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Abstract

Different ensemble voting approaches have been successfully applied for reverse-engineering of gene regulatory networks.
They are based on the assumption that a good approximation of true network structure can be derived by considering the
frequencies of individual interactions in a large number of predicted networks. Such approximations are typically superior in
terms of prediction quality and robustness as compared to considering a single best scoring network only. Nevertheless,
ensemble approaches only work well if the predicted gene regulatory networks are sufficiently similar to each other. If the
topologies of predicted networks are considerably different, an ensemble of all networks obscures interesting individual
characteristics. Instead, networks should be grouped according to local topological similarities and ensemble voting
performed for each group separately. We argue that the presence of sets of co-occurring interactions is a suitable indicator
for grouping predicted networks. A stepwise bottom-up procedure is proposed, where first mutual dependencies between
pairs of interactions are derived from predicted networks. Pairs of co-occurring interactions are subsequently extended to
derive characteristic interaction sets that distinguish groups of networks. Finally, ensemble voting is applied separately to
the resulting topologically similar groups of networks to create distinct group-ensembles. Ensembles of topologically similar
networks constitute distinct hypotheses about the reference network structure. Such group-ensembles are easier to
interpret as their characteristic topology becomes clear and dependencies between interactions are known. The availability
of distinct hypotheses facilitates the design of further experiments to distinguish between plausible network structures. The
proposed procedure is a reasonable refinement step for non-deterministic reverse-engineering applications that produce a
large number of candidate predictions for a gene regulatory network, e.g. due to probabilistic optimization or a cross-
validation procedure.
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Introduction

Reverse-engineering of gene regulatory networks from gene

expression measurements is applied to identify direct effector-

target relations, i.e. to identify transcription factors binding to the

promoter regions of genes to regulate gene expression (for reviews

see [1–5]). Understanding the regulatory relations of an organism

allows insights into its developmental processes, allows to predict

expression changes as reaction to perturbations, and might

eventually guide the development of diagnostic or therapeutic

techniques. A major class of reverse-engineering algorithms are

dynamical model based approaches which describe the actual

effector-target relations by various mathematical frameworks (such

as ODEs [6–8], Petri Nets [9–11], Boolean Nets [12–14]). The

dynamical models can be created and optimized based on non-

deterministic procedures involving iterative modifications of model

structure and parameters (e.g. genetic algorithms, Monte Carlo

methods, see [15,16]). During optimization, models are repeatedly

confronted with expression data from different perturbation

scenarios (wild type, knockouts, overexpression, chemical treat-

ment, etc.) and predicted gene expression levels are compared to

experimental data to assess the validity of the models. The

underlying basic assumption is that the ability to reproduce

experimental observations correlates with the quality of a model,

i.e. to be a good mathematical approximation of the biological

system in question [17]. Putative effector-target relations can then

be directly and easily derived from the model. The resulting

network of interactions between pairs of genes constitutes a

hypothesis about the (true) gene regulatory network.

Ensemble Approaches in Reverse-Engineering
Non-deterministic optimization is typically repeated several

hundred or thousand times to collect high scoring networks, i.e

networks that are able to reproduce the experimental data well.

Most of these models are structurally different to each other, and

none of them might be identical to the reference network. This is

due to three fundamental reasons which might apply individually

or jointly (adapted from [18]; figure 1A):

N representational: The applied mathematical framework is not

suited to represent the true regulatory relations, e.g. due to

simplifications. In such a case, also the best scoring predicted

network might not be identical to the true gene regulatory

network.

N statistical: Several different models reproduce experimental

data equally well and, thus, lead to different, equally likely

hypotheses. Even if a derived network equals the true
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regulatory network, the associated model can not be

distinguished from others by its fit to the data.

N computational: The applied optimization algorithm might get

stuck at high scoring local optima. Thus, resulting networks are

sampled from suboptimal regions of the search space.

Nevertheless, it can be expected that interactions which are

present in the reference network are at least enriched in high

scoring networks. Thus, if a confidence for individual effector-

target relations should be derived by reverse-engineering, it is

more promising to consider the frequencies of interactions in all

high scoring networks than to select a single prediction.

