEQ for the trial stopping limits with the modification that the nth continuation region is (zn − 𝛿z, zn + 𝛿z). The value of
𝛿z is chosen to be small, but large enough for the resulting nth continuation probability to be reported with a reasonable
number of decimal places. Then F(t)

[n](zn + 𝛿z, n, 0) − F(t)
[n](zn − 𝛿z, n, 0) is evaluated in a similar way, but for a design with

first continuation region given by (𝓁1 + t, u1) for a grid of values of t between 0 and u1 −𝓁1. This allows S(t) to be found
from (5) for the same grid of values, from which the conditional mean and SD of Z1 given K[n] = n and Z[n] = zn can be
found from (6) using numerical integration. Note that the function SEQ is constructed for stopping limits for Zn/

√
V 1.

This necessitates some intricate programming in order to obtain the correct answers.

4.2 Method RB2

For reverse simulation, the estimate θ̃= E(θ̂1|S∗, n∗) is used, where S* and n* are the vectors of numbers of successes
and numbers of patients, by treatment, in the final dataset. The final interim analysis will be taken to be the Kth. The
number of successes on Ti at the kth interim analysis, Sik, is simulated as a hypergeometric observation, being the number
of successes in a draw of nik patient responses from a total of ni,k+ 1 responses of which Si,k+ 1 are successes, i = 1, 2;
k=K − 1, K − 2,… ,1. For each replicate simulation, the estimate θ̂1 = Z1∕V1 is found from (1) using the simulated numbers
of successes on the two treatments at the first interim analysis. All values of Zk and V k, k = 1, … , K − 1, are checked, and
any simulated sample path that corresponds to a trial that would have stopped according to the sequential design prior to
the Kth interim analysis is deleted from the set of simulated runs. Then the mean and variance of the remaining values
of θ̂1 are used as θ̃ and var(θ̂1|S∗, n∗) respectively. The latter is used in place of var(θ̂1|Z∗, V∗) in (2) to provide a value
for SE(θ̃). The set of simulated realizations of the first interim analysis can be used in a similar way to provide unbiased
estimates of the success probabilities p1 and p2, allowing for the sequential nature of the trial.

4.3 Evaluation of methods RB1 and RB2

Table 3 presents results from analyses of the 12 cases presented in Table 2 using Rao-Blackwellization methods. For
Method RB1, the value of 𝛿z in (5) was set at 0.01, and a grid of 100 points was used to evaluate the integrals in (6). For
Method RB2, 10 million-fold reverse simulations were generated, and the first column in the RB2 section of the table
shows that between 17.0% and 99.3% of the replicates were complete: that is, they corresponded to sequential trials that
would not have stopped prior to the observed final interim analysis. Figure 2 shows the estimate and confidence intervals
from the Rao-Blackwellization approaches and the same quantities from the naïve and orderings analysis, plotted against
the values of the naïve estimates. The value of the naïve estimate is subtracted from all quantities, in order to provide a
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T A B L E 3 Analyses of the 12 realizations of the triangular design based on Rao-Blackwellization

