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Deep learning based analysis 
of microstructured materials 
for thermal radiation control
Jonathan Sullivan1, Arman Mirhashemi2 & Jaeho Lee1*

Microstructured materials that can selectively control the optical properties are crucial for the 
development of thermal management systems in aerospace and space applications. However, 
due to the vast design space available for microstructures with varying material, wavelength, and 
temperature conditions relevant to thermal radiation, the microstructure design optimization 
becomes a very time-intensive process and with results for specific and limited conditions. Here, 
we develop a deep neural network to emulate the outputs of finite-difference time-domain 
simulations (FDTD). The network we show is the foundation of a machine learning based approach to 
microstructure design optimization for thermal radiation control. Our neural network differentiates 
materials using discrete inputs derived from the materials’ complex refractive index, enabling the 
model to build relationships between the microtexture’s geometry, wavelength, and material. 
Thus, material selection does not constrain our network and it is capable of accurately extrapolating 
optical properties for microstructures of materials not included in the training process. Our surrogate 
deep neural network can synthetically simulate over 1,000,000 distinct combinations of geometry, 
wavelength, temperature, and material in less than a minute, representing a speed increase of over 
8 orders of magnitude compared to typical FDTD simulations. This speed enables us to perform 
sweeping thermal-optical optimizations rapidly to design advanced passive cooling or heating 
systems. The deep learning-based approach enables complex thermal and optical studies that would 
be impossible with conventional simulations and our network design can be used to effectively replace 
optical simulations for other microstructures.

The ability to engineer how materials interact with light is at the core of the development of materials that are 
engineered to manage surface temperature via thermal radiation. Materials that can selectively emit or absorb 
thermal radiation can be engineered to passively cool beneath ambient temperatures1,2 or to heat radiatively3,4. 
Radiative heating and cooling depend on two spectral regions: visible (VIS) to near-infrared (NIR) and the 
mid-infrared (MIR) respectively1. Thermal absorption for a surface exposed to the sun is defined by the solar/
NIR spectrum from λ = 300–2500 nm, whereas thermal emission depends on the temperature of the body5. A 
wide variety of topologies have been utilized for maximizing thermal absorption such as nano-domes6, corru-
gated surfaces4, core–shell structures7, and gratings8. Similarly, “passive-cooling structures”—surfaces that have 
significant thermal emission with limited solar absorption and can cool beneath ambient temperatures9—can 
be engineered from materials such as polymers2,10–12 or corrugated graphene13,14. Unlike many of the solutions 
to radiative heating and cooling, microscale pyramid-like (“micropyramid”) surface texturing surfaces can be 
used to engineer either radiative cooling or heating materials15. Periodic micropryamid texturing on a surface 
induces anti-reflective properties as a result of significant light confinement by the geometry16,17, and has been 
demonstrated to enhance absorption in silicon18–26, nickel3,27, tungsten28 as well as for dielectrics29 and polymers12.

The design and optimization of textures to control light—such as micropyramids—can be a challenge as 
simulating across the available design space is a computationally demanding process that often requires dedicated 
numerical simulation software30. To compound this problem, the vast array of available materials means that 
for a given set of application requirements and constraints there can be a different material that is best suited to 
fulfill those requirements. A powerful approach that has emerged in the field of nanophotonics is the use of Deep 
Learning (DL) and Deep-Neural Networks (DNNs) to fill the design space and to circumvent the necessity of 
large time investments in simulations. Inspired by the biology and architecture of the human brain, the DL meth-
odology is capable of high levels of non-linear abstraction from datasets31. DL and Machine Learning (ML) have 
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been used, in a broad setting, to solve complex problems ranging from machine vision for self-driving vehicles32 
to automatic speech recognition33 and spacecraft system optimization34–37. In the field of optics, DL has been 
used recently to predict and model plasmonic behavior31,38–42, grating structures43,44, ceramic metasurfaces45,46, 
chiral materials47,48, particles and nanosturctures49–51, and to do inverse design31,41,50–54. Deep-Learning has also 
been used extensively in the field of heat transfer for applications such as predicting thermal conductivity55,56 and 
thermal boundary resistance57, studying transport phenomena58, optimizing integrated circuits59, modelling boil-
ing heat transfer60, predicting thermal-optical properties44,61,62, and addressing thermal radiation problems63–66.