Several approaches have been proposed for this task and found

to be superior in terms of precision, recall and robustness (see [19]

and references therein). For example, voting schemes like majority

voting, weighted voting, or signed voting can be applied to derive

scores for each possible effector-target relation. These score

(weight) is typically proportional to the frequency of an interaction

in considered networks. In the case of weighted voting, scores

might range from 1 (high confidence interaction) via intermediate

scores (low confidence interaction) to 0 (high confidence non-

interaction), where ‘‘high confidence’’ is synonymic to ‘‘observed

in most/few considered networks’’. High confidence interactions

are apparently necessary to reproduce experimental data, as they

are present in all high scoring networks. On the contrary, high

confidence non-interactions might contradict experimental data,

or their presence does not increase the fit of models but only its

complexity and, thus, is disfavored. Low confidence interactions

constitute variable sub-regions of networks, i.e. their functionality

seems to be beneficial, but might as well be realized by alternative

interactions. Therefore, these interactions are only present in a

subset of high scoring networks while alternatives are present in

others.

Flaws of Ensemble Voting And How to Overcome Them
Ensemble voting can be an adequate technique if considered

networks are sufficiently similar to each other. However, if

networks differ strongly in overall or local topology (figure 1B),

then ensemble voting ‘‘lead[s] to a meaningless blur of alternative

structures’’ [19]. In the following, we will discuss this flaw of

ensemble voting in more detail and motivate our approach to

overcome it. The discussion is illustrated by the small gene

regulatory network of figure 2.

Assume that several hundred or thousand networks with

different topologies have been created by a reverse-engineering

algorithm due to statistical, representational, and computational

reasons as described before. The interactions derived from all

these networks can now be divided according to their frequencies:

first, interactions that are present in nearly all networks.; second,

interactions that are missing in nearly all networks; third,

interactions that are present in subsets of networks only. When

applying ensemble voting, the latter would constitute low

confidence interactions (figure 2A).

Low confidence interactions can be further subdivided accord-

ing to their mutual dependencies. First, interactions that co-occur

with one or more other low confidence interactions; second,

variable interactions without co-occurrence relations. Two inter-

actions are co-occurring if the presence of one interaction is a

reliable indicator for the presence of the other interaction and vice

versa. In general, the presence of interactions is conditioned by the

available experimental data, the chosen mathematical framework,

and the applied reverse-engineering algorithm. Thus, the simul-

taneous presence of a pair of interactions seems to be necessary for

a required functionality, i.e. only then a network can be high

scoring. Obviously, some networks do not contain the set of co-

occurring interactions, as otherwise these interactions would not

be of low confidence. In these networks some competing set of low

confidence interactions has to exhibit the otherwise missing

Figure 1. Reasons for ensemble averaging and its drawback. A)
The hypotheses space H (black shape) contains all networks that can be
represented by the applied mathematical framework. There might be
no single optimum, as several different network structures might score
equally well and thus are equally valid (blue area). Additionally,
optimization procedures starting from different initial parameterization
might get stuck at local optima and create suboptimal predictions (red
dots). If the applied framework is adequate, the reference structure is
included in H (green square) and could be predicted by the
optimization procedure. Otherwise, predicted high scoring networks
should be at least similar to the reference. Here, all high scoring
predicted networks are very similar to each other and to the reference.
In such a case, the frequency of an interaction in all networks is a
reliable indicator for the confidence of an effector-target gene relation,
thus applying ensemble voting is advisable. B) Depending on the
reference structure, the applied mathematical framework, and the
available experimental data, several groups of topologically different
high scoring networks might be predicted by a probabilistic reverse-
engineering algorithm (blue areas I, II and III). Combining all of these
structurally strongly different networks by ensemble voting would
obscure characteristics of individual groups of networks. We suggest
the presence of sets of co-occurring interactions as a reasonable
criterion for identification and delimitation of these groups.
doi:10.1371/journal.pone.0084596.g001

