Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 1-(4-chlorobenzyl)-3-(4-fluorophenyl)-1*H*-pyrazole-5-carboxylate

Yan Qing Ge,* Ji Mei Zhang, Guang Liang Wang, Hao Xu and Bo Shi

Taishan Medical College, Tai an, 271016, People's Republic of China Correspondence e-mail: ygge@yahoo.cn

Received 20 April 2011; accepted 6 May 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.117; data-to-parameter ratio = 13.6.

In the title compound, $C_{19}H_{16}ClFN_2O_2$, the pyrazole ring makes dihedral angles of 5.15 (6) and 77.72 (6)°, with the fluorophenyl and chlorophenyl rings, respectively.

Related literature

For the pharmacological activity of pyrazole compounds, see: Ge *et al.* (2007). For the synthesis of the title compound, see: Li *et al.* (2011). For the structure of ethyl 1-benzyl-3-(4-fluorophenyl)-1*H*-pyrazole-5-carboxylate, see: Han *et al.* (2011). For applications of nitrogen-containing heterocyclic compounds, see: Ge *et al.* (2009, 2011).

Experimental

Crystal data

 $wR(F^2) = 0.117$

3091 reflections

S = 1.05

Crystat aata	
$\begin{array}{l} C_{19}H_{16}\text{CIFN}_2\text{O}_2\\ M_r = 358.79\\ \text{Triclinic, } P\overline{1}\\ a = 8.267 \ (4) \ \text{\AA}\\ b = 10.375 \ (5) \ \text{\AA}\\ c = 11.368 \ (5) \ \text{\AA}\\ \alpha = 109.128 \ (7)^\circ\\ \beta = 93.269 \ (7)^\circ \end{array}$	$\gamma = 104.842 (7)^{\circ}$ $V = 879.8 (7) \text{ Å}^{3}$ Z = 2 Mo K α radiation $\mu = 0.24 \text{ mm}^{-1}$ T = 298 K $0.22 \times 0.14 \times 0.11 \text{ mm}$
Data collection	
Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.949, T_{max} = 0.974$	4589 measured reflections 3091 independent reflections 2570 reflections with $I > 2\sigma(I)$ $R_{int} = 0.017$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.042$	227 parameters

227 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.32 \text{ e} \text{ Å}^{-3}$

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This study was supported by the Natural Science Foundation of Shandong Province (Y2007C135).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2010).

References

Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Ge, Y.-Q., Dong, W.-L., Xia, Y., Wei, F. & Zhao, B.-X. (2007). Acta Cryst. E63, 01313–01314.

Ge, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009). *Heterocycles*, 78, 197–206.
Ge, Y. Q., Jia, J., Yang, H., Tao, X. T. & Wang, J. W. (2011). *Dyes Pigm.* 88, 344-349

Han, Z., Zheng, H.-L. & Tian, X.-L. (2011). Acta Cryst. E67, o511.

Li, Y.-Q., Jia, B.-X., Xiao, Y.-L. & Guo, F.-G. (2011). Acta Cryst. E67, 0468. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supplementary materials

Acta Cryst. (2011). E67, o1387 [doi:10.1107/S1600536811017156]

Ethyl 1-(4-chlorobenzyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxylate

Y. Q. Ge, J. M. Zhang, G. L. Wang, H. Xu and B. Shi

Comment

Synthesis of nitrogen-containing heterocyclic compounds has been a subject of great interest due to their applications in the agrochemical and pharmaceutical fields (Ge *et al.*, 2009, 2011). Some pyrazole derivatives which belong to this category have been of interest for their biological activities. Considerable effort has been devoted to the development of novel pyrazole compounds. We report here the crystal structure of the title compound, (I) (Fig. 1)

Experimental

A mixture of ethyl 3-(4-fluorophenyl)-1*H*-pyrazole-5-carboxylate (0.02 mol), 1-chloro-4-(chloromethyl)benzene (0.0024 mol) and potassium carbonate (0.02 mol) in acetonitrile (100 ml) was heated to reflux for 3 h. The solvent was removed under reduced pressure and the product was isolated by column chromatography on silica gel (yield 88%). Crystals of (I) suitable for X-ray diffraction were obtained by allowing a refluxed solution of the product in ethyl acetate to cool slowly to room temperature and allowing the solvent to evaporate for 1 d.

Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH₂ groups) and 0.96 Å (for CH₃ groups), their isotropic displacement parameters were set to 1.2 times (1.5 times for CH₃ groups) the equivalent displacement parameter of their parent atoms.

Figures

. .

Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.

Ethyl 1-(4-chlorobenzyl)-3-(4-fluorophenyl)-1H-pyrazole-5-carboxylate

Crystal data	
C ₁₉ H ₁₆ ClFN ₂ O ₂	Z = 2
$M_r = 358.79$	F(000) = 372
Triclinic, PT	$D_{\rm x} = 1.354 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å

supplementary materials

a = 8.267 (4) Å
b = 10.375 (5) Å
c = 11.368 (5) Å
$\alpha = 109.128 \ (7)^{\circ}$
$\beta = 93.269 \ (7)^{\circ}$
$\gamma = 104.842 \ (7)^{\circ}$
$V = 879.8 (7) \text{ Å}^3$

Data collection

Bruker SMART APEX CCD diffractometer	3091 independent reflections
Radiation source: fine-focus sealed tube	2570 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.017$
φ and ω scans	$\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005)	$h = -9 \rightarrow 9$
$T_{\min} = 0.949, \ T_{\max} = 0.974$	$k = -7 \rightarrow 12$
4589 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.042$	H-atom parameters constrained
$wR(F^2) = 0.117$	$w = 1/[\sigma^2(F_o^2) + (0.0578P)^2 + 0.1997P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
3091 reflections	$\Delta \rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$
227 parameters	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL</i> , Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.277 (15)

Primary atom site location: structure-invariant direct Extinction coefficient: 0.377 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Cell parameters from 2637 reflections $\theta = 2.3-28.0^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 298 KBlock, colourless $0.22 \times 0.14 \times 0.11 \text{ mm}$