Method RB1 Method RB2

Case �̃� SE 𝜽L 𝜽U % Complete �̃� SE 𝜽L 𝜽U

1 −1.463 0.360 −2.169 −0.757 99.3 −1.473 0.383 −2.225 −0.722

2 −0.823 0.325 −1.461 −0.185 89.3 −0.834 0.334 −1.488 −0.180

3 −0.560 0.298 −1.145 0.025 79.9 −0.567 0.295 −1.145 0.010

4 0.046 0.204 −0.354 0.447 55.7 0.046 0.158 −0.263 0.356

5 0.051 0.201 −0.342 0.445 67.0 0.052 0.183 −0.307 0.411

6 0.224 0.166 −0.101 0.549 17.0 0.227 0.158 −0.081 0.536

7 0.420 0.197 0.033 0.806 63.7 0.424 0.185 0.062 0.787

8 0.519 0.214 0.100 0.939 56.0 0.529 0.213 0.110 0.947

9 0.580 0.226 0.136 1.024 54.9 0.584 0.229 0.135 1.033

10 0.653 0.239 0.184 1.122 85.7 0.658 0.245 0.179 1.138

11 0.655 0.238 0.188 1.122 58.5 0.671 0.243 0.195 1.147

12 1.059 0.291 0.490 1.629 95.8 1.069 0.312 0.457 1.680

F I G U R E 2 Estimates and 95%
confidence limits for 𝜃 from the
Rao-Blackwellization approaches, the
orderings analysis, and the naïve
approach—with the naïve estimate
subtracted—plotted against the naïve
estimate for Cases 1 to 12

clearer view of the differences between the methods. The 12 cases are ordered with respect to the naïve estimates, and so
Cases 1 to 12 are the points indicated by crosses running from left to right. The vertical line at 𝜃 = 0.2462 represents the
value of treatment effect at which the trend of the plot of Z against V would head for the tip of the triangle, for this is the
average of the boundary slopes.

When the naïve estimate lies below 0.2462, both adjustments increase the magnitude of the estimate, with those due
to the Rao-Blackwell estimate being greater. When the naïve estimate lies above 0.2462, both adjustments reduce the
magnitude of the estimate, with those due to the Rao-Blackwell estimate again being greater. Adjustments using Method
RB1 are a little more extreme than those using RB2.

The naïve confidence limits are narrowest and will fail to meet the target coverage probability. The Method RB1 leads
to the widest intervals, followed closely by RB2. When the naïve estimate lies below 0.2462, adjusted limits lie above
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T A B L E 4 Evaluation of the naïve and the Rao-Blackwellization methods based on 1000-fold simulations

Naïve Method RB1 Method RB2

True value of 𝜽 0 0.246 0.405 0 0.246 0.405 0 0.246 0.405

Estimate of 𝜃 −0.069 0.244 0.459 −0.001 0.248 0.410 −0.006 0.246 0.408

SD 0.209 0.227 0.213 0.213 0.182 0.203 0.233 0.187 0.196

SE 0.184 0.154 0.169 0.209 0.184 0.197 0.201 0.175 0.190

𝜃L −0.430 −0.058 0.128 −0.408 −0.113 0.025 −0.399 −0.096 0.034

𝜃U 0.293 0.546 0.790 0.410 0.609 0.795 0.388 0.589 0.781

Probability that 𝜃 ∈ (𝜃L, 𝜃U) 0.943 0.932 0.920 0.976 0.976 0.972 0.958 0.967 0.971

the corresponding naïve limits and when it lies below 0.2462 they lie below. This effect is greatest for the Rao-Blackwell
approaches. In cases in which there is a large overshoot of the boundary at the final interim analysis (Cases 6, 8, 9, and
11), the adjustments for sequential analysis have the greatest effect on the estimate of 𝜃. In cases where the overshoot is
small (Cases 5, 10, and 12), the adjustments for sequential analysis have less effect on the estimate of 𝜃. The SAS programs
leading to the RB1 and RB2 analyses shown in Table 3 are provided as supplementary material of this article.

Table 4 presents the results of 1000-fold simulations of the naïve approach and of Methods RB1 and RB2 for three
true values of 𝜃. These are the null value, 0; the alternative value log(1.5) = 0.405; and between these the value 0.246
which is the average of the two boundary slopes. In each case the control success probability was set at pC = 0.6. The
results from the naïve approach confirm that there is a problem to be addressed. In particular, when 𝜃 = 0.405 the effect
of the treatment is systematically overestimated, and in all three cases the coverage probability of confidence intervals
is inadequate. For Method RB1, the grid is again constructed of 100 points and the value of 𝛿z set as 0.01. For Method
RB2, for reasons of computing time, 1 million replicate reverse simulations were used rather than the 10 million that
underlay the results presented in Table 3. The Rao-Blackwellized estimate θ̃ is presented with its SD computed from the
1000 replicate values and its SE, which is the mean of the values computed from (2). These two values are close to one
another, in support of the basis of computation. For both methods, the bias of θ̃ is small. The coverage probabilities of the
95% confidence intervals are around 0.970 (and significantly greater than 0.95 at the one-sided 2.5% level) in each case.
They could therefore be used in practice as conservative computations.