Figure 2. Illustration of an ensemble. An ensemble of several
hundred predicted networks is created by calculating the frequencies of
interactions. Reverse-engineering algorithms may produce suboptimal
predictions, thus a certain amount of (random) variations in network
topologies has to be expected. A) Ensemble average with annotated
relative frequencies for activating (blue) and inhibiting (red) interac-
tions. High confidence interactions (bold) are present in nearly all
networks. High confidence non-interactions (dotted) are missing in
most. Interactions present in subsets of networks have intermediate
frequencies and are considered as low confidence interactions. B)
Interactions connecting genes 3 to 6 constitute two characteristic sets
(low confidence interactions). Either the left set of interactions or the
right one is realized in predicted networks, but no mixture of sets or
subsets. The co-occurrence of these interactions is not apparent in the
ensemble. C) Interactions affecting gene 3 are mutually exclusive, but
do not co-occur with other interactions. They can occur in combination
with any of the characteristic sets and constitute an unspecific, highly
variable sub-region of predicted networks.
doi:10.1371/journal.pone.0084596.g002
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functionality, and these interactions could be co-occurring as well.

An example for competing sets of co-occurring interactions is

given in figure 2B. Interactions that do not co-occur with others

constitute highly variable sub-regions of predicted networks. They

typically arise whenever multiple effector candidates for a single

target exist that can not be distinguished using the available data,

and thus can be freely exchanged. Interactions arising from

multiple effector candidates might have a redundant functionality,

so they increase the complexity of a model without increasing its fit

to experimental data. Thus, such interactions are often mutually

exclusive, although not necessarily (figure 2C).

If ensemble voting would be applied to all high scoring

predicted networks, mutual dependencies would be obscured as

associated interactions become indistinguishable from unspecific,

highly variable interactions, and meaningful information would be

lost. Thus, we propose that networks should be grouped according

to the contained sets of co-occurring interactions (characteristic

sets) and that ensemble voting should be performed separately on

each group. Thereby, the interesting common characteristics can

be preserved as co-occurring interactions would be enriched in the

resulting group-ensembles. Thus, we utilize the presence or

absence of defined sets of interactions as a local similarity measure.

Knowing the mutual dependencies between interactions and

grouping networks accordingly has some clear-cut benefits. First

and obvious, these dependencies between interactions become

accessible for interpretation. Second, by grouping the typically

hundreds or thousands of high scoring networks according to local

similarities, the results of a reverse-engineering run become more

interpretable. If ensemble voting is applied to each group, the

fraction of low confidence interactions within each group-

ensemble is decreased in favor of high confidence interactions.

Third, guidance for the design of further experiments is provided.

As either all interactions of a characteristic set or all interactions of

the competing one are present, experimental validation of a single

interaction should be sufficient to identify which characteristic set

is actually realized in the biological system.

In the following, we present an approach for identifying

mutually dependent interactions from a set of network predictions,

combining co-occurring interactions to characteristic sets, and

grouping networks according to the presence of these character-

istic sets. We show that group-ensembles derived by an ensemble

voting are superior to the ensemble of all networks in terms of

interpretability, and that co-occurring interactions are especially

suited for experimental verification.

Methods

A Characteristic Interaction Set Extraction Approach
The approach we present here consists of three subsequent

steps: Calculation of interaction frequencies, derivation of scores

for mutual dependencies, and finally grouping of networks. Due to

the inherently high variability of networks caused by suboptimal

predictions, a certain amount of noise has to be expected, i.e.

redundant or missing interactions in any network. The input data

is a set of high scoring networks predicted by a non-deterministic

reverse-engineering algorithm. Each of these networks has the

same number of nodes, representing genes, and a variable number

of interactions, each representing a regulatory influence of an

effector-gene to a target-gene. During the following explanation

signs of interactions (activating or inhibiting) are omitted for

simplicity. The according extension of the approach is straight-

forward and was applied for our evaluations.

Step 1: Interaction Frequencies. Each interaction A is

classified according to its relative frequency f (A) in all networks as

1: high confidence interaction if its relative frequency is

above a cutoff,

2: high confidence non-interaction if its relative

frequency is below a cutoff,

3: and low confidence interaction otherwise.