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	1.50553 (8)	0.97753 (7)	0.28534 (7)	0.0902 (3)
F1	0.58679 (18)	0.70217 (16)	1.03659 (11)	0.0901 (4)
01	0.8333 (2)	0.38223 (15)	0.13974 (12)	0.0730 (4)
O2	0.85036 (17)	0.24464 (14)	0.25387 (12)	0.0635 (4)
N1	0.76250 (18)	0.58191 (16)	0.36486 (13)	0.0520 (4)
N2	0.72669 (19)	0.64677 (16)	0.47978 (13)	0.0538 (4)
C1	1.2960 (3)	0.8828 (2)	0.28289 (19)	0.0623 (5)
C2	1.2032 (3)	0.7838 (2)	0.17127 (17)	0.0613 (5)
H2	1.2510	0.7663	0.0976	0.074*
C3	1.0381 (3)	0.7106 (2)	0.17021 (16)	0.0581 (5)
Н3	0.9750	0.6430	0.0949	0.070*
C4	0.9639 (2)	0.73540 (19)	0.27895 (15)	0.0530 (4)
C5	1.0613 (3)	0.8359 (2)	0.39014 (17)	0.0665 (5)
Н5	1.0142	0.8537	0.4641	0.080*
C6	1.2269 (3)	0.9101 (2)	0.39306 (19)	0.0735 (6)
Н6	1.2910	0.9774	0.4681	0.088*
C7	0.7810(2)	0.6583 (2)	0.27612 (17)	0.0589 (5)
H7A	0.7168	0.7269	0.2968	0.071*
H7B	0.7342	0.5910	0.1916	0.071*
C8	0.7893 (2)	0.45469 (18)	0.35425 (15)	0.0489 (4)
C9	0.7673 (2)	0.43606 (18)	0.46724 (15)	0.0502 (4)
Н9	0.7764	0.3590	0.4890	0.060*
C10	0.7285 (2)	0.55756 (18)	0.54247 (15)	0.0480 (4)
C11	0.6912 (2)	0.59545 (18)	0.67292 (15)	0.0490 (4)
C12	0.7055 (2)	0.5107 (2)	0.74363 (17)	0.0599 (5)
H12	0.7390	0.4291	0.7082	0.072*
C13	0.6705 (3)	0.5465 (2)	0.86630 (18)	0.0663 (5)
H13	0.6798	0.4896	0.9133	0.080*
C14	0.6221 (2)	0.6670 (2)	0.91642 (17)	0.0633 (5)
C15	0.6065 (3)	0.7534 (2)	0.85037 (18)	0.0642 (5)
H15	0.5733	0.8349	0.8870	0.077*
C16	0.6412 (2)	0.7171 (2)	0.72777 (17)	0.0564 (4)
H16	0.6309	0.7747	0.6817	0.068*
C17	0.8260 (2)	0.35999 (19)	0.23761 (16)	0.0535 (4)
C18	0.8920 (3)	0.1438 (2)	0.1458 (2)	0.0723 (6)
H18A	0.9889	0.1920	0.1161	0.087*
H18B	0.7970	0.1014	0.0776	0.087*
C19	0.9320 (3)	0.0317 (3)	0.1868 (3)	0.0882 (7)
H19A	1.0243	0.0751	0.2555	0.132*
H19B	0.9631	-0.0351	0.1177	0.132*
H19C	0.8343	-0.0171	0.2136	0.132*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0733 (4)	0.0979 (5)	0.1037 (5)	0.0228 (3)	0.0231 (3)	0.0415 (4)
F1	0.1132 (10)	0.1118 (10)	0.0493 (7)	0.0361 (8)	0.0303 (6)	0.0283 (7)
O1	0.1059 (11)	0.0717 (9)	0.0482 (8)	0.0343 (8)	0.0217 (7)	0.0219 (7)
02	0.0808 (9)	0.0592 (8)	0.0567 (8)	0.0294 (7)	0.0222 (6)	0.0198 (6)
N1	0.0610 (9)	0.0581 (9)	0.0442 (8)	0.0220 (7)	0.0137 (6)	0.0229 (7)
N2	0.0632 (9)	0.0583 (9)	0.0459 (8)	0.0234 (7)	0.0151 (6)	0.0206 (7)
C1	0.0701 (12)	0.0634 (11)	0.0642 (12)	0.0276 (9)	0.0183 (9)	0.0292 (10)
C2	0.0821 (13)	0.0669 (12)	0.0503 (10)	0.0354 (10)	0.0256 (9)	0.0277 (9)
C3	0.0814 (13)	0.0575 (10)	0.0414 (9)	0.0275 (9)	0.0134 (8)	0.0192 (8)
C4	0.0727 (11)	0.0539 (10)	0.0438 (9)	0.0274 (9)	0.0146 (8)	0.0240 (8)
C5	0.0851 (14)	0.0716 (13)	0.0418 (10)	0.0225 (11)	0.0198 (9)	0.0173 (9)
C6	0.0840 (15)	0.0748 (14)	0.0507 (11)	0.0163 (11)	0.0079 (10)	0.0139 (10)
C7	0.0733 (12)	0.0672 (11)	0.0492 (10)	0.0293 (9)	0.0124 (8)	0.0300 (9)
C8	0.0494 (9)	0.0522 (9)	0.0449 (9)	0.0146 (7)	0.0074 (7)	0.0171 (7)
C9	0.0546 (10)	0.0512 (9)	0.0475 (9)	0.0162 (8)	0.0088 (7)	0.0202 (8)
C10	0.0473 (9)	0.0538 (10)	0.0433 (9)	0.0134 (7)	0.0071 (7)	0.0188 (7)
C11	0.0463 (9)	0.0546 (10)	0.0445 (9)	0.0117 (7)	0.0068 (7)	0.0180 (8)
C12	0.0726 (12)	0.0609 (11)	0.0502 (10)	0.0217 (9)	0.0130 (8)	0.0225 (9)
C13	0.0807 (13)	0.0731 (13)	0.0521 (11)	0.0215 (11)	0.0138 (9)	0.0315 (10)
C14	0.0646 (11)	0.0799 (13)	0.0419 (9)	0.0145 (10)	0.0134 (8)	0.0212 (9)
C15	0.0692 (12)	0.0685 (12)	0.0543 (11)	0.0262 (10)	0.0157 (9)	0.0152 (9)
C16	0.0624 (11)	0.0623 (11)	0.0501 (10)	0.0222 (9)	0.0123 (8)	0.0236 (8)
C17	0.0549 (10)	0.0546 (10)	0.0478 (10)	0.0135 (8)	0.0097 (7)	0.0157 (8)
C18	0.0880 (14)	0.0623 (12)	0.0657 (12)	0.0312 (11)	0.0238 (10)	0.0125 (10)
C19	0.0947 (17)	0.0722 (14)	0.112 (2)	0.0396 (13)	0.0408 (14)	0.0357 (14)
Geometric p	arameters (Å, °)					
C_{11} C_{1}		1 753 (2)	C8	C9	1.3	75 (2)
E1-C14		1.755(2) 1.363(2)	C8-	C17	1.5	70 (2)
01-017		1.303(2) 1.210(2)	C9	C10	1.4	$\frac{70}{2}$
02-C17		1.210(2) 1.331(2)	C9	H9	0.9	300
02 - C18		1.551(2) 1 454(2)	C10-	-C11	1.4	77 (2)
N1—N2		1 348 (2)	C11-	-C16	1 30	90(3)
N1-C8		1.362(2)	C11-	-C12	1.3	$\frac{1}{2}$ (2)
N1-C7		1.502(2)	C12-	-C13	1.3	88 (3)
N2-C10		1.400(2) 1.343(2)	C12	_H12	0.9	300
C1-C2		1.343(2) 1.373(3)	C12	-C14	1.3	56 (3)
C1 - C6		1.375(3)	C13	_H13	0.9	300
$C_{1} = C_{0}$		1.331(3) 1.379(3)	C13-	-015	0.9	58 (3)
С2—С3		0.9300	C14-	-C15	1.3	87 (3)
$C_2 - C_1$		1 380 (2)	C15	_H15	1.5	300
C3_H2		0.0200	C15-		0.9.	300
C1-C5		1 387 (3)	C10-		0.9.	28 (3)
$C_4 - C_3$		1.307(3)	C10-		1.40	700
U4-U/		1.312 (3)	C18-	-n18A	0.9	/00