5 APPLICATION TO THE COMPARISON OF FOUR TREATMENTS

A single set of simulated data consistent with the design proposed in Section 1 is used to illustrate the implementation of
Rao-Blackwellization in a more complicated situation. Table 5 displays the data from this single realization. This summary
is sufficient for analysis according to Method RB2. There are six pairwise treatment comparisons to consider. Table 6
presents the final values of the test statistics Z and V for each of these comparisons. Treatment T2 was eliminated in
comparison with T1 at the fourth interim analysis, and T4 followed at the fifth. This left T1 and T3, which continued to be
monitored until the 12th interim analysis, at which point T1 was found to be the winner.

Whether the analysis is conducted allowing for the sequential design used or not, two options are available for the
final analysis. Option 1 is to use all data available on each treatment in making each comparison. Option 2 is to restrict
the data used in any pairwise comparison to that collected from patients randomized when both treatments were still
in contention. This is the form of analysis reflected in the values of Z and V displayed in Table 6. It avoids biases that
may be caused by any temporal effects on the nature of the patients recruited, on the manner in which treatments were
administered, or on how observations were recorded. Option 2 will be adopted here.

To implement Option 2, three separate reverse simulations have to be performed. To compute the estimate θ̃13 and its
SE, reverse simulation is conducted from the 12th interim analysis, at which T1 was found to be better than T3, leading
to the termination of the whole trial. From Table 5, it can be seen that at the 12th interim analysis at Centre 1, T1 had
been administered to 103 patients with 83 successes and T3 to 111 patients with 85 successes. At the 11th interim analysis
at Centre 1, T1 had been administered to 98 patients and T3 to 102 patients. For the reverse simulation, the number of
successes on T1 at Centre 1 is generated as a hypergeometric random variable: the number of successes from 98 patients
drawn randomly from 103 of which a total of 83 are successes. The number of successes on T3 at Centre 1 is generated
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T A B L E 5 Raw data from a single simulation of the four treatment design

Treatment Interim Centre n S Sample size at each interim Number of successes at each interim

1 12 1 103 83 11, 18, 30, 41, 50, 57, 65, 76, 86, 92, 98, 103 10, 17, 27, 35, 41, 46, 53, 63, 69, 74, 78, 83

2 100 67 10, 16, 25, 33, 41, 49, 60, 71, 82, 88, 96, 100 10, 14, 20, 25, 30, 34, 40, 47, 58, 61, 65, 67

3 104 64 7, 17, 25, 35, 44, 55, 63, 68, 72, 83, 90, 104 6, 11, 16, 20, 26, 32, 36, 41, 43, 49, 55, 64

4 125 68 8, 21, 28, 35, 45, 55, 64, 73, 84, 97, 112, 125 4, 13, 15, 20, 27, 34, 38, 45, 48, 53, 62, 68

Total 432 282

2 4 1 39 25 12, 24, 31, 39 9, 17, 19, 25

2 30 13 6, 13, 25, 30 4, 8, 12, 13

3 35 21 7, 16, 22, 35 5, 11, 15, 21

4 40 11 11, 19, 30, 40 1, 5, 8, 11

Total 144 70

3 12 1 111 85 9, 19, 29, 39, 48, 57, 67, 74, 85, 91, 102, 111 8, 15, 21, 27, 33, 41, 49, 56, 65, 70, 79, 85

2 94 56 7, 15, 24, 32, 40, 49, 57, 64, 72, 79, 88, 94 5, 9, 15, 22, 28, 31, 33, 38, 44, 47, 52, 56

3 111 60 9, 17, 25, 32, 42, 50, 58, 68, 76, 90, 101, 111 3, 5, 8, 13, 21, 27, 31, 37, 41, 48, 55, 60

4 116 45 11, 21, 30, 41, 50, 60, 70, 82, 91, 100, 105, 116 4, 7, 12, 15, 18, 23, 26, 34, 37, 42, 44, 45