Only low confidence interactions are of interest for further

processing, as stated in the introduction. For each pair of low

confidence interactions (A,B) the relative frequency of its co-

occurrence f (A,B) in all networks is calculated.

Step 2: Mutual Dependencies. For each pair of low

confidence interactions a score for two mutual dependency

relations is calculated as following:

scAND(A,B)~
f (A,B)

max(f (A),f (B))

scEX (A,B)~min
f (A,:B)

f (A)
,
f (:A,B)

f (B)

� �

Where scAND(A,B) is a score for co-occurrence and scEX (A,B) is a

score for mutual exclusiveness of interactions A and B. Hereby,

f (A,:B) denotes the relative frequency of networks that contain

interaction A and miss interaction B. The relative frequencies as

well as scores have to exceed respective cutoffs to consider a pair of

interactions AND or EX related. Notice that scores are in the

range ½0,1� and if the score cutoff is w0:5, either scAND or scEX

can exceed the cutoff but not both.

We define characteristic interaction sets as sets of AND related

interactions. Individual AND related pairs of interactions consti-

tute the initial characteristic sets. These two-element sets are then

merged to characteristic sets of higher cardinality. Two charac-

teristic interaction sets Cx and Cy are merged if there is an AND

relation between any A[Cx and B[Cy. If there is an EX relation

between any A[Cx and B[Cy, then the characteristic sets Cx and

Cy are considered competing, i.e. one of these characteristic sets

can be present in a predicted network, but not both. Although it is

possible that two characteristic sets have AND as well as EX

relations between them, it was never observed during evaluations.

Such rare conflicting cases should be resolved manually.

Step 3: Groups of Networks. All networks are then grouped

according to the combination of characteristic sets they contain.

E.g. if three characteristic sets Cx, Cy and Cz have been identified,

where Cx and Cy are competing, then there are five possible

combinations allowed in predicted networks (only Cx, only Cy,

only Cz, Cx and Cz, Cy and Cz). If no characteristic set is present a

network is not considered for subsequent ensemble creation.

Ensemble voting can now be applied separately to each group of

networks. Therefore, all interactions classified as low confident in

step 1 that are part of the constituting characteristic sets are per

construction enriched in the group-ensemble. Notice that each

group-ensemble not only contains interactions from characteristic

sets, but also all interactions previously classified as high confident,

as well as other low confidence interactions.

Results

To create networks for subsequent characteristic set extraction

and validation, we applied a genetic algorithm (GA) to reverse-

engineer dynamical models based on Petri Nets and Fuzzy Logic

(PNFL, [20,21]). This GA and PNFL were already successfully

applied in the DREAM4 network reconstruction challenge [2]. In

Refining Ensembles of Predicted Gene Networks
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general, the performance of the applied reverse-engineering

method is not crucial for the extraction procedure, as long as a

sufficiently large number of models can be created, such that a few

hundred fit the reference data well enough to be considered as

(potentially) valid hypotheses.

Three hundred random gene regulatory networks were created

for several different experimental settings reflecting different

network sizes and an increasing amount of experimental data

(table 1). Effector-target relations were considered to be either

activating or inhibiting with equal probability and were assigned

using a given in-degree distribution of

(pind (1)~0:7,pind (2)~0:2,pind (3)~0:1), i.e. all genes had between

one and three effectors. A wild-type time-series and the effects of a

varying number of single and double knockout perturbations were

simulated. For each reference, 1000 network predictions were

created and the 20% with smallest root mean square deviation

(RMSD) to the simulated reference data were used for character-

istic set extraction. The following cutoffs were applied: interaction

and non-interaction frequency cutoffs 0.8 and 0.1, joint frequency

cutoff 0.1, AND and EX relation score cutoff 0.7. Using these

cutoffs, characteristic interaction sets were found in the predicted

networks of a varying fraction of references, depending on network

size and available data (table 1). An actual example for reverse-

engineered networks comprising a mixture of topologies is given in

figure 3. Signed voting as defined in [19] was applied to create all

ensembles. Contrary to the ensemble of all networks (figure 3B),

co-occurring interactions are clearly visible in the group-ensembles

(figure 3CD).

