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Abstract Introduction: Currently, there are no tools that can accurately predict which patients with mild
The authors have
1Data used in pr

Alzheimer’s Disease

loni.usc.edu). As such

the design and implem

participate in analysi

ADNI investigators c

uploads/how_to_apply

*Corresponding au

E-mail address: sa

https://doi.org/10.1016

2352-8729/� 2018 Th

license (http://creative
cognitive impairment (MCI) will progress to Alzheimer’s disease (AD). Texture analysis uses image
processing and statistical methods to identify patterns in voxel intensities that cannot be appreciated
by visual inspection. Our main objective was to determine whether MRI texture could be used to pre-
dict conversion of MCI to AD.
Methods: Amethod of 3-dimensional, whole-brain texture analysis was used to compute texture fea-
tures from T1-weighted MR images. To assess predictive value, texture changes were compared be-
tween MCI converters and nonconverters over a 3-year observation period. A predictive model using
texture and clinical factors was used to predict conversion of patients with MCI to AD. This model
was then tested on ten randomly selected test groups from the data set.
Results: Texture features were found to be significantly different between normal controls (n5 225),
patients withMCI (n5 382), and patients with AD (n5 183). A subset of the patients withMCI were
used to compare between MCI converters (n5 98) and nonconverters (n5 106). A composite model
including texture features, APOE-ε4 genotype, Mini-Mental Status Examination score, sex, and hip-
pocampal occupancy resulted in an area under curve of 0.905. Application of the composite model to
ten randomly selected test groups (nonconverters5 26, converters5 24) predicted MCI conversion
with a mean accuracy of 76.2%.
Discussion: Early texture changes are detected in patients with MCI who eventually progress to AD
dementia. Therefore, whole-brain 3D texture analysis has the potential to predict progression of pa-
tients with MCI to AD.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder
that is characterized by progressive cognitive and functional
deficits. It is associated with the accumulation of amyloid
and tau proteins in the brain and is the most common cause
of dementia, accounting for nearly 70% of dementia cases
[1]. According to the Alzheimer’s Association, the estimated
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financial burden of AD on the Canadian and United States
economy is 10.4 and 236 billion dollars per annum, respec-
tively [2]. In addition to the financial burden, caregivers of
patients with AD also have one of the highest prevalence
of emotional stress and depression [3]. This unequivocally
highlights the need for the development of therapy to target
this disease.

While research into AD, vis-�a-vis development of animal
models to decipher the pathophysiology of this disease and
to test novel therapeutics, has yielded a plethora of new
data, this has not readily translated to successful therapeutics
for this disease. One reason for this includes the inconsis-
tency in diagnosing individuals early on in their disease
course when interventions may have a greater chance of be-
ing effective before the condition reaches a state of irrevers-
ible degeneration. Establishing the initial diagnosis of AD in
a patient at an earlier stage (“prodromal AD”) may be facil-
itated by recognition of the syndrome of mild cognitive
impairment (MCI) [4,5]. Present studies show that up to
20% of individuals with MCI will progress to dementia
per year [4,6,7]. Hence, the establishment of biomarkers to
identify individuals with MCI who will convert to
dementia is a critical step in the development of novel
therapeutics.

One particular area that has received extensive investiga-
tion is neuroimaging. For instance, MRI measurements
of volume reduction in multiple brain regions and in
cortical thickness have been predictive of those who
will convert from MCI to AD [8–12]. More specifically,
the hippocampus has been extensively studied and
hippocampal volume and shape have predictive value in
conversion [12–14]. Similar predictions for conversion
have also been seen in other imaging modalities including
diffusion tensor imaging [15], magnetic resonance spectros-
copy [16], fluorodeoxyglucose positron emission tomogra-
phy [12,17], amyloid imaging [18,19], and positron
emission tomography acetylcholinesterase activity [20].

However, despite these various studies, the low accuracy
with which clinicians have been able to predict MCI to AD
conversion has limited its use in daily clinical practice. This
is due in part to the lack of access to some of these technol-
ogies at smaller health centers (i.e., radioactive tracers).
Another hurdle is that some of these diagnostic tools cannot
be used on a mass scale to benefit a large population because
of the various barriers associated with their integration into
large-scale analysis (i.e., cost, time required for analysis,
lack of expertise for manual analysis etc.).

