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p97/VCP (known as Cdc48 in S. cerevisiae or TER94 in Drosophila) is one of the most

abundant cytosolic ATPases. It is highly conserved from archaebacteria to eukaryotes. In

conjunction with a large number of cofactors and adaptors, it couples ATP hydrolysis to

segregation of polypeptides from immobile cellular structures such as protein assemblies,

membranes, ribosome, and chromatin. This often results in proteasomal degradation of

extracted polypeptides. Given the diversity of p97 substrates, this “segregase” activity

has profound influence on cellular physiology ranging from protein homeostasis to DNA

lesion sensing, and mutations in p97 have been linked to several human diseases. Here

we summarize our current understanding of the structure and function of this important

cellular machinery and discuss the relevant clinical implications.

Keywords: AAA ATPase, p97/VCP, Cdc48, chaperones, protein denaturation, protein quality control,

neurodegenerative diseases

p97/Cdc48 belongs to the AAA+ (extended family of ATPases associated with various cellular
activities) ATPase family, which functions generally as essential chaperones to promote protein
folding or unfolding. Cdc48 was initially identified in S. cerevisiae as a cell cycle regulator, which
upon inactivation, leads to a cell cycle arrest at the G2-M transition stage (Moir et al., 1982). A
mammalian homolog of 97 kDa was later discovered and dubbed as p97 or valosin-containing
protein precursor (VCP) (Koller and Brownstein, 1987). In Drosophila, the name TER ATPase
(transitional endoplasmic reticulum ATPase) has been used given the partial localization of this
enzyme to the endoplasmic reticulum (ER) surface (Zhang et al., 1994, see below). In this review,
we use p97 and Cdc48 to refer to the mammalian and yeast homologs, respectively.

As a type II AAA+ ATPase, p97/Cdc48 has two AAA ATPase domains designated as D1 and
D2 (Figure 1A). These two domains are connected by a short polypeptide linker (D1–D2 linker).
Although the ATPase domains are highly similar in sequence and structure, they have distinct
functions: while the D1 domain is required for hexameric assembly of p97, the D2 domain is a
major contributor of the overall ATPase activity (see below, Song et al., 2003; Wang et al., 2003). In
addition, p97/Cdc48 has a sizable N-terminal domain (N-domain) that is linked to the D1 domain
by a flexible polypeptide segment (N-D1 linker). At the C-terminus, a short tail is appended to
the D2 domain. The interaction of p97/Cdc48 with its partners is mostly mediated by the N-
domain, but a few proteins bind p97/Cdc48 using its C-terminal tail (Ogura and Wilkinson, 2001;
Buchberger et al., 2015).

As a soluble protein, p97 is primarily localized in the cytosol, but a fraction is present
on organelle membranes including the endoplasmic reticulum (ER), Golgi, mitochondria, and
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FIGURE 1 | Structure of p97/Cdc48. (A) Cartoon representation of the domain organization of p97/Cdc48. Color code reflects that for subunit A in (B,C). The ribbon

structure shows the D1 domain of a single protomer bound by a ATPγS molecule (PDB:4KO8). The RecA-like domain is colored in light blue and the characteristic

helical domain is in cyan. The nucleotide-binding site communicates with a neighboring subunit through the SRH (second region of homology, in red) motif, where a

conserved Arg-finger residue R359 is in contact with the bound nucleotide. (B,C) Surface representation of the structure of hexameric p97 (PDB: 3CF2 in the

ADP-bound form) (B) is a top view down the 6-fold symmetry axis showing the N-D1 ring. The six subunits are labeled in colors. The D1 domain and the N-domain

are indicated with arrows and labeled for one of the six subunits. (C) is a side view of the p97 hexamer.

endosomes (Acharya et al., 1995; Latterich et al., 1995; Rabouille
et al., 1995; Xu et al., 2011; Ramanathan and Ye, 2012).
How p97/Cdc48 is recruited to different membranes is largely
unclear, but this process is probably mediated by adaptors on
different organelles, as demonstrated for the ER (Christianson
and Ye, 2014). A fraction of p97/Cdc48 is also localized in the
nucleus (Madeo et al., 1998), where it assists various chromatin-
associated processes or nuclear protein quality control (PQC)
(see below).

In multicellular organisms, the expression of p97 is
ubiquitous. In humans, the transcription of p97 was moderately
upregulated in some cancers, and the level of p97 mRNA appears
to correlate with cell sensitivity to cell death induced by a potent
p97 inhibitor, a potential anti-cancer drug (Anderson et al.,
2015). More recently, genetic studies revealed that mutations in
p97 may be causal to several human diseases including IBMPFD
(Inclusion Body Myopathy associated with Paget’s disease of the
bone and Frontotemporal Dementia) and amyotrophic lateral
sclerosis (ALS) (Xia et al., 2016). These findings stimulated a
flurry of investigations on p97 substrates whose “mis-handling”
by p97 mutants may have caused abnormality in human
physiology.

Most p97/Cdc48 substrates identified to date are conjugated
with ubiquitin and targeted for degradation by the 26S
proteasome, but a few exceptions exist (Ramadan et al., 2007;
Wilcox and Laney, 2009; Ndoja et al., 2014). A key feature of the
p97/Cdc48-assisted degradation system is that many cofactors
or adaptors are capable of recognizing ubiquitin conjugates (Ye,
2006). Some p97 cofactors are enzymes that can add or remove

ubiquitin conjugates, but most of them, regardless of whether
or not possessing a ubiquitin binding motif, seem to serve an
adaptor function that links this ATPase to a specific subcellular
compartment or substrate.

STRUCTURE OF P97

p97 forms a stable hexameric structure with two concentric
rings (Figures 1B,C): the N-D1 ring has the N-domains laterally
attached and therefore has a larger radius (Peters et al., 1990;
Zhang et al., 2000; DeLaBarre and Brunger, 2003, 2005; Huyton
et al., 2003; Davies et al., 2008; Banerjee et al., 2016; Schuller
et al., 2016). A similar ring-shaped structure was observed for
various IBMPFD mutants (Tang et al., 2010; Tang and Xia,
2012, 2013) and for wild-type p97 that is in complex with
cofactors or adaptors (Dreveny et al., 2004; Ewens et al., 2014;
Hanzelmann and Schindelin, 2016a). The hexameric assembly of
p97 is dependent on the D1 domain, but is stable in the absence
of nucleotide (Wang et al., 2003).

As in all AAA+ ATPases, the AAA module of p97/Cdc48
consists of a characteristic helical domain and a highly conserved
RecA-like domain (Figure 1A). The RecA-like domain features
a nucleotide-binding site at the interface between two adjacent
subunits. In this configuration, arginine-finger residues (R359
and R635 for the D1 and D2 ring, respectively) can promote
nucleotide hydrolysis by engaging the γ-phosphate of ATP that is
bound to an adjacent subunit. In addition, the active site contains
a Walker A [P-loop, G(x)4GKT, x is any residue] motif for
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nucleotide binding and Walker B motif (hhhhDE, h represents
hydrophobic residues) for nucleotide hydrolysis (Ogura and
Wilkinson, 2001).