To show that grouping networks prior to ensemble creation

decreases the fraction of low confidence interactions, the entropies

of group-ensembles were calculated and compared to the entropy

of the ensemble of all networks. An ensemble’s entropy can be

used as a measure of its overall confidence, i.e. ensembles with a

large proportion of low confidence interactions (intermediate

frequencies) have a higher total entropy compared to ensembles

Figure 3. Example for extracted group-ensembles. Using simulated data from a random reference network (A), the applied reverse-
engineering algorithm created a set of networks which were combined to an ensemble (B). Two group-ensembles (C,D) were derived using the
described characteristic interaction set extraction approach. Both group-ensembles explain the simulated data very well (average RMSD 0.075 and
0.081) but effector-target relations differ strongly (AUPRC to reference 0.898 and 0.311). Blue lines: activating interactions. Red lines: inhibiting
interactions.
doi:10.1371/journal.pone.0084596.g003

Table 1. Performance of reverse-engineering for varying
network sizes and experimental settings.

A B C D E F G

5 3 0 1.3% 0.51/0.20 40% 75/39/7/0

7 4 0 0.6% 0.54/0.20 23% 51/16/2/0

10 5 0 0.0% 0.47/0.13 7% 19/03/0/0

15 8 0 0.0% 0.49/0.16 1% 03/00/0/0

5 5 0 6.0% 0.64/0.21 30% 60/23/5/3

7 7 0 1.0% 0.63/0.16 34% 74/22/5/1

10 10 0 0.0% 0.66/0.14 25% 59/12/4/0

15 15 0 0.0% 0.66/0.12 13% 34/05/0/0

5 5 3 12.0% 0.73/0.21 21% 47/16/1/0

7 7 4 3.7% 0.70/0.21 34% 68/30/4/1

10 10 5 0.3% 0.69/0.15 25% 58/14/3/0

15 15 8 0.0% 0.66/0.13 14% 36/06/0/0

For each of the twelve combinations of size and experimental setting, 300
random reference networks were created. For each reference, a wild-type time-
series and a varying number of knockout perturbations were simulated. A)
Number of genes in networks. B) Number of different random single knockout
experiments simulated. C) Number of different random double knockout
experiments simulated. D) Percentage of cases where a predicted network was
identical to the reference. E) AUPRC of the ensemble of all networks (mean/
standard deviation). F) Percentage of cases where characteristic interaction sets
have been identified. G) Number of runs where 2/3/4/5 characteristic sets were
identified. More than 5 sets were not observed.
doi:10.1371/journal.pone.0084596.t001
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with many high confidence interactions (very high or low

frequencies). Ensemble entropy is defined as

{
P

A f (A): log2 (f (A)), where f (A) is the relative frequency of

interaction A. We found that group-ensemble entropies are on

average reduced to 45% compared to the entropy of the ensemble

of all networks (figure 4A).

Each created group of networks constitutes an alternative

hypothesis about the true gene regulatory network, and one is

interested to decide which of those is most similar to the reference.

Typically, one would assume that the hypothesis which is superior

in explaining experimental data is most similar to the reference.

But only in 31.2% of the cases where two or more group-

ensembles are found, the group-ensemble with highest similarity to

the reference also has the smallest RMSD to the reference data.

Hereby, the group-ensembles RMSD was calculated by averaging

the RMSD of all contained networks. Additionally, the RMSD

distribution of ensembles with highest similarity to the reference is

not significantly different to the RMSD distribution of all other

ensembles (Wilcoxon rank sum test, p-value&0:61). Thus, the

score of a group-ensemble, i.e. the ability to reproduce the

experimental data by the contained networks, is not suitable to

decide for one of these hypotheses.