Total 432 246

4 5 1 50 32 9, 15, 23, 36, 50 5, 11, 17, 24, 32

2 47 27 9, 20, 32, 42, 47 6, 11, 16, 24, 27

3 40 18 11, 19, 28, 32, 40 5, 8, 12, 14, 18

4 43 16 7, 18, 25, 34, 43 3, 9, 10, 13, 16

Total 180 93

similarly, as are the success counts for other centers. These success counts are then used to generate the numbers of
successes on the two treatments at the 10th interim analysis, and so on back to the first interim analysis. In the reverse
simulation, the numbers of patients and of successes on T4 at the fifth interim analysis is taken to be as recorded in
Table 5, and the numbers of successes at earlier interim analyses are filled in by hypergeometric simulation; for T2 the
reverse simulation begins at the fourth interim analysis. In the example, no treatment was eliminated at the first interim
analysis. If one of them had been, then the Rao-Blackwellization process would amount to taking the estimates of the
log-odds ratios featuring that treatment directly from the first interim analysis.

The next step is to determine which of the reverse simulated runs are consistent with the outcome of the trial, and to
delete those which are not. For each reverse simulated run, every remaining treatment comparison is considered at each
interim analysis in turn. The relevant stratified values of Z and V can be computed from the simulated success counts.
Consider the comparison between treatments Ti and Tj, i≠ j = 1, 2, 3, 4. First, consider an interim analysis which in the
real trial is the last for both Ti and Tj. In such a case the reverse simulated data for both treatments will be identical to
those used in the actual trial, and the conclusions will be the same. No runs will be deleted on the basis of these data.

Now consider an interim analysis which in the real trial is the last for Ti, but after which Tj continued to be observed.
If, in the real trial, Tj was found better than Ti at this interim analysis, then any reverse simulation for which this did
not occur is deleted. It is possible that in the real trial Tj was not found better than Ti at this interim analysis, Ti being
eliminated in comparison with another treatment. In this case, any reverse simulation in which Ti was found to be better
than, or worse than, Tj is deleted. Furthermore, any reverse simulation run that ends at this interim analysis with the
conclusion that there is no difference between any of the remaining treatments will be deleted.

Finally, consider an interim analysis which in the real trial is not the last for either Ti or Tj. Any reverse simulation for
which Tj was found better than, or worse than, Ti at this interim analysis is deleted. Once more, any reverse simulation run
that ends at this interim analysis with the conclusion that there is no difference between any of the remaining treatments
will be deleted.
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T A B L E 6 Comparative data derived from Table 5

Comparison Interim Centre Z V �̂� Conclusion

T1 vs T2 4 1 4.25 3.75 1.133 T1 knocks out T2 at fourth
interim2 5.10 3.76 1.356

3 −0.50 4.25 −0.118

4 5.53 4.53 1.221

Total 14.38 16.28 0.883

T1 vs T3 12 1 2.14 9.02 0.237 T1 knocks out T3 at 12th
interim2 3.60 11.24 0.320

3 4.02 13.11 0.307

4 9.39 14.98 0.627

Total 19.15 48.35 0.396

T1 vs T4 5 1 4.50 4.93 0.913 T1 knocks out T4 at fifth
interim2 3.44 5.00 0.688

3 2.95 5.23 0.564

4 5.01 5.49 0.912

Total 15.91 20.64 0.771

T2 vs T3 4 1 −1.00 4.33 −0.231 No conclusion

2 −3.94 3.81 −1.034

3 3.23 4.18 0.773

4 −1.84 4.41 −0.417

Total −3.54 16.73 −0.212

T2 vs T4 4 1 −0.48 4.24 −0.113 No conclusion

2 −2.42 4.37 −0.554

3 2.72 4.17 0.652

4 −1.97 4.03 −0.489

Total −2.15 16.81 −0.128

T3 vs T4 5 1 1.16 5.47 0.212 No conclusion

2 2.71 5.02 0.540

3 1.02 5.11 0.200

4 −0.28 5.36 −0.052

Total 4.62 20.97 0.220

For each of the reverse simulation runs that remains after the deletion process, the estimate θ̂13 = Z131∕V131 is found
from (1) using the reverse simulated stratified test statistics for the comparison of T1 and T3 from the first interim analysis.
The mean of the values of θ̂13 provides the RB2 estimate θ̃13 and the corresponding variance provides var(θ̂13|S∗,n∗).
The latter is used in a suitably amended version of Equation (2) to provide a value for SE(θ̃13).