NUCLEOTIDE BINDING AND HYDROLYSIS

Purified p97 hydrolyzes 1–5 ATP molecules per hexamer per
second in vitro (Meyer et al., 1998; Song et al., 2003; Ye et al.,
2003; Tang and Xia, 2013). The ATPase activity of p97 can
be influenced by physical parameters such as temperature, the
position of the N-domain, and adaptor (Meyer et al., 1998; Song
et al., 2003; DeLaBarre et al., 2006; Niwa et al., 2012; Zhang X.
et al., 2015; Bulfer et al., 2016). Importantly, two recent reports
showed that the ATPase activity of p97 and CDC48 can be
activated moderately by a ubiquitinated model substrate (Blythe
et al., 2017; Bodnar and Rapoport, 2017), consistent with genetic
studies demonstrating that ATP hydrolysis is indispensable for all
documented p97 functions (Kobayashi et al., 2002; Ye et al., 2003;
Dalal et al., 2004; Raman et al., 2011; Xu et al., 2011, 2016).

Nucleotides binding to p97 has been measured by isothermal
titration calorimetry (ITC) (Briggs et al., 2008; Tang et al., 2010)
or by surface plasmon resonance (SPR) (Chou et al., 2014).
Although there is a 10-fold difference in measured affinities,
the relative affinity of D1 and D2 to nucleotide is comparable
between these methods. For isolated wild-type p97, the D1 and
D2 domains bind ADP with Kd of ∼1 µM and ∼80 µM,
respectively, but the affinity for ATP andATPγS is about the same
(∼2 µM) for these domains (Briggs et al., 2008). A remarkable
observation, though not yet fully appreciated, is the existence
of pre-bound or occluded ADP in the D1 domains, which may
regulate the asymmetric movement of the N-domain (Tang et al.,
2010; Tang and Xia, 2016a). Davies and colleagues first reported
using chemical denaturation experiments that about half of the
D1 sites in wild-type p97 hexamers are pre-occupied by ADP
(Davies et al., 2005). It was subsequently shown that the D1-
bound ADP molecules are difficult to remove in vitro, raising
concerns about interpreting results from various in vitro ATP
binding and hydrolysis experiments (Briggs et al., 2008; Tang
et al., 2010).

In vitro studies showed that the two ATPase domains
of p97 are not functionally equivalent, as the D2 domain
reportedly displays a higher ATPase activity than D1 (Song et al.,
2003). Whether the D1 and D2 rings work independently or
communicate with each other during the ATP hydrolysis cycle
has been studied extensively, though the results reported are
not always consistent. By measuring the activity of each ring
while inhibiting the other, an early report suggested that the
two ATPase rings operate independently (Song et al., 2003), but
others showed evidence of inter-ring communications (Beuron
et al., 2003; Ye et al., 2003; Chou et al., 2014). Moreover,
intricate allosteric communication between ATPase domains
within the same ring has been suggested (Nishikori et al.,
2011; Hanzelmann and Schindelin, 2016b). These interactions
are thought to coordinate domain movement during the ATP
hydrolysis cycle.

NUCLEOTIDE-DEPENDENT
CONFORMATIONAL CHANGES

The conformational dynamics of p97 has been elusive, in
part owing to difficulties in studying its structure under
physiologically relevant in vitro conditions. The issue is further
complicated by the occluded D1 nucleotide, which excludes
other nucleotides from the same site. Furthermore, structural
studies by crystallography often require proteins in different
asymmetric units to take a similar conformation, but the six
ATPase domains are not synchronized in nucleotide binding
and hydrolysis. Despite of these challenges, conformational
changes of p97 have been intensively pursued by both cryo-
EM and X-ray crystallography. Early cryo-EM studies revealed
moderate rotational movement between the two ATPase rings
upon ATP hydrolysis as well as closure and opening of
the D1 or D2 central channel (Rouiller et al., 2002). Other
domain movements were also noted (Beuron et al., 2003).
However, due to limited resolution, these studies failed to
generate a consistent model. The issue was revisited more
recently with the application of newer technologies. One
study using high-speed atomic force microscopy showed a
conformational change in CDC48.1, a C. elegans p97 homolog,
which involves rotation of the ND1 ring back and forth
relative to the D2 ring following D2 ATP hydrolysis (Noi
et al., 2013). Likewise, another study by single-particle Cryo-EM
reported two nucleotide dependent conformations, differentiated
by inter-ring rotation of approximately 22◦ (Yeung et al.,
2014).

Crystallographic studies initially suggested that nucleotide-
dependent conformational changes might take place only during
the D2 ATP hydrolysis cycle because D1 appeared to be
constantly occupied by ADP (Zhang et al., 2000; DeLaBarre
and Brunger, 2003, 2005; Huyton et al., 2003; Davies et al.,
2008). To date, the most significant structural change associated
with the D2 ATPase cycle is the opening of the D2 pore and
an inter-ring rotation mentioned above, but whether the D2
pore opening is triggered by nucleotide binding or hydrolysis
is unclear (Rouiller et al., 2002; Davies et al., 2005, 2008; Pye
et al., 2006; Banerjee et al., 2016; Hanzelmann and Schindelin,
2016b; Schuller et al., 2016). Additionally, part of the D2 domain
also undergo an order-to-disorder transition (DeLaBarre and
Brunger, 2005).

It has only become clear recently that the D1 domain in p97
can also hydrolyze ATP under physiological conditions. Studies
using D2 specific p97 ATPase inhibitor demonstrated that the D1
domain contributes significantly (∼30%) to the overall ATPase
activity (Chou et al., 2014; Anderson et al., 2015). Because genetic
evidence showed that certain Cdc48 D1 mutants cannot rescue
the growth defect of Cdc48 temperature sensitive alleles despite
carrying an intact D2 domain, the D1 domain clearly has an
important function (Ye et al., 2003; Nishikori et al., 2011).

Whether ATP hydrolysis by D1 is essential for p97 function
has been a controversial issue. Nevertheless, D1-dependent
conformational changes have been extensively sought by various
biophysical approaches and were recently reported by several
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groups. Retrospectively, a major obstacle in studying D1-
dependent conformational changes was the presence of sub-
stoichiometric amount of tightly bound ADP in the D1
nucleotide-binding site (Davies et al., 2005; Tang and Xia, 2013).
One strategy to circumvent this problem in crystallographic
study is to use p97 mutant proteins bearing amino acid
substitutes found in IBMPFD (Inclusion Body Myopathy
associated with Paget’s disease of the bone and Frontotemporal
Dementia syndrome) patients (Kimonis et al., 2000). When
purified, the D1 domain in these mutants can efficiently bind to
exogenously added nucleotides, allowing crystallographic studies
of conformational changes that occur during the D1 ATPase
cycle. Strikingly, compared to structures in which D1 is in
the ADP-bound state (Down-conformation, Figure 2A), in the
presence of the ATP analog ATPγS in D1, the N-domain
undergoes a hinged upswing (Up-conformation, Figure 2B)
(Tang et al., 2010; Xia et al., 2016). A similar conformational
change was seen with wild-type p97 in solution by small-angle
X-ray scattering (SAXS) (Tang et al., 2010). As it turns out
that the difference between wild-type and mutant p97 lies in
that for p97 mutant all six N-domains undergo a uniform
conformational change, allowing X-ray crystallographic studies,
whereas for wild-type p97 only a fraction of the six subunits
have the N-domains in the Up-conformation (Tang and Xia,
2016a). Thus, unsynchronized nucleotide binding and hydrolysis
seems to be a common feature for both D1 and D2, which might
be functionally relevant to the observed asymmetric adaptor-
binding to the p97 N-domain (Buchberger et al., 2015).