C5—C6	1.380 (3)	C18—H18B	0.9700
С5—Н5	0.9300	C19—H19A	0.9600
С6—Н6	0.9300	С19—Н19В	0.9600
С7—Н7А	0.9700	С19—Н19С	0.9600
С7—Н7В	0.9700		
C17—O2—C18	115.92 (15)	N2—C10—C11	119.71 (15)
N2—N1—C8	111.63 (13)	C9—C10—C11	129.52 (15)
N2—N1—C7	118.43 (15)	C16—C11—C12	118.60 (17)
C8—N1—C7	129.72 (15)	C16—C11—C10	120.50 (16)
C10—N2—N1	105.41 (14)	C12—C11—C10	120.90 (16)
C2—C1—C6	121.27 (19)	C13—C12—C11	120.85 (19)
C2—C1—Cl1	119.37 (15)	С13—С12—Н12	119.6
C6—C1—C11	119.37 (17)	C11—C12—H12	119.6
C1-C2-C3	118.90 (17)	C14—C13—C12	118.54 (18)
C1—C2—H2	120.6	C14—C13—H13	120.7
C_{3} C_{2} H_{2}	120.6	C12—C13—H13	120.7
$C_2 - C_3 - C_4$	121.55 (17)	F1-C14-C13	118 73 (19)
$C_2 = C_3 = H_3$	119.2	F1 - C14 - C15	118.72 (19)
$C_2 = C_3 = H_3$	119.2	$C_{13} - C_{14} - C_{15}$	110.72(19) 122.55(18)
C_{2} C_{3} C_{4} C_{3}	119.2	C_{12}^{14} C_{15}^{15} C_{16}^{16}	122.33(10) 118.70(10)
$C_{5} = C_{4} = C_{5}$	120.71 (16)	$C_{14} = C_{15} = C_{10}$	120.6
$C_3 = C_4 = C_7$	120.71(10) 121.22(16)	C14_C15_H15	120.0
$C_{3} - C_{4} - C_{7}$	121.22(10) 121.21(18)	C15_C16_C11	120.0 120.75(18)
$C_{0} = C_{3} = C_{4}$	121.21 (16)	C15 - C16 - U16	120.75 (16)
	119.4		119.0
C4—C5—H5	119.4	CII—CI6—HI6	119.0
C5-C6-C1	119.02 (19)	01_017_02	124.03 (17)
С5—С6—Н6	120.5	01-017-08	125.40 (18)
С1—С6—Н6	120.5	02	110.57 (15)
N1—C7—C4	112.17 (14)	02	107.60 (18)
N1—C7—H7A	109.2	O2—C18—H18A	110.2
С4—С7—Н7А	109.2	C19—C18—H18A	110.2
N1—C7—H7B	109.2	O2—C18—H18B	110.2
С4—С7—Н7В	109.2	C19—C18—H18B	110.2
Н7А—С7—Н7В	107.9	H18A—C18—H18B	108.5
N1—C8—C9	106.76 (15)	C18—C19—H19A	109.5
N1—C8—C17	122.96 (15)	C18—C19—H19B	109.5
C9—C8—C17	130.22 (17)	H19A—C19—H19B	109.5
C8—C9—C10	105.43 (15)	C18—C19—H19C	109.5
С8—С9—Н9	127.3	H19A—C19—H19C	109.5
С10—С9—Н9	127.3	H19B—C19—H19C	109.5
N2-C10-C9	110.77 (15)		
C8—N1—N2—C10	-0.88 (18)	C8—C9—C10—N2	-0.08 (19)
C7—N1—N2—C10	-175.99 (14)	C8—C9—C10—C11	179.54 (16)
C6—C1—C2—C3	-0.1 (3)	N2-C10-C11-C16	5.1 (2)
Cl1—C1—C2—C3	-179.55 (14)	C9—C10—C11—C16	-174.51 (17)
C1—C2—C3—C4	0.3 (3)	N2-C10-C11-C12	-174.77 (16)
C2—C3—C4—C5	-0.5 (3)	C9—C10—C11—C12	5.6 (3)
C2—C3—C4—C7	177.88 (16)	C16—C11—C12—C13	0.1 (3)