A second reverse simulation is then run, starting at the fifth interim analysis, and using the actual numbers of suc-
cesses on T1, T3, and T4 at each center at that analysis as the starting point for each reverse simulation. Following the
deletion of runs that would have been incomplete, θ̃14 and θ̃34 and their corresponding SEs are found. The third reverse
simulation starts at the fourth interim analysis and uses the actual numbers of successes observed on all treatments at
each center at that analysis as the starting point for each reverse simulation. This provides the estimates θ̃12, θ̃23, and θ̃24
and their corresponding SEs.

In the results that follow, one modification of the method implemented in the unstratified case is made. For the
purposes of computing the θ̃ij and their SEs only, V ijc1 is replaced by V ′

ijc1, where
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T A B L E 7 Analyses of the data from the single simulated run of the sequential four treatment comparison shown in
Tables 5 and 6

Naïve RB2

Comparison �̂� SE 𝜽L 𝜽U

Proportion
complete �̃� SE 𝜽L 𝜽U

T1 vs T2 0.883 0.248 0.347 1.319 0.7381 0.869 0.286 0.309 1.429

T1 vs T3 0.396 0.144 0.114 0.678 0.0199 0.405 0.220 −0.027 0.837

T1 vs T4 0.771 0.220 0.340 1.202 0.3050 0.667 0.256 0.165 1.169

T2 vs T3 −0.212 0.244 −0.690 0.266 0.7381 −0.167 0.255 −0.667 0.333

T2 vs T4 −0.128 0.244 −0.606 0.350 0.7381 −0.069 0.249 −0.557 0.418

T3 vs T4 0.220 0.218 −0.207 0.647 0.3050 0.165 0.225 −0.277 0.606

Note: In the naïve analyses, the sequential nature of the trial is ignored. The Rao-Blackwellization method, RB2, is based on 10 million
replicate reverse simulations, the proportion of these that were complete is shown in the sixth column.

V ′
ijc1 =

nic1njc1(Sic1 + Sjc1)(nic1 + njc1 − Sic1 − Sjc1)
(nic1 + njc1)2(nic1 + njc1 − 1)

, (7)

and the additional subscript c indicates the center, c = 1, … , 4. The usual expression for V ijc1, is used during the con-
duct of the trial and when assessing whether simulated trial runs are complete. However, it is θ̂ij1 = (Zij11 + Zij21 + Zij31 +
Zij41)∕(V ′

ij11 + V ′
ij21 + V ′

ij31 + V ′
ij41) that is averaged over complete simulated runs to provide θ̃ij and used to determine SE(θ̃ij).

The reason for this change is pragmatic: without it estimates show excessive bias and SEs are too small or sometimes
nonexistent as Equation (2) involves the square root of a negative value. Use of V ′

ijc1 largely avoids these problems, as
E(Zijc1) is closer to 𝜃V ′

ijc1 than it is to 𝜃Vijc1 and var (Zijc1) is closer to V ′
ijc1 than it is to Vijc1. In the unstratified case the sam-

ple sizes per treatment at the first interim analysis are quite large, and so this level of attention to detail is unnecessary.
In the stratified case, it is the sample sizes within center that determine the accuracy of the procedure, and without the
use of (7) these are now too small to guarantee the accuracy of the estimates, or the existence of the SEs.