The above-mentioned conformational changes in the N-
domain were lately confirmed by cryo-EM studies. One study
found p97 in three different, co-existing states in the presence of
ATPγS in solution: one has ADP bound to all 12 sites and the
N-domains in the Down conformation; the second, also in the
Down conformation, has the six sites in the D1-ring and the six
sites of the D2-ring occupied by ADP and ATPγS, respectively; in
the third case, all 12 sites contain ATPγS and now the N-domains
are held in the Up-conformation (Banerjee et al., 2016). It should
be noted that while the EM densities for the D1 and D2 domains
are well defined, those for the N domains are not, particularly
for the one with full occupancy of ATPγS. The poor density
for the N-domains suggests disorder or multiple conformations.
Indeed, in another study, carefully sorted images of wild-type
p97 prepared in the presence of AMP-PNP showed that even
different protomers within a single hexameric p97 molecule
display significant asymmetric domain movement, resulting in a
random distribution between the Up- and Down-conformations
in solution (Schuller et al., 2016). The nucleotide-dependent Up
and Down conformational switch of the N domain in the context
of the N-D1 fragment was also confirmed recently by NMR
(Schuetz and Kay, 2016).

MECHANISM OF FORCE GENERATION

A major unresolved issue in the field is how conformational
changes in p97 generate the proposed “segregase” activity. To
date, the most consistent conformational changes observed are

FIGURE 2 | A nucleotide-dependent N-domain conformational change.

(A) When ADP is bound to the D1 domain in ribbon diagram in cyan, the

N-domain (in light-blue surface representation) assumes the

Down-conformation (PDB: 1E32, wild type N-D1). (B) When ATP is bound to

the D1 domain, the N-domain moves to the Up-conformation (PDB: 4KO8,

R155H mutant N-D1). (C) A schematic model of the N-D1 conformational

change upon D1 ATP hydrolysis. The p97 hexamer is represented as two

concentric rings with D1 in blue and D2 in brown. The N-domains in the

Down-conformation are shown as magenta balls and their cognate D1

domains are occupied with occluded ADP (labeled D). D1 domains with empty

nucleotide-binding pockets are not labeled and their cognate N-domains are

likely to be mobile (brown balls). ATP binding to the empty sites of the D1

domains will lead the N-domains to the Up-conformation. Occupation of ATP

to the D1 domain renders the cognate D2 domain capable of hydrolyzing ATP,

which is labeled with a red *. The D1 domain probably hydrolyzes ATP once a

few D2 domains have been converted to the ADP bound state.

the D2 rotation-accompanied pore opening/closing and the up-
and-down swing motion of the N-domain. While the former
appears to be linked to the D2 ATPase cycle, the latter is driven
entirely by nucleotide hydrolysis in the D1 domain (Figure 2C).
Force generation presumably requires cooperation between the
D1 and D2 rings, which would explain the observed interdomain
communications (Beuron et al., 2003; Ye et al., 2003; Chou et al.,
2014; Schuetz and Kay, 2016).

The force applied onto a substrate may result in partial
unfolding of a client protein, and thus disrupt its interaction with
protein assemblies, membranes, or chromatin. Although many
AAA+ proteins are protein unfoldase (e.g., ClpA and ClpX)
that threads polypeptides through a central tunnel (Singh et al.,
2000), p97 cannot unfold GFP-ssrA, a model aberrant substrate
(Rothballer et al., 2007). By contrast, VAT, a thermoplasma
acidophilum p97 homolog, is capable of unfolding GFP-ssrA with
a low efficiency (Gerega et al., 2005). Intriguingly, this unfolding
activity can be dramatically enhanced when the N-domain of
VAT is deleted (Gerega et al., 2005; Barthelme and Sauer, 2012).
N-deleted VAT can also collaborate with the 20S proteasome to
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degrade GFP-ssrA in vitro (Barthelme and Sauer, 2016). Protein
sequence analyses identified a KYYG motif in a D1 loop of
VAT, which is replaced by KLAG in p97. When these tyrosine
residues are introduced to replace leucine or alanine in a p97
variant lacking the N domains, it now can unfold and target GFP-
ssrA to the 20S proteasome for degradation (Rothballer et al.,
2007; Barthelme and Sauer, 2013). Collectively, these findings
indicate that the widely observed cooperation between AAA+
ATPases and the 20S proteasome is an ancient scheme of protein
degradation. However, with evolved changes in the N-domain
and the D1 ring, p97 appears to acquire a more sophisticated
mechanism to process its substrate. It has been speculated that
p97/CDC48 might function as a special “unfoldase,” perhaps
only with the assistance from ubiquitin molecules conjugated
to its substrate. Consistent with this view, the requirement of
p97/Cdc48 in protein degradation in vivo can be bypassed if a
flexible peptide was fused to the C-terminus of a proteasome
substrate (Beskow et al., 2009), suggesting that p97/Cdc48 may
initiate protein unfolding to expose a loosely-folded segment for
subsequent engagement of the proteasome. More direct proof
of the ubiquitin dependent unfoldase hypothesis came from
two recent studies (Blythe et al., 2017; Bodnar and Rapoport,
2017), which used in vitro reconstitution systems to show that
both p97 and its yeast homolog CDC48 can unfold GFP, but
only when it carries ubiquitin conjugates. As expected, this
activity is dependent on the D2 ATPase activity, the cofactors
Ufd1 and Npl4, and on the length of the ubiquitin chains on
GFP. Intriguingly, the D1 ATP hydrolysis does not seem to
contribute significantly to GFP unfolding in a single round GFP
turnover assay (Barthelme and Sauer, 2013). However, it appears
to be required for substrate release from CDC48 to ensure
processivity. Importantly, the study by Bodnar and Rapoport
demonstrates, using two polyubiquitinated model substrates,
that once ubiquitin chains are partially trimmed substrates
can be completely threaded through the central pore of p97
together with the remaining ubiquitin molecules in a D1 to
D2 direction, which results in unfolding of these proteins.
The ubiquitin trimming reaction is dependent on an intricate
interplay between p97 and its associated deubiquitinase Otu1
(Bodnar and Rapoport, 2017).

p97-INTERACTING PROTEINS

Proteomic studies have identified many factors that interact
with p97/Cdc48 (Alexandru et al., 2008; Buchberger et al., 2015;
Raman et al., 2015). These factors can be categorized either
as adaptors, which link p97/Cdc48 to a specific substrate in a
subcellular compartment, or as cofactors that facilitate substrate
processing. Cofactors usually have enzymatic activities [e.g., N-
glycanase, ubiquitin ligase, or deubiquitinase (DUB)] that can
alter protein modifiers present on substrates (Figure 3).

Some p97/Cdc48-interacting proteins including PLAA/Ufd3,
PNGase, HOIP, and Ufd2 bind to the C-terminal appendage
of p97/Cdc48 (Rumpf and Jentsch, 2006; Zhao et al., 2007;
Qiu et al., 2010; Bohm et al., 2011; Schaeffer et al., 2014;
Murayama et al., 2015), but the vast majority bind p97/Cdc48

through its N-domain (Table 1) (Buchberger et al., 2015).
Sequence analyses have revealed several p97-interacting patterns
including VIM (VCP-interacting motif) (Stapf et al., 2011), UBX
(ubiquitin regulatory X) (Buchberger et al., 2001; Schuberth
and Buchberger, 2008), VBM (VCP-binding motif) (Boeddrich
et al., 2006), and SHP box (also known as binding site 1, bs1)
(Bruderer et al., 2004). The VCP-interacting motif (VIM) is
a linear sequence motif (RX5AAX2R) present in gp78 (Ballar
et al., 2006), SVIP (small VCP-inhibiting protein) (Ballar et al.,
2007), VIMP (VCP-interacting membrane protein) (Ye Y. et al.,
2004), VMS1 (Heo et al., 2010), UBXN6 (Hanzelmann and
Schindelin, 2011; Stapf et al., 2011), and ZFAND2B (Stanhill
et al., 2006). By contrast, the VBM domain found in proteins
such as ataxin-3, Ufd2 and Hrd1 features a polarized sequence
motif (RRRRXXYY) (Boeddrich et al., 2006). The SHP box in
p47 (Kondo et al., 1997), Ufd1 (Meyer et al., 2000), and Derlin-
1 (Lilley and Ploegh, 2004; Ye Y. et al., 2004; Greenblatt et al.,
2011) on the other hand is a short polypeptide segment enriched
in hydrophobic residues. Noticeably, the UBX domain, an 80-
residue module structurally related to ubiquitin, is present in a
p97/CDC48 adaptor family known as UBX-containing proteins,
consisting of 13 members in humans (Table 1).