In this study, we used an automated whole-brain texture
analysis [21,22]. We used this technology to compare MRI
texture in normal controls (NC), patients with MCI, and
patients with AD. We further tested whether MRI texture
could be used to predict MCI conversion to AD. We
predict that MRI texture will be different in NC, patients
with MCI, and patients with AD. We further predict that
these MRI texture changes can be used to classify MCI
converters (MCI-C) from nonconverters (MCI-NC).
2. Materials and methods

2.1. Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by prin-
cipal investigatorMichaelW.Weiner, MD. The primary goal
of ADNI has been to test whether serial MRI, positron emis-
sion tomography, other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of MCI and early AD.

2.2. Subjects

A total of 790 ADNI-1 participants were included in this
study including 225 NC, 382 patients with MCI, and 183 pa-
tients with AD. NC were identified as having Mini-Mental
Status Examination (MMSE) scores of 24–30, clinical de-
mentia rating scores of zero, and no diagnosis of depression,
MCI, or dementia. Participants with MCI were defined as
having MMSE scores of 24–30, a memory complaint veri-
fied by a partner, objective memory loss measured by
Wechsler Memory Scale Logical Memory II, and a clinical
dementia rating of 0.5. Participants with AD were defined
as having an MMSE score of 20–26, clinical dementia rating
of 0.5 to 1.0, and meeting NINCDS/ADRDA criteria for
probable AD. These criteria have previously been verified
for reliability and validity [23].

2.3. MRI data

MRI data consisted of the baseline 3D volumetric T1-
weighted scans acquired at 1.5T from ADNI-1. MRI data
acquisition techniques were standardized across different
sites according to ADNI protocol (http://adni.loni.usc.edu/
methods/documents/mri-protocols/). Clinical and MRI data
were downloaded in July 2016.

2.4. Hippocampal volume

Hippocampal and inferior lateral ventricle volumes were
extracted from T1 MRI scans using an automated method
with FreeSurfer 6.0 and was aided with cBRAIN high-
performance computing cluster to enable distributed
computing [24,25]. This method has been previously
described and compared with other automated methods of
segmentation [26]. FreeSurfer 6.0 image analysis suite
(http://surfer.nmr.mgh.harvard.edu/) follows a standardized
pipeline for volumetric analysis. Details of this have been
previously discussed in detail [25]. In brief, this multistep
pipeline includes motion correction, automated Talairach
transformation, first normalization of voxel intensities,
removal of the skull, linear volumetric registration, intensity
normalization, nonlinear volumetric registration, volumetric
labeling, second normalization of voxel intensities, and
white matter segmentation. Hippocampal volumes were

http://adni.loni.usc.edu
http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://surfer.nmr.mgh.harvard.edu/
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normalized based on the calculation of hippocampal occu-
pancy (HOC 5 hippocampal volume divided by hippocam-
pal volume plus volume of inferior lateral ventricle). This
has previously been shown to perform better on both
discrimination and predictive accuracy as opposed to raw
hippocampal volume [27].
2.5. Three-dimensional texture analysis

For a detailed discussion of the methods for 3-
dimensional voxel-based texture analysis (VGLCM-TOP-
3D) of MR images, see Maani et al. [21]. In brief, this novel
method of 3D voxel-based texture analysis calculates a
texture feature at each voxel by averaging the texture feature
calculated in three orthogonal planes at the voxel. A 3D
texture map is generated from each 3D T1 data set for
each feature. Eight texture features that had previously
been shown to distinguish between nondementia and demen-
tia patients were utilized in this study. These features include
autocorrelation (autoc), correlation matlab (corrm), dissim-
ilarity (dissi), energy (energ), homogeneity matlab (ho-
mom), sum of squares: variance (sosvh), sum average
(savgh), and sum entropy (senth). Analysis was aided with
the use of this toolbox on WestGrid Cluster distributed
computing (https://www.westgrid.ca/) and Compute Canada
(https://www.computecanada.ca/) clusters.
2.6. Statistical analysis

Texture maps of subjects’ baseline scans were compared
between groups (NC, MCI, AD) in SPM8 with an F-test.
Within the MCI group, texture maps of subjects who eventu-
ally transitioned to AD (“converters”, MCI-C) were
compared with those who did not (“nonconverters”, MCI-
NC). Group comparisons incorporated a familywise error
correction for multiple comparisons at P , .05 with report-
ing of clusters greater than 30 significant voxels. If the re-
sults did not survive correction, then results are reported at
an uncorrected P , .001 with a minimum cluster size of
20. Texture values were extracted from statistically signifi-
cant regions with MarsBaR region of interest toolbox for
SPM version 0.44 [28].
Table 1