supplementary materials

C3—C4—C5—C6	0.4 (3)	C10-C11-C12-C13	179.94 (17)
C7—C4—C5—C6	-177.99 (18)	C11—C12—C13—C14	-0.2 (3)
C4—C5—C6—C1	-0.1 (3)	C12-C13-C14-F1	179.67 (17)
C2—C1—C6—C5	0.0 (3)	C12-C13-C14-C15	0.2 (3)
Cl1—C1—C6—C5	179.45 (16)	F1-C14-C15-C16	-179.51 (17)
N2—N1—C7—C4	95.64 (18)	C13-C14-C15-C16	0.0 (3)
C8—N1—C7—C4	-78.4 (2)	C14-C15-C16-C11	-0.1 (3)
C5-C4-C7-N1	-57.5 (2)	C12-C11-C16-C15	0.1 (3)
C3—C4—C7—N1	124.17 (18)	C10-C11-C16-C15	-179.79 (16)
N2—N1—C8—C9	0.85 (19)	C18—O2—C17—O1	1.5 (3)
C7—N1—C8—C9	175.25 (16)	C18—O2—C17—C8	-178.52 (16)
N2—N1—C8—C17	178.25 (15)	N1-C8-C17-O1	-1.4 (3)
C7—N1—C8—C17	-7.3 (3)	C9—C8—C17—O1	175.33 (19)
N1-C8-C9-C10	-0.45 (18)	N1—C8—C17—O2	178.63 (15)
C17—C8—C9—C10	-177.60 (17)	C9—C8—C17—O2	-4.6 (3)
N1—N2—C10—C9	0.57 (18)	C17—O2—C18—C19	174.11 (17)
N1—N2—C10—C11	-179.09 (14)		

Fig. 1