Intriguingly, despite the drastic difference in sequence
and structure, many p97-interacting motifs, particularly those
interacting with the N-domain, bind p97 in a similar mode.
Consequently, the binding of many cofactors/adaptors to p97
is mutually exclusive (Meyer et al., 2000; Rumpf and Jentsch,
2006). These observations suggested the existence of distinct
populations of p97 complexes in cells, each bearing a different
set of partners. Conceptually, the composition of a p97 complex
may not be static in cells. Co-factor exchange could occur,
which would allow p97 to efficiently switch substrate to meet
cellular demands. A similar “adaptor swapping” model has been
proposed for the multi-subunit SCF (Skp1, cullin, and F box)
ubiquitin ligase, which like p97, uses a collection of adaptors
to engage distinct substrates. In this case, adaptor switch is
catalyzed by Cand1, a protein exchange factor that stimulates
the equilibrium of Cul1-Rbx1 with multiple F box protein-
Skp1 modules (Pierce et al., 2013). Whether a similar regulatory
strategy exists for p97/Cdc48 remains to be seen. Furthermore,
given that the substrate processing cycle is comprised of two
mechanistically distinct reactions, namely substrate binding and
release, it is conceivable that a regulated hierarchical cofactor
binding system may be coupled to ATP hydrolysis to coordinate
these processes (Hanzelmann et al., 2011; Meyer et al., 2012).

Structural studies have revealed the general principles of
p97 complex assembly. To date, one of the best characterized
p97 complex is the p47-N-D1 assembly (Dreveny et al., 2004).
One crystallographic study showed that the p97 N-domain
could be divided into two sub-domains: a N-terminal double
9-barrel and a C-terminal β-barrel (Figure 4A). Between the
two subdomains features a hydrophobic groove surrounded by
patches of charged residues, which is the site bound by the
UBX domain found in adaptors such as p47 and FAF1. The
interaction usually exploits both hydrophobic and electrostatic
forces (Figure 4B). More recently, a collection of structural
studies showed that this cleft could be used to engage other
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FIGURE 3 | The domain structures of p97-interacting proteins. Known p97-interacting proteins are grouped by their p97-interacting domains, which are highlighted

by colored boxes: UBX, ubiquitin like/ubiquitin regulatory X; UBA, ubiquitin associated; SEP, Shp1, Eyc and p47; VIM, VCP interacting motif; PUB,

Peptide:N-glycanase/UBA or UBX-containing proteins; UIM, ubiquitin interacting motif; PAW, domain present in PNGases and other worm proteins; PUL (PLAP, UFD3

and Lub1) domain; PFU, PLAA family ubiquitin binding; RING, really interesting new gene; CUE (Coupling of Ubiquitin to ER-degradation) domain; UIM, ubiquitin

interacting motif. The schematic representations are drawn to scale.

p97-binding motifs. For instance, although VIM is unrelated
to the UBX domain in both sequence and structure, they
both bind to the p97 N-domain at this location (Figure 4C,
Hanzelmann and Schindelin, 2011). However, certainly not
every N-domain binding protein interacts with p97 in such a
manner. An additional surface on the N-domain that binds the
SHP box was recently reported (Figure 4D, Hanzelmann and
Schindelin, 2016a). Given that some p97 adaptor or adaptor
complex contain both UBX and SHP domains (e.g., p47 and the
heterodimeric Ufd1-Npl4 complex, Table 1), these adaptors may

use a bipartite mechanism to form a complex with p97 (Bruderer
et al., 2004; Isaacson et al., 2007; Yeung et al., 2008; Le et al.,
2016).

Adaptor/cofactor binding to the C-terminus of p97 has also
been studied by crystallography. One such structure is the PUB
(PNGase/UBA) domain of the peptide-N-glycanase (PNGase)
bound by a 10-residue peptide from the p97 C-terminus dubbed
as PUB-interacting motif (PIM) (Figure 4E, Zhao et al., 2007).
PNGase is a sugar-processing enzyme responsible for the removal
of N-glycan frommisfolded glycoproteins retrotranslocated from
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TABLE 1 | p97-interacting proteins.

Interaction motif Binding site on p97 Gene name Function References

UBX N terminal domain UBXN1/SAKS1 Negative regulator of ERAD LaLonde and Bretscher, 2011

UBXN2A/UBXD4 Unknown Alexandru et al., 2008

UBXN2B/p37 Membrane fusion, Golgi and ER biogenesis Uchiyama et al., 2006

UBXN2C/p47 Membrane fusion, Golgi and ER biogenesis Kondo et al., 1997; Yuan et al., 2001;

Wang et al., 2004

UBXN3A/UBXD12/FAF1 Ubiquitin-proteasome pathway Song et al., 2005

UBXN3B/UBXD8/ FAF2/ETEA ERAD, lipid droplets turnover, mRNA

stability

Lee et al., 2008, 2010; Mueller et al., 2008;

Olzmann et al., 2013; Zhou et al., 2013

UBXN4/ UBXD2/Erasin ERAD Liang et al., 2006

UBXN6/UBXD1 Endocytosis, turnover of ruptured

lysosomes, membrane trafficking

Ritz et al., 2011; Haines et al., 2012;

Papadopoulos et al., 2017

UBXN7/UBXD7 Regulation of transcription factor HIF1α Alexandru et al., 2008

UBXN8/UBXD6 ERAD Madsen et al., 2011

UBXN9/UBXD9/ASPSCR1 Glucose transpotor trafficking Bogan et al., 2003

UBXN10/UBXD3 Ciliogenesis Raman et al., 2015

UBXN11/UBXD5 Unknown By similarity

UBX like N terminal domain OTU1/YOD1 DUB, ERAD and clearance of lysosomes Ernst et al., 2009; Papadopoulos et al.,

2017

Npl4 ERAD, transcription factor maturation Bays et al., 2001b; Hitchcock et al., 2001;

Rape et al., 2001; Ye et al., 2001; Jarosch

et al., 2002; Isaacson et al., 2007

VCPIP/VCIP135 DUB, involved in Golgi reassembly after

mitosis, and the formation of transitional

endoplasmic reticulum

Uchiyama et al., 2002

PUL C terminal domain Ufd3/PLAA Substrate recruitment in ERAD and

mitochondria-associated degradation

Ghislain et al., 1996; Bohm et al., 2011;

Wu et al., 2016

PUB C terminal domain PNGase Deglycosylation in ERAD Li et al., 2006; Zhao et al., 2007