The similarity of an ensemble, i.e. a set of weighted interactions,

to a reference network can be quantified by calculating the area

under the precision-recall-curve (AUPRC). Hereby, interactions

are sorted according to their frequency; precision and recall with

respect to the reference are calculated for all frequency cutoffs; and

finally the according area under the precision-recall-curve is

derived. AUPRCs range between 1 (all reference interactions are

top-ranked in the ensemble) and 0 (no reference interaction is

present in the ensemble), thus they indicate the predictive quality

of an ensemble. We checked whether some group-ensembles have

an increased AUPRC as compared to the ensemble of all networks

(figure 4B), thus are better predictions of the reference network

Figure 4. Entropy and AUPRC evaluation results. (A) The entropy of group-ensembles is on average decreased to 45% as compared to the
entropy of the ensemble of all networks (full-ensemble). This is caused by the reduced fraction of low confidence interactions. (B) AUPRCs of group-
ensembles are increased if their characteristic sets are present in the reference. Characteristic set precision ranges between 1 (all interactions are
present in the reference) and 0 (no interaction is present in the reference). A small amount of horizontal jitter (,0.02) was added to the precision
values for better visualization. The red lines indicate identity. (C) Rejecting alternative hypothesis by testing for the presence of characteristic set
interactions (white boxplots) in general increases AUPRC, while testing for other low confidence interactions (gray boxplots) has a less pronounced or
even negative effect. Thus, interactions that are predicted to be co-occurring with other interactions are preferred targets of further experimental
verification. The full-ensemble AUPRC distributions are shown as dark-gray boxplots.
doi:10.1371/journal.pone.0084596.g004
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than the ensemble of all networks. A positive correlation between

AUPRCs of group-ensembles and the precision of characteristic

sets was observed. Hereby, the precision of a characteristic set is

the fraction of its interactions that could be found in the reference.

This correlation can be expected, as characteristic interactions are

per construction enriched in group-ensembles, and only if these

characteristic interactions could also be found in the reference,

then the AUPRC should increase due to this enrichment.

The networks which are most similar to the reference could be

identified by further experimental evidence or additional prior

knowledge concerning the presence of individual interactions. If

the presence (or absence) of a certain interaction could be

established, all hypotheses lacking (or containing) this interaction

could be rejected. Interactions with intermediate frequencies are

well suited targets for validation, as knowledge about their

presence or absence would allow to reject a substantial proportion

of networks by few experiments. Therefore, we simulated such

experimental validations of individual low confidence interactions

to test whether co-occurring interactions are especially suited for it.

For each low confidence interaction, we checked whether it was

actually present in the reference and accordingly rejected all

networks lacking (or containing) the tested interaction. On

average, the AUPRC of the ensemble of remaining networks

increased only when testing for characteristic set interactions

(figure 4C). Thus, it is beneficial for experimental design to

distinguish between characteristic set interactions and other highly

variable interactions beforehand.

Discussion

When a new method for the reverse-engineering of networks is

introduced it is often evaluated based on its precision to recover

test networks with known underlying structures. It has been shown

in the past that ensemble methods that generate a consensus by

averaging over multiple predicted networks can improve this

precision. However, crucial information from multiple predictions

is lost in the consensus due to the involved averaging. In the

present paper, we demonstrate that the alternative network

predictions often form groups representing alternative hypotheses

on the true network structure that cannot be distinguished given

the currently available experimental measurements. Our proposed

interaction set extraction approach first groups candidate networks

and then performs ensemble voting separately on each network

group. Instead of merely increasing the performance of inference,

our approach thereby exploits ensembles of network predictions to

extract and characterize such alternative hypotheses. This is an

essential precondition to extend our understanding of a system’s

network structure, to facilitate future hypotheses tests and to

enable the development of dedicated experiments that differentiate

between otherwise equivalent hypotheses.

Our approach refines ensembles of networks as predicted by

dynamic model based reverse-engineering algorithms. Thus, it

depends on their prediction quality, proper sampling of models

and the availability of a sufficiently large number of networks.

These networks could be created by non-deterministic/probabi-

listic optimization, by separate optimizations based on different

experimental data [22] or cross-validation, by incorporation of a

varying amount of prior knowledge, or a combination of these. In

our case, a non-deterministic genetic algorithm was used for

network reconstruction.