Baseline demographics

Variables at baseline

Diagnosis group

Normal control (n 5 225)

Age (mean 6 SD) 75.8 6 5.0

Sex (% male; M/F) 51.6 (116/109)

MMSE score 29.1 6 1.0

Education (years) 16.1 6 2.8

Hippocampal occupancy 0.824 6 0.084

% with 1j2 APOE-ε4 alleles 24.0j2.2
Abbreviations: MCI, mild cognitive impairment; AD, Alzheimer’s disease; SD,

poprotein E.
To determine the performance of the various texture and
clinical variables and their ability to distinguish NC from pa-
tients with AD, as well as classify conversion status, we used
receiver operating characteristic curves. The resulting area
under curve (AUC) was used to determine the capability
for diagnosis and prognostication. The significance of an
AUC was determined using DeLong test.

TheMCI group was randomly divided into both a training
set (w75% of the participants) and a trial set (w25%). This
was iterated 10 times to provide 10 unique training and test
groups. The training set was used to generate a binary logis-
tic regression model, using MRI texture, HOC, and clinical
data as variables. The generated logistic regression formula
was then applied to the trial set and these values were then
compared with the Youden index determined from the
training set. This was used to determine predicted conver-
sion, which was then compared with actual conversion status
to determine its accuracy.

One-way analysis of variance, independent sample t-test,
as well as chi-squared test were used to determine statistical
differences between various clinical variables between base-
line (NC, MCI, AD) and converter (MCI-NC, MCI-C)
groups. Statistical significance was defined as P , .05.

All statistics were done with IBM SPSS Statistics Version
20 (IBMCorp. Released 2011. IBM SPSS Statistics forWin-
dows, Version 20.0. Armonk, NY: IBM Corp.) or MedCalc
Version 14 (MedCalc Software bvba, Ostend, Belgium;
https://www.medcalc.org; 2016).
3. Results

Baseline demographics including age, sex, MMSE
scores, education level, and APOE-ε4 genotype, and calcu-
lated HOC are shown in Table 1. All baseline variables
were significantly different between the three groups based
on one-way analysis of variance or chi-square analysis
with the exception of age.

3.1. 3D texture analysis of T1 MRI scans reveals distinct
texture differences between NC, MCI, and AD

Baseline MRI T1 images were processed and 3D
whole-brain texture maps for eight different features were
P valueMCI (n 5 382) AD (n 5 183)

74.6 6 7.4 75.4 6 7.6 .107

64.1 (245/137) 53.0 (97/86) ,.01

27.0 6 1.8 23.3 6 2.2 ,.001

15.7 6 3.0 14.6 6 3.2 ,.001

0.751 6 0.121 0.666 6 0.136 ,.001

42.7j12.0 47.0j18.6 ,.001

standard deviation; MMSE, Mini-Mental Status Examination; APOE, apoli-

https://www.westgrid.ca/
https://www.computecanada.ca/
https://www.medcalc.org


Fig. 1. Statistical maps of significant regions of texture differences between the subgroups. Two representative textures are shown (A: autocorrelation, Autoc;

dissimilarity; Dissi). Areas of (1) higher texture value and (2) lower texture value when comparing the first to the second group are shown. Familywise error

,0.05 and cluster size.30. Results are superimposed on MRI T1 templates for autoc (B, left) and dissi (B, right). Abbreviations: NC, normal controls; MCI,

mild cognitive impairment; AD, Alzheimer’s disease.
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calculated for each scan using VGLCM-TOP-3D. Statistical
maps revealed differences in texture value between all
groups for all eight textures (Fig. 1). Texture changes for
different features have areas of overlap, but also unique
areas. In particular, these areas include the bilateral hippo-
campus, medial temporal lobe, amygdala, and inferior pari-
etal lobe.
3.2. Texture changes between NC and patients with AD