VIM N terminal domain VIMP An ER membrane p97 adaptor in ERAD Ye Y. H. et al., 2004

gp78/AMFR E3 ligase in ERAD Fang et al., 2001; Zhong et al., 2004

SVIP Negative regulation of ERAD Ballar et al., 2007

ZFAND2B/AIRAPL Preemptive quality control of secreted

proteins, Signal peptide-mediated

translocation, regulation of IGF-1 signaling

pathway, tumor suppressor

Braunstein et al., 2015; Osorio et al.,

2016; Rahighi et al., 2016

ANKZF1 A mitochondria p97 adaptor Heo et al., 2010; Hanzelmann and

Schindelin, 2011; Stapf et al., 2011

VBM N terminal domain Hrd1/SYVN1 E3 ligase in ERAD Bordallo et al., 1998; Bays et al., 2001a

Ataxin-3/MJD/SCA3 DUB, Substrate processing in ERAD Doss-Pepe et al., 2003; Wang et al., 2006

UBE4B/Ufd2 E4, Substrate processing in ERAD Koegl et al., 1999; Mouysset et al., 2006;

Bohm et al., 2011

NUB1/NYREN18 Down-regulator of the NEDD8 conjugation

system

Schmidtke et al., 2006

RHBDD1/RHBDL4 Intramembrane proteolysis, ERAD,

apoptosis

Fleig et al., 2012

SHP box N terminal domain Ufd1 ERAD, transcription factor maturation Bays et al., 2001b; Rape et al., 2001; Ye

et al., 2001; Jarosch et al., 2002

Derlin1 ERAD Lilley and Ploegh, 2004, 2005; Ye Y. et al.,

2004

Derlin2 ERAD Lilley and Ploegh, 2005; Huang et al.,

2013

SPRTN/DVC1/C1orf124 UV-induced DNA damage response Davis et al., 2012; Mosbech et al., 2012
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FIGURE 4 | The atomic representation of p97 in complex with various representative interacting motifs. (A) The structure of the N-terminal domain of p97 shown as

electrostatic potential surface. The positive potential is in blue, negative in red and neutral in white. (B) Structure of the p97 N-domain in complex with the UBX domain

of FAF1 (PDB:3QC8). The N-domain, depicted as a molecular surface overlaid to a ribbon representation, has the N-terminal double Y-barrel domain colored green and

C-terminal β-barrel domain colored red. The UBX domain of FAF1 is depicted as ribbon diagram in yellow. Critical residues for interaction are shown as ball-and-stick

models and labeled. (C) Structure of the p97 N-domain in complex with the VIM motif of gp78 (PDB:3TIW). Here the VIM motif is shown as helix in yellow and its

binding to the N-domain is mostly mediated by charged residues. (D) Structure of the p97 N-domain in complex with the Ufd1 derived SHP peptide (PDB:5C1B).

Here the SHP peptide is shown as the stick model in yellow and it binds exclusively to the C-terminal β-barrel domain. (E) Structure of the N-terminal domain of

PNGase in complex with a C-terminal peptide of p97 (PDB:2HPL). The PNGase N-terminal domain is shown in cartoon representation in yellow. The bound peptide is

shown as a stick model with five residues (labeled) seen in the structure. The carbon atoms are colored in black, nitrogen in blue and oxygen in red. (F) Structure of

the PUL domain of FLAA/Ufd3 in complex with a C-terminal peptide of p97 (PDB:3EBB). The PLAA PUL domain is shown in cartoon representation in yellow. The

bound peptide is shown as a stick model with four residues visible in the structure. The carbon atoms are colored in black, nitrogen in blue and oxygen in red.

the ER (Blom et al., 2004). The PUB domain binds PIM in
a 1:1 stoichiometry. In this complex, the PIM peptide binds
to a conserved surface of the PUB domain (Allen et al.,

2006; Zhao et al., 2007). Intriguingly, the conserved residue
Y805 in the PIM motif essential for the interaction can be
phosphorylated in cells. This post-translational modification
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may serve a regulatory function in controlling the p97-PNGase
interaction (Zhao et al., 2007). Another example is demonstrated
by the structure of a complex containing PLAA (phospholipase
A2-activating protein) and the C-terminal peptide of p97 (Qiu
et al., 2010). PLAA (also named Ufd3 or Doa1) has been
implicated in a variety of cellular processes including processing
of misfolded mitochondria outer-membrane proteins (Wu et al.,
2016), ribophagy (Ossareh-Nazari et al., 2010), endosomal
trafficking (Ren et al., 2008; Han et al., 2014), and in regulating
the cellular ubiquitin level by an unknown mechanism (Johnson
et al., 1995). In the structure, Y805 of p97 is once again
located at the binding interface, suggesting that phosphorylation
dependent regulation might be a common theme for p97-
cofactor interactions (Figure 4F).

Several p97-adaptor assemblies have also been examined by
Cryo-EM (Rouiller et al., 2000; Beuron et al., 2006; Pye et al.,
2007; Bebeacua et al., 2012). EM studies showed that in the
complex of p97 and Ufd1-Npl4 (Pye et al., 2007; Bebeacua
et al., 2012), the adaptors bind to both the N- and D1-domain
simultaneously. A similar mode of interaction was observed for
Fas-associated factor-1 (FAF1) (Ewens et al., 2014).

Whether cofactor binding can cause a conformational change
in p97/Cdc48 has not been thoroughly investigated. Structural
studies of adaptor-free p97 N-D1 domain (PDB:1E32) or that
bound by p47 (PDB:1S3S) or other adaptors showed no obvious
change in the structure of p97 upon adaptor binding (Dreveny
et al., 2004). However, adaptor-induced conformational changes
may only take place in full-length p97 during a normal ATPase
cycle, and thus might have escaped detection so far (Isaacson
et al., 2007; Zhao et al., 2007; Qiu et al., 2010; Hanzelmann
and Schindelin, 2011; Hanzelmann et al., 2011; Kim et al., 2011;
Schaeffer et al., 2014). On the other hand, since ATP-dependent
conformational changes, particularly those triggered by ATP
binding to the D1 domain affect the position of the N-domain,
the interaction of p97 adaptors with the N-domain can probably
be regulated by the nucleotide state of the D1 ring, as suggested
by a recent study (Bulfer et al., 2016).

CELLULAR FUNCTION OF p97/CDC48

Given the substrate diversity, p97 is bestowed a broad function,
which has been reviewed extensively (Bug and Meyer, 2012;
Dantuma and Hoppe, 2012; Meyer et al., 2012; Yamanaka
et al., 2012; Dantuma et al., 2014; Meyer and Weihl, 2014).
Due to space constraints, we here only discuss a few relatively
better characterizedmolecular processes, aimed at illustrating the
general role of this ATPase in cells.

ROLES IN PROTEIN HOMEOSTASIS
CONTROL

p97/Cdc48 has been implicated in several PQC pathways,
and thus is an essential component of the proteostasis
regulatory network in eukaryotic cells (Meyer et al., 2012).
In general, p97 facilitates the degradation of aberrant proteins
by releasing them from cellular structures or large protein