The characteristic set extraction algorithm is intended to be

simple, comprehensible, traceable and computationally fast. Pairs

of co-occurring (AND related) and mutually exclusive (EX related)

interactions are identified by calculating scores from their joint

and individual frequencies. Notice that the typical number of

observed effector-target relations is much smaller than the number

of possible pairs, thus counting joint occurrences can be done very

fast. Our definition of a score of AND relations was derived from

the concept of confidence used in association rule learning [23].

The association rules (A[B) and (B[A) were combined by a min

conjunction. The score of EX relations was defined analogously by

combining (:A[B) and (:B[A) rules. Using the min conjunc-

tion is quite common in approximate reasoning (e.g. fuzzy logic

[24]). Other conjunctions like product or bounded product are possible,

but were not evaluated here. The interpretation of pairwise

relations is straightforward. Both AND related interactions have to

be present to achieve a biologically meaningful effect. EX related

interactions might either represent redundancies, which are

discouraged as sparseness of networks is typically demanded in

reverse-engineering, or the presence of both interactions might

contradict the reference data. Pairs of co-occurring interactions

are then merged to characteristic sets of higher cardinality. This

resembles a bottom-up procedure where large entities are

constructed by joining of frequent smaller parts, and can be done

very efficiently.

Cutoffs applied during characteristic set extraction are used to

distinguish relevant observations (here, occurrence of certain

interactions or characteristic interaction sets) from spurious ones,

which might be artifacts of the applied reverse-engineering

approach (noise). The specific choice of cutoffs is interdependent

with the number and frequency of distinct characteristic sets

hidden in the predictions. Additionally, the number of high-

scoring networks with different topologies and, thus, the number of

characteristic sets depends on the reference topology, available

data, and the applied mathematical framework. Therefore, cutoffs

have to be assessed case-specific, e.g. by starting with relatively

stringent cutoffs, repeatedly reducing them and assessing extracted

characteristic sets by number, size and biological meaning.

If one assumes that the only available information about the

reference network are the time-series and knock-out measurements

that were already used for reverse-engineering, we have shown

that one can not easily decide which of the resulting groups of

networks is more similar to the reference, as the average fit of

simulated and experimental data does not allow such a distinction.

Thus, the resulting groups of networks can not be reliably rated

using the available information. One has to perform further

experiments or otherwise gather additional information to rank

these hypotheses or exclude some of them, e.g. by assessing the

presence of individual interactions. Such additional information

could be gathered using for example database searches, binding

assays, perturbation measurements, text-mining, or expert knowl-

edge. We have further shown that the design of additional

experiments or the search for additional data can be guided based

on the classification of interactions, i.e. interactions that are

contained in characteristic sets are preferable targets for valida-

tion.

The presented procedure can be extended in various ways, e.g

automatic adjustment of cutoffs, considering scores of predicted

networks during ensemble voting to give high-scoring networks a

higher influence, fuzzy assignment of interactions to characteristic

sets and fuzzy grouping of networks to account for random

variations, and using grouped networks as priors for repeated

rounds of reverse-engineering and characteristic set extraction to

explore different network hypotheses in more detail.
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Conclusions

If the topologies of predicted networks are strongly different,

ensembles become blurry and obscure interesting characteristics of

individual topologies. We propose to overcome this flaw by

grouping networks according to the presence of sets of co-

occurring interactions (characteristic sets). The resulting ensembles

of grouped networks show an increased homogeneity and thus a

smaller proportion of interactions with intermediate frequencies.

This was quantified by a decrease of group-ensemble entropy to

45% with respect to the entropy of the ensemble of all networks.

Group-ensembles constitute distinct, testable hypotheses about the

system under consideration. They can be interpreted easily, as

overall topology and dependencies between interactions become

apparent. Thus, grouping networks according to characteristic

topological features prior to ensemble voting is an advisable

refinement step during reverse-engineering procedures that

facilitates further experimental design and interpretation.
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