To determine the classification of NC from patients with
AD using texture alone within our sample group, we ex-
tracted the texture value for the significant regions identified
in each of the eight texture features (Table 2). All eight
texture features revealed regions with higher and lower
texture values when comparing these two groups except for
energy and homogeneity. We calculated a binary logistic
regression model for each individual texture variable and us-
ing receiver operating characteristic curves, we determined
their AUC (Table 2). The AUC values ranged from 0.722 to
0.866. When all texture features and HOC were combined
into a single classificationmodel using binary logistic regres-
sion, the AUC was 0.930 (sensitivity 83.1%, specificity of
92.0%). This model was statistically significant compared
with using HOC score alone (AUC 0.843, sensitivity
77.6%, specificity 79.6%). The AUC of texture (0.928) was
also statistically significant compared with HOC.
3.3. Texture differences in participants withMCI predicted
conversion to AD within 36 months

To address the main objective of our study, participants
who were diagnosed as MCI at the baseline were further
divided into two categories: those who remained as MCI at
Table 2

Texture and hippocampal volume in distinguishing normal controls (NC) from pa

Variable

Texture value RO

NC (n 5 225) AD (n 5 183) AU

Autoc (1) 42.6 6 4.5 35.1 6 6.2 0.8

Autoc (2) 42.0 6 3.1 45.8 6 3.3 0.8

Corrm (1) 69.7 6 16.4 45.1 6 19.6 0.8

Corrm (2) 77.7 6 12.0 88.8 6 14.3 0.7

Dissi (1) 32.6 6 9.1 18.7 6 10.8 0.8

Dissi (2) 27.6 6 4.0 33.6 6 4.9 0.8

Energ (1) 45.6 6 8.3 32.1 6 9.0 0.8

Homom (1) 124.2 6 12.0 99.5 6 19.0 0.8

Savgh (1) 133.1 6 13.1 108.9 6 19.4 0.8

Savgh (2) 146.2 6 5.7 153.2 6 5.8 0.8

Senth (1) 121.1 6 26.2 76.6 6 34.5 0.8

Senth (2) 120.0 6 12.8 138.0 6 13.8 0.8

Sosvh (1) 83.8 6 9.9 67.6 6 13.4 0.8

Sosvh (2) 84.3 6 6.3 92.5 6 6.8 0.8

Texture (all features) 0.9

HOC 0.8

Texture (all features) 1 HOC 0.9

Abbreviations: ROC, receiver operating characteristic; AUC, area under curve, C

pal occupancy.
36 months (n 5 106; MCI-NC, nonconverters) versus those
who converted to AD within 36 months (n 5 98; MCI-C,
converters) (Supplementary Table 1). Only patients with
MCI who had follow-up for the full 36 months or converted
within the 36 months were included in this analysis
(n 5 204). Baseline T1 MRI scans of these patients with
MCI were selected from the data set and 3D texture maps
were generated (Supplementary Fig. 1). A voxelwise com-
parison was conducted between MCI-NC and MCI-C,
revealing significant texture changes in the mesial temporal
region with some involvement of the parietal lobes (Fig. 2).
In particular, we found that MCI-NC had higher texture
values for the features autocorrelation, correlation, homoge-
neity, and sum of entropy. A region of lower texture value for
texture feature autocorrelation was identified in the right
mesial temporal region in MCI-C compared with MCI-
NC. Next, a binary logistic regression model was used to
test the ability of each texture feature to predict MCI to
AD conversion (Table 3). Their individual AUCs ranged
from 0.709 to 0.794, which were higher than HOC alone
(AUC 0.655). The predictive ability was improved with a
model combining all five texture features (AUC 0.825).

To further characterize the utility of MRI texture in con-
version discrimination, we next asked the question of
whether the inclusion of additional clinical variables to
texture could improve prognostic ability. Our binary logistic
regression model determined that among the clinical vari-
ables, only APOE-ε4 provided a statistical significance of
P , .05. In this composite model including texture, HOC,
and APOE-ε4, an AUC of 0.895 was achieved with a sensi-
tivity of 90.8% and a specificity of 73.6%. A final model
which also included MMSE score and sex had a further in-
crease in AUC to 0.905 and a sensitivity and specificity of
86.7% and 83.0%, respectively (Table 3). Pairwise
tients with Alzheimer’s disease (AD)