complexes. The first identified PQC function for p97 is in
ER-associated protein degradation (ERAD), a pathway that
eliminates misfolded proteins of the secretory pathway (Smith
et al., 2011; Christianson and Ye, 2014; Ruggiano et al., 2014).
During ERAD, misfolded proteins are retrotranslocated into the
cytosol where they are degraded by the ubiquitin proteasome
system. For misfolded luminal proteins, the retrotranslocation
process consists of two essential steps. First, a portion of
a substrate needs to be moved across the lipid bilayer to
enter the cytosol. This reaction is believed to be mediated
by a protein retrotranslocation complex containing the multi-
spanning membrane ubiquitin ligase Hrd1 (Bordallo et al., 1998;
Bays et al., 2001a; Gauss et al., 2006; Carvalho et al., 2010;
Stein et al., 2014; Baldridge and Rapoport, 2016). In the second
step, p97/Cdc48 is recruited to the site of retrotranslocation
via association with proteins present in the retrotranslocation
complex. These include Derlins, Hrd1, and VIMP inmammals or
Ubxd2 in S. cerevesiae (Lilley and Ploegh, 2004; Ye Y. et al., 2004;
Neuber et al., 2005; Schuberth and Buchberger, 2005). These
proteins each bear a p97 interacting motif, and the interactions
with p97 allow it to effectively capture substrates emerging from
the retrotranslocation channel (Carvalho et al., 2010). Misfolded
proteins then undergo ubiquitination and are dislocated from the
membranes by p97 (Bays et al., 2001b; Ye et al., 2001, 2003; Braun
et al., 2002; Jarosch et al., 2002; Rabinovich et al., 2002; Flierman
et al., 2003; Zhong et al., 2004; Garza et al., 2009). Dislocated
ERAD substrates are eventually targeted for degradation by
the proteasome (Zhang and Ye, 2014). In addition to ERAD
substrates, p97/Cdc48 can also release a few membrane-bound
transcription factors without targeting them for degradation
(Hitchcock et al., 2001; Rape et al., 2001; Shcherbik and Haines,
2007; Radhakrishnan et al., 2014); instead, these transcription
factors are transported into the nucleus to affect gene expression
in response to specific stimulating cues.

It has also been demonstrated that p97 can facilitate
mitochondria-associated degradation (MAD) by extracting
polypeptides from mitochondrial outer membrane (Heo et al.,
2010; Xu et al., 2011; Hemion et al., 2014). This process
eliminates aberrant polypeptides from mitochondrial outer
membrane to maintain mitochondrial protein homeostasis.
In addition, regulators of the mitophagy pathway (e.g.,
mitofusin), which turns over damaged mitochondria can also
be subject to degradation by MAD (Tanaka et al., 2010). Upon
mitochondrial damage, p97 and Ufd1, Npl4 are recruited to
the surface of mitochondria, which is required for clearance
of damaged mitochondria by mitophagy (Kimura et al., 2013).
The mechanism that recruits p97 to mitochondria in MAD
or mitophagy is unclear. One recent study identified a protein
named Vms1 (VCP/Cdc48-associated mitochondrial stress-
responsive 1) as a potential linker (Heo et al., 2010, 2013), but the
role of Vms1 in mitochondria PQC remains controversial (Esaki
and Ogura, 2012). In addition, in S. cerevisiae, a protein named
Doa1 (also named Ufd3) can act in conjunction with Ufd1 and
Npl4 to recruit substrates to Cdc48 in MAD (Wu et al., 2016).

Another essential PQC function involving p97 is the
degradation of aberrant nascent polypeptides stalled on
ribosomes in a process dubbed ribosome-associated degradation
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(RAD) (Brandman et al., 2012; Defenouillere et al., 2013;
Verma et al., 2013). Ribosome stalling occurs when an
mRNA in translation is defective (e.g., lack of stop codon,
truncated, or damaged in other ways). Such defective mRNAs
are rapidly decomposed, but only after they have been “put
in test” for fidelity by translation (Brandman and Hegde,
2016). Thus, the execution of this cellular mRNA surveillance
program is inevitably associated with the production of aberrant
polypeptides, which need to be effectively removed. Using diverse
model substrates, it has been demonstrated that a series of factors
act in concert to split a stalled ribosome (Pisarev et al., 2010;
Shoemaker et al., 2010; Shoemaker and Green, 2011), allowing
another ribosome-associated ubiquitin ligase to ubiquitinate
aberrant nascent polypeptide (Bengtson and Joazeiro, 2010).
Subsequently, a ribosome-associated factor named Rqc1 together
with the ubiquitinated substrate recruits p97/Cdc48, which
in turn extracts defective polypeptides from the ribosome to
promote their degradation by the proteasome (Brandman et al.,
2012). Accordingly, inactivation of p97/Cdc48 or its cofactor
Ufd1 and Npl4 leads to accumulation of ubiquitinated proteins
in complex with the 60S ribosome (Verma et al., 2013).

Several recent studies also implicate p97 and Cdc48 in
autophagy, which targets unwanted cellular proteins (including
misfolded ones) for lysosomal degradation via autophagasomes.
However, the precise function of p97 in this process is
controversial, mainly because the substrate(s) regulated by p97
is unclear. Several studies suggest p97 as a positive autophagy
regulator because its inhibition causes a phenotype reminiscent
of what appears to be an autophagasome maturation defect
(Ju et al., 2009; Ju and Weihl, 2010; Bug and Meyer, 2012).
In S. cerevisiae, a Cdc48 adaptor named Shp1p can bind the
autophagy regulator Atg8 to promote macroautophagy (Krick
et al., 2010). A more recent study showed that in mammalian
cells p97 might be involved in a specialized form of autophagy,
which clears ruptured late endosome/lysosome (Papadopoulos
et al., 2017). However, another study using a p97 specific inhibitor
demonstrated that inhibition of p97 accelerates rather than
inhibits autophagasome clearance, increasing the turnover of the
autophagy cargo receptor protein p62 (Anderson et al., 2015).
This suggests an inhibitory role for p97 in autophagy. Additional
studies are required to clarify the precise role of p97 in autophagy.

Other than the proposed “segregase” activity, p97 may also
act as a chaperone to transport misfolded polypeptides to
the proteasome for degradation, or to simply prevent protein
aggregation (Yamanaka et al., 2004; Nishikori et al., 2008;
Gallagher et al., 2014; Neal et al., 2017). This activity might be
critical for degradation of aggregation-prone nuclear proteins
in budding yeast (Gallagher et al., 2014). Additionally, p97
was also shown to facilitate the clearance of non-translating
messenger ribonucleoprotein complexes from stress granules via
an unknown mechanism (Buchan et al., 2013). Other misfolded
proteins that are potential p97 substrate include misfolded
unassembled cytosolic and nuclear proteins (Xu et al., 2016).
Lastly, in addition to acting directly on misfolded proteins, p97
can also control the stability of certain stress regulators. For
example, the complex of p97 and UbxD7 was shown to work with
a SCF ubiquitin ligase to target hypoxia-inducible factor 1 alpha

(HIF1α) for degradation (Alexandru et al., 2008). More recently,
it was shown that p97 could also control the glutamine-regulated
turnover of glutamine synthetase as well as the half-life of several
cullin-ring ubiquitin ligase substrates (Nguyen et al., 2017; Tao
et al., 2017).

OTHER FUNCTIONS

By releasing polypeptides from the chromatin in a manner
analogous to that in ERAD, p97 and Cdc48 can function in
an array of nuclear processes known as chromatin-associated
degradation (Dantuma et al., 2014). Many nuclear p97 substrates
have been identified. These include RNA polymerase (Pol)
II complex (Verma et al., 2011), transcriptional repressor α2
(Wilcox and Laney, 2009), and CMG DNA helicase (Maric
et al., 2014) in budding yeast, and the DNA replicating
licensing factor CDT1 (Franz et al., 2011; Raman et al., 2011),
replisome component Mcm7 (Moreno et al., 2014), DNA
repairing proteins DDB2, XPC, and Rad52 (Bergink et al.,
2013; Puumalainen et al., 2014), mitosis regulator Aurora B
kinase (Ramadan et al., 2007; Sasagawa et al., 2012), certain
DNA polymerases (Davis et al., 2012; Mosbech et al., 2012),
the DNA double strain break (DSB) repair protein Ku70/80
(van den Boom et al., 2016), the RNA binding protein HuR
(Zhou et al., 2013), and the polycomb protein L3MBTL1
(Acs et al., 2011) in metazoa. These substrates link p97 to
various nuclear pathways ranging from gene expression control
to DNA damage response. Intriguingly, although most of
these proteins have been shown to undergo ubiquitination
in cells, not all of them are subject to proteasome-mediated
degradation.