Table 7 compares a naïve analysis in which pairs of treatments are compared using the data available at the last interim
analysis in which both were present but ignoring the sequential nature of the trial, with the RB2 method described above.
The number of reverse simulations was set at 10 million. It can be seen that the effect of allowance for the sequential
design is to reduce the magnitude of the estimates of the advantage of T1 over each of T2 and T4, while the estimate of the
advantage of T1 over T3 is hardly changed. The corresponding confidence intervals are all widened. The other estimates
of treatment effects have also been reduced in magnitude, but the effect on their SEs is less marked. The SAS program
leading to the RB2 analyses shown in Table 7 is provided as supplementary material of this article.

Table 8 shows the results from 1000 replicate simulations of a situation in which T1 is the best treatment. To achieve
a feasible computational time, 1 million reverse simulations are used in each analysis. Furthermore, for ease of compu-
tation, Option 1 is chosen so that a single set of reverse simulations will yield estimates and confidence intervals for all
treatment comparisons. For comparison, the results from naïve analyses based on the test statistics Z and V comparing
the final samples simulated from each treatment (ie, using Option 1) are also shown. In 103 of the 1000 replicate simu-
lations, fewer than 1000 of the million reverse simulations led to sample paths that were consistent with the outcome of
the trial and thus survived the deletion process described above. For the purpose of this investigation, the results from
these runs are considered unreliable and are omitted. In practice the number of reverse simulations would be raised to
10 million or beyond to yield sufficient consistent reverse simulations, this being feasible for single analyses but not for
1000 as required here.

The comparisons of T1 with the three rival treatments each lead to overestimation of treatment effect when the naïve
analysis is used, whereas the estimates drawn from RB2 show much smaller biases. The results for the other comparisons
are similar for the two approaches, with RB2 being a little less biased. In most of the simulated realizations, the timing
of these comparisons will have been determined by the completion of others, and so the effects of the sequential design
would be expected to be less marked. The coverage probabilities for confidence intervals based on the naïve approach
are too low, while those for RB2 are conservative, but satisfactory. Other simulations were conducted in which each RB2
analysis depended on only 100 000 reverse simulations. These led to less accurate estimation and markedly conservative
confidence intervals. It appears that, provided that sufficient reverse simulations are used, RB2 leads to accurate analyses
that overcome the potential bias inherent in the use of data-dependent elimination and stopping rules.
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6 APPLICATION IN A SIMPLER SETTING

The application for which the trial design was developed concerned a large study that would have recruited over a lengthy
time period, and which would have benefited from the large number of interim analyses planned. It is of interest to explore
what would happen were the method implemented within a smaller and simpler study. For this purpose, a fictitious
example is considered.

The illustrative trial concerns a comparison of four treatments yielding binary observations. Stratification is not
allowed for. The Type I and Type II error requirements are that the probability that a treatment is wrongly found to be
the sole winner should be ≤0.025, and that the worse of two treatments separated by an odds ratio of 2.25 should be elim-
inated with probability ≥0.90. Interim analyses are to be conducted after 32 observations per remaining treatment. The
double triangular design for two treatments satisfying this specification is used for the four treatment comparison, in the
same way as described in Section 2. For the upper triangle of the continuation region, the lower and upper boundaries are:

Z = −4.9261 + 0.7411V and Z = 4.9261 + 0.2470V.

Up to eight interim analyses are allowed, but no more than 640 patients in total.
Table 9 presents the results of million-fold simulations, confirming that the Type I and Type II error requirements

are satisfied. Table 10 contrasts the properties of naive estimation of treatment effects with those when the RB2 method
is used in this setting. The comparative and absolute properties of the RB2 analysis in this simpler setting are similar to
those for the motivational example shown in Table 8.