C analysis

95% CI Sens (%) Spec (%) P valueC

37 0.797–0.871 75.4 78.7 ,.0001

09 0.767–0.846 66.1 85.3 ,.0001

28 0.788–0.864 74.9 76.9 ,.0001

22 0.676–0.765 74.3 61.3 ,.0001

28 0.788–0.864 77.1 76.9 ,.0001

25 0.784–0.869 77.6 71.6 ,.0001

66 0.830–0.898 81.4 77.8 ,.0001

66 0.829–0.897 76.0 84.9 ,.0001

50 0.812–0.883 78.1 79.1 ,.0001

15 0.774–0.852 66.1 86.7 ,.0001

40 0.800–0.874 74.3 80.9 ,.0001

25 0.785–0.861 77.6 75.1 ,.0001

36 0.796–0.870 76.0 78.2 ,.0001

18 0.777–0.854 63.4 90.2 ,.0001

28 0.898–0.951 88.0 84.9 ,.0001

43 0.804–0.877 77.6 79.6 ,.0001

30 0.901–0.953 83.1 92.0 ,.0001

I, confidence interval; Sens, sensitivity; Spec, specificity; HOC, hippocam-



Fig. 2. Statistical maps showing significant areas of texture change at the

baseline between MCI nonconverters (MCI-NC) and converters (MCI-C)

in the training group. Autocorrelation (Autoc) had areas of both higher

(A, left, 1) and lower (A, right, 2) texture values in MCI-NC when

compared with MCI-C, whereas correlation (B, Corrm), homogeneity (C,

Homom), and sum of entropy (D, Senth) only revealed higher texture value

for MCI-NC. Voxel clusters.20 at P , .001, uncorrected were designated

as significant.
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comparison of receiver operating characteristic curves using
DeLong test showed statistical significance with P, .05 for
all comparisons with the exception of (Texture 1 HOC)
compared with (Texture 1 HOC 1 APOE-ε4) and
(Texture 1 HOC 1 APOE-ε4) compared with
(Texture 1 HOC 1 APOE-ε4 1 MMSE 1 Sex).

Next, the MCI group was further divided into a training
set (w75%) and a trial set (w25%). We randomly generated
a total of 10 of these sets, with each training set having a total
of n5 80 MCI-NC and n5 74 MCI-C, whereas the trial set
had a total of n5 26 MCI-NC and n5 24 MCI-C. Indepen-
dent sample t-test and chi-square analysis showed no statis-
tical difference between the baseline demographics in the
training and trial sets in each iteration. Next, ten binary lo-
gistic regression models were determined, corresponding
to one for each training set, achieving AUC ranging from
0.896 to 0.930 (Table 4).

To test our discriminant model, we then applied these bi-
nary logistic regression models to their corresponding trial
sets to determine their accuracy for distinguishing between
MCI-NC and MCI-C. The composite model including
texture, HOC, APOE-ε4 genotype, MMSE score, and sex
had a mean accuracy of 76.26 6.8% in the 10 trials (Table 4).
4. Discussion

The main objective of this study was to characterize cere-
bral degeneration in vivo using MRI-based texture analysis
and to determine whether MRI texture could be used to pre-
dict conversion of MCI to AD. We used a whole-brain
texture analysis (VGLCM-TOP-3D) to compute eight
different texture features from T1-weighted MR images.
As we hypothesized, MRI texture was different between
NC and patients with AD and could further be used to predict
MCI-C from nonconverters. Specifically, MRI texture
changes were seen in all eight texture features between
NC and patients with AD and in a combined model had an
AUC of 0.928. This was superior to HOC, which had an
AUC of 0.843. Furthermore, we determined areas of signif-
icant texture change between MCI-NC and MCI-C, which
alone accounted for an AUC of 0.825, which was higher
than HOC at 0.655. The model that yielded the greatest
AUC (0.905) incorporated texture, HOC, APOE-ε4,
MMSE, and sex. We further tested this model on 10 separate
data splits, each with 75% training and 25% trial and found
accuracy in predictingMCI-C andMCI-NC in the trial group
of 76.2%.

In this study, we included hippocampal volume (ex-
pressed as the HOC score), a previously well-defined
biomarker of disease to compare with MRI texture in distin-
guishing the various AD states [29]. This score has previ-
ously been shown to be superior to raw hippocampal
volume alone in distinguishing NC and patients with AD
[27]. Previous studies have demonstrated that hippocampal
volume can be used to classify NC from patients with AD,
reaching AUC levels of 0.75 to 0.887 using whole hippo-
campal volume and 0.81 to 0.895 when using subsegments
of the hippocampus [30,31]. This is comparable with our
own hippocampal volume segmentations, which achieved
an AUC score of 0.843. When we combined texture and
HOC, this achieved the greatest AUC of 0.930.