In mitotic cells, p97/Cdc48 can regulate vesicle fusion at the
exit of mitosis when the Golgi apparatus and the ER network
need to be re-shaped (Kondo et al., 1997; Rabouille et al., 1998;
Kano et al., 2005b,a; Uchiyama and Kondo, 2005). This process
involves two adaptors p47 (Kondo et al., 1997; Meyer et al., 2002)
and p37 (Uchiyama et al., 2006). In addition, a p97-associated
deubiquitinase named VCIP135 is required (Uchiyama et al.,
2002). It has been proposed that p97 may act on Syntaxin 5
to regulate vesicle fusion (Rabouille et al., 1998; Roy et al.,
2000). In post-mitotic cells such as neurons, the complex of
p97-p47 has been implicated in maintaining the tubular ER
structure in order to control protein synthesis (Shih and Hsueh,
2016).

Several lines of evidence suggested that mammalian p97
might also regulate receptor-mediated endocytosis (Bug
and Meyer, 2012; Kirchner et al., 2013). Proteomic studies
uncovered the early endosome-associated antigen 1 (EEA1)
and Clathrin as p97-interacting proteins (Pleasure et al.,
1993; Ramanathan and Ye, 2012). Functionally, inhibition of
p97 delays lysosomal targeting of an endocytosis cargo. p97
inhibition also causes clustered and enlarged early endosomes,
which might result from increased EEA1 oligomerization and
thus uncontrolled endosome tethering and fusion (Ramanathan
and Ye, 2012). In another study, the plasma membrane protein
caveolin was found to interact with p97 and UbxD1. In
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p97-deficient cells, enlargement of endosome was similarly
observed, and the trafficking of caveolin to late endosomes
is affected (Ritz et al., 2011). The precise function of p97
in endocytosis remains to be elucidated, but it might be
mechanistically related to the proposed function of p97 in
autophagy.

In addition to vesicular trafficking, p97 may also control
protein transport in a non-vesicular manner as it was recently
demonstrated that the complex of p97 and UBXN10 mediates
protein transport into cilia to control ciliogenesis (Raman et al.,
2015). Mammalian p97 has also been shown to regulate NFκB
signaling by controlling the stability of the small inhibitory
protein IκB in the canonical NFκB pathway (Dai et al., 1998; Li
et al., 2014) or by facilitating the processing of the p100 subunit in
the alternative NFκB activation pathway (Zhang Z. et al., 2015).
The p97 was also shown to regulate the stability of RIG-1, a viral
RNA sensor in innate immunity (Hao et al., 2015) as well as the
activity of adipose triglyceride lipase (ATGL), an enzyme that
controls lipid droplet biogenesis (Olzmann et al., 2013).

RELEVANCE TO HUMAN DISEASE

Genetic studies in the past decade have linked a collection of
p97 mutations to human diseases including MSP1 (multisystem
proteinopathy 1) [also named IBMPFD (Inclusion Body
Myopathy associated with Paget’s disease of the bone and
Frontotemporal Dementia)], FALS (familial amyotrophic lateral
sclerosis), CMT2Y (Charcot-Marie-Tooth disease, type 2Y)
(Dyck and Lambert, 1968; Watts et al., 2004; Johnson
et al., 2010; Abramzon et al., 2012; Bucelli et al., 2015),
hereditary spastic paraplegias (HSP), Parkinson’s disease (PD),
and Alzheimer’s disease (AD). Mechanistic studies suggest that
a major dysfunction of p97 in association with these disease
conditions is deregulation of the proteostasis network.

MULTISYSTEM PROTEINOPATHY 1 (MSP1)

MSP1/IBMPFD is a severe autosomal dominant disorder.
Patients experience progressive tissue damages in either
the muscles (myopathy), the bones (Paget’s disease of the
bone, PDB), and/or the brain (frontotemporal dementia,
FTD). To date, more than 40 mutations covering 29 different
positions in p97 have been reported in MSP1/IBMPFD
patients (Nalbandian et al., 2011; Mehta et al., 2013).
However, as patients bearing the same mutation from
a single family can show drastically different symptoms
with differing on-set ages, other genetic or environmental
factors may also make significant contribution to the disease
etiology.

At the cellular level, muscle fibers from MSP1/IBMPFD
patients often contain vacuoles that are stained by antibodies
against ubiquitin and p97 (Watts et al., 2004). In brain
tissues, nuclear inclusions containing ubiquitin and p97
were also frequently detected in neurons (Kimonis and
Watts, 2005). More recent studies also found TAR DNA-
binding Protein-43 (TDP-43) accumulating in patient tissues

(Weihl et al., 2008). Genetic interactions between TDP-
43 and p97 have also been revealed, which may regulate
subcellular distribution of TDP-43 (Ritson et al., 2010).
These findings suggested a role of p97 in controlling the
neurotoxicity of aggregation-prone misfolded polypeptides,
possibly by regulating their stability, solubility, or subcellular
localization.

Structural studies revealed that MSP1/IBMPFD mutations
are mostly mapped to or near the interface between the N
and D1 domains of p97 (Figure 5). Because patients carrying
a single allele of any MSP1 mutations develop normally,
these mutations apparently only cause non-optimal performance
in p97 ATP hydrolysis cycle, accumulating damages to p97-
dependent cellular processes that culminate in neuronal cell
death in adulthood (Kimonis et al., 2000). These mutations
could affect the function of p97 in multiple facets. For example,
many mutations appear to weaken the affinity of the D1
domain for ADP (Tang et al., 2010), resulting in increased
(2–4-fold) D2 ATPase activity and a loss in coordinated N-
domain movement (Weihl et al., 2006; Halawani et al., 2009;
Tang et al., 2010; Tang and Xia, 2013; Schuetz and Kay,
2016). Moreover, while some cofactors can elevate or inhibit
the ATPase activity of wild-type p97, these regulations do not
seem to occur with certain disease-associated mutants (Zhang
X. et al., 2015). These observations collectively suggest that
mutation-induced structural instabilities might have caused a
loss in the fine-tuned ATPase cycle, causing cell damages. In
addition, biochemical studies also demonstrated an effect of
certain mutations on cofactor association (Fernandez-Saiz and
Buchberger, 2010; Tang and Xia, 2016b), whereas in the case
of p37 and p47, nucleotide dependent regulation of cofactor
binding appears to be abolished with disease-associated mutants
(Bulfer et al., 2016). In vivo, subtle deregulation of p97 ATPase
activity might result in a gain-of-function phenotype in sensitive
tissues, as demonstrated recently by a study using a Drosophila
IBMPFD model (Zhang et al., 2017). Consistent with this
view, Blythe and colleagues show that an IBMPFD mutant that
has a moderately increased ATPase activity and can unfold
ubiquitinated GFP more efficiently than wild-type p97 (Blythe
et al., 2017).