T A B L E 9 Properties of the simpler four treatment design from million-fold simulations

Case p1 p2 p3 p4 E(n) win1 elim4 nod still

1 0.600 0.400 0.400 0.400 377 0.826 0.923 0.043 0.000

2 0.600 0.600 0.400 0.400 377 0.026 0.977 0.904 0.000

3 0.600 0.600 0.600 0.400 422 0.005 0.989 0.860 0.001

4 0.500 0.500 0.500 0.500 491 0.002 0.066 0.772 0.018

5 0.600 0.600 0.600 0.600 480 0.002 0.072 0.768 0.000

Note: win1 = proportion of runs in which T1 wins; elim4 = proportion of runs in which T4 is eliminated; nod = proportion of runs in
which: for Cases 1 and 2, T1 and T2 are declared no different from one another; for Case 3, T1, T2, and T3 are declared no different
from one another; for Cases 4 and 5, all treatments are declared no different from one another; still = proportion of runs in which not
all treatment comparisons are resolved after 640 responses.

T A B L E 10 Evaluation of the naïve method and the Rao-Blackwellization method RB2 for the simpler four treatment design

Method Naïve RB2

Comparison T1 vs T2 T1 vs T3 T1 vs T4 T2 vs T3 T2 vs T4 T3 vs T4 T1 vs T2 T1 vs T3 T1 vs T4 T2 vs T3 T2 vs T4 T3 vs T4

True value of 𝜃 1.099 0.811 0.811 −0.288 −0.288 0.000 1.099 0.811 0.811 −0.288 −0.288 0.000

Estimate of 𝜃 1.177 0.907 0.909 −0.291 −0.286 0.003 1.075 0.804 0.796 −0.290 −0.294 −0.006

SD 0.332 0.323 0.343 0.369 0.385 0.367 0.400 0.357 0.399 0.397 0.433 0.393

SE 0.335 0.308 0.309 0.365 0.366 0.333 0.424 0.397 0.396 0.406 0.406 0.374

𝜃L 0.519 0.303 0.304 −1.008 −1.003 −0.651 0.243 0.025 0.020 −1.085 −1.090 −0.739

𝜃U 1.834 1.511 1.514 0.425 0.432 0.656 1.907 1.583 1.573 0.505 0.501 0.728

Probability that
𝜃 ∈ (𝜃L, 𝜃U)

0.961 0.949 0.932 0.957 0.947 0.943 0.971 0.972 0.952 0.971 0.954 0.959

Note: Both evaluations are based on 1000-fold simulations and each RB2 analysis employed 1 000 000 reverse simulations. The RB2 results are based on the 989
replicates in which 1000 or more reverse simulations were complete.
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7 CONCLUSIONS

The approach presented here for estimation following a sequential trial is quite general, and can be implemented for a
wide variety of designs. In the case of a comparison of a single experimental treatment with a single control arm, the
method works and provides satisfactory results, as has been demonstrated in Section 4 above. However, there are already
numerous methods of computing point and interval estimates in the two-treatment context. In particular, methods based
on orderings of the final sample space are just as good for computing point estimates and more accurate for finding
confidence intervals than the approach introduced here. They are also less computationally demanding.

The utility of the approach described here is in more complicated designs comparing multiple treatments or with
flexible adaptive features, as reverse simulation is based only on the form of the stopping rules implemented and not on
their theoretical properties. The method has been illustrated and evaluated for one particular form of comparison of four
treatments which motivated its development, but its implementation is certainly not restricted to that design.

The claim for the unbiasedness of estimates produced using Method RB2 is underpinned by rigorous asymptotic
theory, and the simulation results obtained for their accuracy in Sections 5 and 6 are satisfactory. The method for deriving
confidence intervals is less secure as it depends on two unverified assumptions: that the expected conditional variance of
the unbiased estimate at the first interim analysis can be approximated by its observed value from reverse simulations,
and that the adjusted estimate follows the normal distribution. Simulations presented in Sections 4 to 6 demonstrate that
the resulting intervals are conservative but useable. It should be repeated that the number of reverse simulations needed
to achieve satisfactory results is large. Here, in single demonstration analyses, 10 million replicates were used. In earlier
work, we found that using fewer replicates led to less satisfactory results.

Of course, the scenarios that could be investigated by simulation are limitless, and only two have been explored here. In
particular, both of the cases considered have involved success probabilities that are in the region of 1∕2. Prior to application
in trials where the success probabilities are likely to be close to 0 or to 1, further evaluation might be appropriate.
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