The use of hippocampal volume to distinguish MCI-NC
from MCI-C has been demonstrated in multiple previous
studies. In particular, a meta-analysis of these various studies
concluded that atrophy of mesial temporal lobe structures,



Table 3

Texture, hippocampal occupancy, clinical variables, and the resulting area under curve in distinguishing mild cognitive impairment nonconverters (MCI-NC)

from MCI converters (MCI-C)

Variable

Texture value ROC analysis

95% CI Sens (%) Spec (%) P valueNon-converters Converters AUC

Autoc (1) 41.8 6 5.2 36.3 6 6.0 0.753 0.688–0.810 73.5 69.8 ,.0001

Autoc (2) 42.1 6 3.5 44.8 6 3.1 0.709 0.641–0.770 82.7 49.1 ,.0001

Corrm 53.4 6 18.2 34.9 6 17.4 0.774 0.710–0.829 83.7 62.3 ,.0001

Homom 108.8 6 16.6 88.0 6 18.5 0.794 0.732–0.848 64.3 80.2 ,.0001

Senth 94.5 6 37.8 57.6 6 35.2 0.762 0.697–0.819 81.6 63.2 ,.0001

HOC 0.655 0.585–0.720 64.3 64.2 ,.0001

Texture 0.825 0.766–0.875 71.4 79.3 ,.0001

Texture 1 HOC 0.881 0.828–0.922 87.8 75.5 ,.0001

Texture 1 HOC 1 APOE-ε4 0.895 0.845–0.933 90.8 73.6 ,.0001

Texture 1 HOC 1 APOE-ε4 1
MMSE 1 Sex

0.905 0.856–0.941 86.7 83.0 ..0001

Abbreviations: ROC, receiver operating characteristic; AUC, area under curve, CI, confidence interval; Sens, sensitivity; Spec, specificity; MMSE, Mini-

Mental Status Examination; HOC, hippocampal occupancy.

Table 4

Area under curve in ten separate trials of randomly splitting training (75%)

and trail data (25%) and the resulting accuracy of prediction in the trial set

Trial

ROC

analysis

95% CI

Sens

(%)

Spec

(%) P value

Accuracy

(%) in

trial setAUC

1 0.925 0.871–0.961 86.5 87.5 ,.0001 68

2 0.896 0.837–0.940 78.4 90.0 ,.0001 84

3 0.899 0.840–0.942 85.1 85.0 ,.0001 82

4 0.921 0.867–0.958 94.6 78.8 ,.0001 78

5 0.910 0.854–0.950 89.2 85.0 ,.0001 76

6 0.906 0.849–0.947 89.2 81.3 ,.0001 84

7 0.917 0.861–0.955 86.5 87.5 ,.0001 70

8 0.930 0.878–0.965 89.2 87.5 ,.0001 66

9 0.904 0.846–0.946 89.2 80.0 ,.0001 82

10 0.906 0.849–0.947 85.1 85.0 ,.0001 72

Abbreviations: ROC, receiver operating characteristic; AUC, area under

curve, CI, confidence interval; Sens, sensitivity; Spec, specificity.
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specifically the hippocampus and parahippocampal gyrus in
the left hemisphere, had the highest predictive value for con-
version [32]. Texture changes in these regions were also
identified with our texture analysis, in addition to also iden-
tifying changes in the right mesial temporal lobe. Khan et al.
[31] were able to use hippocampal volume to accurately
identify 76.7% of all MCI-C and 50.1% of all MCI-NC.
When they used subfield analysis, selecting for the subicu-
lum, the accuracy of identifying all MCI-C increased to
81.1%, with a marginal decrease to 49.0% in MCI-NC.
Furthermore, using an automated temporal lobe atrophy
assessment, Chincarini et al. [14] were able to achieve an
AUC of 0.81 when classifying MCI-NC from MCI-C. We
show in our study that using HOC alone achieved an AUC
of 0.655. The lower AUC and accuracy may be related to
the heterogeneity of our MCI group, which contained partic-
ipants with MCI-C showing conversion at any time point at
12, 24, and 36 months. This is in contrast to the data set used
in the study by Khan et al. and Chincarini et al., which
included MCI-C up to 12 months and 24 months, respec-
tively. Despite this heterogeneity, MRI texture proved supe-
rior to hippocampal volume in both its ability to distinguish
NC from patients with AD (AUC 0.928) and MCI-NC from
MCI-C (AUC 0.825).