FAMILIAR AMYOTROPHIC SCLEROSIS
(FALS)

Autosomal dominantly inherited amyotrophic lateral sclerosis
(ALS) (also known as Lou Gehrig’s disease) is a progressive
neurodegenerative disease. It mainly affects the motor neurons
in the brain and spinal cord, resulting in death from respiratory
failure.Whilemost ALS cases were caused by sporadicmutations,
about 10% are considered “familial” because often more than
one individual in a family develops the disease. Mutations
in at least 18 genes have been identified in familial ALS.
Among them, p97 mutations account for less than 2% (Johnson
et al., 2010; Koppers et al., 2012; Kwok et al., 2015). There
are 18 reported mutations appearing in 12 different positions.
Although there is a significant overlap between MSP1 and
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FIGURE 5 | Location of pathogenic mutations in the structure of full-length

p97. Surface representation of the structure of p97 is decorated with

pathogenic mutations in p97 identified from patients of various muscular and

neurological disorders. Each subunit is given a unique color with distinct

shades for different domains. Interface mutations are colored in black and

non-interface mutations in red and labeled. The non-interfacial mutations are

mostly identified in ALS patients. (A) Top view. (B) Side view.

familial ALS mutations, mutations linked to familial ALS can
be found in the D2 domain and many of them are not located
at the interface between the N and D1 domains (e.g., I114V
in the N domain, R487H, and R662C in the D2 domain)
(Figure 5). How these mutations alter the function of p97
remains unclear. However, as the pathological hallmark of the
disease, loss of motor neurons, is often linked to the appearance
of ubiquitin-positive inclusions and/or deposition of TDP-43-
positive aggregates (Johnson et al., 2010), ALS pathology may
be at least in part attributed to defects in cellular protein
homeostasis.

CHARCOT-MARIE-TOOTH DISEASE, TYPE
2Y (CMT2Y)

Charcot-Marie-Tooth disease (CMT) is an autosomal
dominant axonal peripheral neuropathy characterized by

distal muscle weakness and atrophy associated with length-
dependent sensory loss. Like ALS, CMT is a clinically and
genetically heterogeneous disorder and is divided into subtypes
based on genetics, pathology, and electrophysiology of the
disease (Dyck and Lambert, 1968). Missense mutations
in p97 were recently identified in patients of the CMT2
Y-subtype (Gonzalez et al., 2014; Jerath et al., 2015).
As most patients with CMT2Y do not obtain a genetic
diagnosis, the number of cases bearing mutations in p97
should be higher than expected. Intriguingly, in addition
to p97, other CMT2-associated genes identified include
chaperones such as Hsp27 and Hsp22 (Houlden et al., 2008;
Nakhro et al., 2013). These observations once again link the
etiology of this disease to deregulation of the proteostasis
network.

p97 AS A POTENTIAL ANTI-CANCER
TARGET

Given the important roles played by p97 in diverse cellular
processes, specific inhibitors of p97 can be useful tools for
dissecting the mechanism of p97 action. Early chemical
screens focusing on compounds that inhibit ERAD identified
two structurally related chemicals (Fiebiger et al., 2004).
Characterization of these compounds led to the discovery of
the first p97 inhibitor-Eeyarestatin (EerI) (Figure 6) (Wang
et al., 2008, 2010). Intriguingly, although EerI binding causes
a conformational change in p97, it does not seem to affect
nucleotide hydrolysis by the D2 domain. Whether it affects
ATP hydrolysis by D1 is unclear, nor is the inhibitory
mechanism by EerI (Wang et al., 2010). Nevertheless, in
tissue culture cells, EerI induces several key phenotypes
attributed to p97 inhibition such as the accumulation of
polyubiquitinated proteins, ERAD inhibition, ER stress
induction, and apoptosis (Wang et al., 2009). Importantly,
EerI has significant cancer-killing activities in vitro as it
preferentially kills cancer cells isolated from patients; and it can
synergize with the proteasome inhibitor Bortezomib to induce
apoptosis in cancer cells (Wang et al., 2009). These observations
provide a rationale for targeting p97 as a new anti-cancer
therapy.

More recently, chemical screens in search of compounds
directly targeting p97 have been conducted. Chou and colleagues
reported the first reversible p97 D2 inhibitor, DBeQ (Chou et al.,
2011). Subsequent work has optimized this chemical, leading to
a collection of more potent and specific p97 inhibitors (Chou
et al., 2013, 2014; Chapman et al., 2015; Zhou et al., 2015).
An independent effort from Magnaghi and colleagues identified
several competitive and non-competitive inhibitors that also
target the D2 domain (Magnaghi et al., 2013). These p97 D2
inhibitors are highly specific and potent (Magnaghi et al., 2013;
Anderson et al., 2015). Structural modeling and Cryo-EM studies
have revealed the potential inhibitory mechanism of one p97
inhibitor, the small allosteric inhibitor UPCDC30254 observed at
the interface between the D1 and D2 domains, seems to prevent
the propagation of conformational changes necessary for p97
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FIGURE 6 | Structures of selected p97 inhibitors. Shown are the chemical structure of some well characterized p97 inhibitors. EerI inhibits p97 function by binding to

its D1 domain. DBeQ was the first reversible inhibitor that blocks the D2 ATPase activity. CB-5083 is a derivative of DBeQ, but it is much more potent than DBeQ.

CB-5083 and NMS-873 are the most potent and specific p97 inhibitor identified to date. UPCDC30245 is a recently identified inhibitor and its binding to p97 has been

characterized by EM.

function (Banerjee et al., 2016). Treatment of human cancer cell
lines with these allosteric inhibitors confirmed that inhibition of
p97 indeed induces cell death in different cancer cell lines (Chou
et al., 2011, 2013; Magnaghi et al., 2013; Anderson et al., 2015).
Along this line, it is noteworthy that a reversible p97 inhibitor
named CB-5083 has produced promising anti-cancer effects in
mouse xenograft tumor models and is now being evaluated in
clinical trials (Anderson et al., 2015; Zhou et al., 2015). Lastly,
the use of these inhibitors in basic research has started to
reveal novel p97 functions in DNA repair, turnover of ruptured
lysosomes etc. (van den Boom et al., 2016; Papadopoulos et al.,
2017).

In addition to the above-mentioned inhibitors, efforts from
several groups have resulted in a large collection of p97 inhibitors
(Figure 6) (Yi et al., 2012; Polucci et al., 2013; Cervi et al.,
2014; Kang et al., 2014; Alverez et al., 2015; Chapman et al.,
2015; Tao et al., 2015; Ding et al., 2016; Gui et al., 2016).
Among them, it is particularly worth mentioning that several are
natural products. Although these chemicals are not thoroughly
characterized and their potency is often limited, research along
this direction may lead to a safer p97 inhibitor better suited for
cancer therapy.

CONCLUSION REMARKS AND
PERSPECTIVE

Through years of studies, we have accumulated a large body
of knowledge on the structure and function of p97/Cdc48.
Specifically, the identification of new p97 cofactors and substrates
has revealed a whole new set of biological functions for this
essential chaperone system, and it is anticipated that future
studies will further expand the p97 functional repertoire. By

contrast, mechanistic dissection of the molecular nature of the
“segregase” activity has lagged behind, and many fundamental
questions remain unresolved. Among them, the most intriguing
one is how conformational changes in p97 generate the
proposed “segregase” activity. The recently developed in vitro
GFP unfolding assay represent a major step toward fully
elucidating the mechanism of this important enzyme. Another
key question is to understand the hierarchical organization
of cofactor binding in the context of the ATPase cycle and
substrate binding cycle. Moreover, animal models bearing
disease-associated mutations are needed in order to better
appreciate the connections between p97 dysfunction and human
diseases. The recent advance in CRISPR technology should
dramatically ease the development of these animal models.
Finally, given the promising anti-cancer effect of p97 inhibitors, it
is anticipated that more p97 inhibitors will be sought, and studies
in this direction may one day produce a new class of anti-cancer
agent.
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