Our method of texture analysis is not confined to the use
of a priori determined regions of interest, thus allowing for
the discovery of novel regions of change. For instance, pre-
vious VBM studies showed that amnestic patients with MCI
who converted to AD had significant clusters of gray matter
volumetric reduction in the left hippocampus and parahippo-
campal gyrus. In our present study, we determined hippo-
campal and parahippocampal texture changes were also
present in the right hemisphere. This suggests the possibility
that texture change may precede the development of atrophy.
However, a specific study designed to longitudinally
compare volume changes with texture changes will need to
be untaken to further verify this hypothesis. This is in keep-
ing with previous studies on the ADNI data set that demon-
strated the utility of hippocampal texture alone to act as a
predictor of MCI to AD conversion [33]. Sorensen et al.
showed that texture had the ability to predict conversion to
dementia independent of volume, with an AUC of 0.740 to
0.742 in those who converted within 12 and 24 months,
respectively. Previous studies from Chincarini et al. using
texture features from defined volumes of interest with
random forest classifiers have also shown that texture can
be used to distinguish NC, MCI, and AD groups and MCI-
C from MCI-NC. They were able to achieve an AUC of
0.74 with a classification index for the latter [34]. However,
given that these previous study also used a region of interest
analysis, they were constrained by the a priori selection bias.
Our present study was able to determine more specific re-
gions of texture change. In addition, our work builds on orig-
inal investigations completed by Maani et al., which showed
mesial temporal lobe changes in a smaller population of 30
NC and 30 patients with AD from the OASIS (http://www.
oasis-brains.org/) database where similar regions of change

http://www.oasis-brains.org/
http://www.oasis-brains.org/
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were identified. However, our present study used a larger
population and included patients with MCI in the analysis.

A previous study using a single hippocampal texture with
predefined hippocampus region of interest along with hippo-
campal volume, shape, and cortical thickness resulted in an
accuracy prediction on the Australian Imaging, Biomarker
& Lifestyle Flagship Study of Aging of 63% after being
trained on the ADNI data set [35]. Our present study utilizes
random splitting of our data set into both a training and trial
group to generate models and test on a trial group not
involved in the creation of the model. While these results
are not as robust as those seen in the study by Sorensen
et al. where the model was tested on an independent test
set, we note that our model has average accuracy of 76.2%
when tested over 10 times. Future studies would involve
testing this model on an independent data set.

There are some limitations to our present study in terms of
their applicability to the general population. First, the ADNI
cohort cannot be generalized to the normal population given
the patient recruitment was targeted toward clinical trials in
patients with AD. Second, the baseline demographics of
these sample patients do not fit with the actual demographics
of the broader population. We do also note that although we
verified our model using multiple iterations of splitting our
data, it was not verified on an independent population.
Regardless, this study shows that (1) there are texture differ-
ences between NC, patients with MCI, and patients with AD
and (2) MRI texture changes may be a viable biomarker in
predicting which patients with MCI may convert to AD.

While previous methods of texture analysis and toolboxes
have been limited to analyzing region of interest and there-
fore require a priori analysis, the utilization of VGLCM-
TOP-3D in our study allowed for a hypothesis-free analysis
[36,37]. This is the first study to our knowledge that has used
a 3D whole-brain analysis to identify novel texture changes
in distinguishing NC from patients with AD and MCI-NC
fromMCI-C. In conclusion, the resulting ability to select pa-
tients at highest risk for conversion to AD from MCI will
result in a more homogenous population of research partic-
ipants, enabling more clear therapeutic studies as well as tar-
geting those patients with the greatest benefit.
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RESEARCH IN CONTEXT

1. Systematic review: In the review of literature, the au-
thors found no articles using whole-brain MRI
texture as a means to predict mild cognitive impair-
ment (MCI) conversion to Alzheimer’s disease (AD).

2. Interpretation: MRI texture is different between
normal control and patient with AD. Differences in
MRI texture were also found between MCI con-
verters and nonconverters. Using a model that incor-
porates MRI texture and clinical data allowed for an
increased accuracy of predicting MCI to AD conver-
sion.

3. Future directions: Future work should be geared to-
ward correlating MRI texture with tissue pathology.
Furthermore, the incorporation of additional clinical
markers with MRI texture has the potential for the
development of a more accurate predictive model
for MCI to AD conversion.
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