Spectrally selective surface designs are heavily dependent upon material selection. The interaction of light 
with a surface is a process regulated by the complex refractive index of the material(s) involved67,68, and material 
selection is fundamental to a microstructure’s performance. Different material classes such as metals, ceramics, 
polymers, and dielectrics interact differently with light, and the influence of geometry and microstructure can 
vary significantly even for small changes in the constituent material’s complex refractive index. A polymer, for 
example, has a strong mid-infrared response as a function of its complex refractive index, but due to the extinc-
tion coefficient of ~ 0 in the VIS–NIR, it is optically transparent. To manipulate the optical properties in those 
wavelengths, another material needs to be included in the polymer matrix10,69. To provide a comprehensive 
thermal optimization, we need to be able to exhaustively search across a material catalog to find what material 
and geometry combination are best suited for the thermal design requirements.

In this paper we propose a methodology based on a DNN to predict the optical properties of micropyramids 
across a wide design space of geometries, wavelengths, and, most importantly, materials. As opposed to many 
other studies that provide a deep learning approach to a structure with a single material38,52, a geometry with fixed 
materials44,47,51, or a material input defined by one-hot encoding with a random forest50, our DNN is designed to 
predict the optical properties of a vast array of materials and is not constrained by material input. While there 
are many available machine learning methods42,50,61,70–74, we choose to utilize the deep neural network approach 
due to the method’s input flexibility, scalability, and the ability to extrapolate outputs from unseen inputs.

The model we present can predict the transmissivity, reflectivity, and emissivity of micropyramids across a 
diverse library of materials. = Our model emulates finite-difference time-domain (FDTD) simulation outputs by 
predicting spectral properties for a combination of the plane-wave source wavelength, geometric properties of 
the texture, and material. The model differentiates materials by taking discrete material inputs derived from the 
complex refractive index and subsequently builds relationships between the material inputs and the geometry 
and wavelength to predict the transmissivity and reflectivity. From the predicted optical data, we make thermal 
predictions for the texture’s thermal emission and absorption performance. For a given material, there is a vast 
optical property design space afforded by a microstructure. By using the network to search across a library of 
materials, we can identify material and geometry combinations that can best optimize a set of thermal condi-
tions. We can rapidly perform exhaustive searches across a material database and geometric design space to find 
optimum combinations, a process that would be too computationally expensive with previous micropyramid 
optimization approaches. While we apply our methodology to micropyramid structures, our methodology has 
wide applicability for neural network designs that can replicate and effectively replace optical simulations for 
metasurface and microstructured surface optimization.

Results
Model training and design.  Solutions using the FDTD method, while accurate, are time consuming. 
Optimizing the spectral properties of a microstructure can be a challenge due to the number of simulations 
required. We employ a deep neural network architecture that can estimate the simulation outcome to predict 
optical properties rapidly and accurately. We design a network that can predict across the geometric design space 
of a micropyramid for a given minimum and maximum wavelength (λmin and λmax) and is capable of modeling 
and predicting the behavior of micropyramids constructed of an array of materials. Once the model is trained, 
the prediction phase is nearly instantaneous. Thus, if the model’s predictions are accurate, we can perform accu-
rate optimizations in the span of seconds and mitigate the necessity of additional computationally expensive 
simulations.

Our model is trained, validated, and tested on a dataset constructed of data compiled from 35,500 different 
simulations from Lumerical’s commercially available 2D/3D FDTD solver. The simulation framework provides 
exact solutions for Maxwell’s equations across a finite element mesh and we can extract the dispersion and absorp-
tion from the results75,76. For this work, all simulations are calculated in 2D to minimize simulation time and gen-
erate large datasets for each material. 2D FDTD simulations deliver accurate results for micropyramid geometries, 
but slightly overestimate the emissivity when compared to a more realistic 3D simulation15. We chose to simulate 
our periodic micropyramid structures using FDTD instead of a semi-analytical approach such as RCWA​77,78 due 
the accuracy of the FDTD method as well as the scalability and applicability of FDTD beyond the geometrically 
simple structures shown in this work. The simulations are based upon the geometry shown in Fig. 1, with key 
independent geometric parameters: the triangle base span (xspan), height (zspan), and substrate thickness (tsub). We 
utilize periodic boundary conditions for our simulations: the structure shown in Fig. 1 occupies the entire unit 
cell. Additionally, as micropyramids have been shown to demonstrate omnidirectional optical properties3,15,18,26, 
we do not vary the source angle of incidence or polarization. For this work we assume that Kirchhoff ’s law is 
valid and the emissivity we calculate from the simulations is derived from α = ε = 1 – R – T, where reflectivity 
(R) and transmissivity (T) are calculated from power monitors above and below and domain respectively and 
where absorptivity (α) is synonymous with emissivity (ε). For each material, we generate a uniformly distributed 
random matrix of xspan, zspan, and tsub variables and run the simulation with a plane-wave injection source that 
ranges from λmin to λmax. Details on the dataset distributions can be found in the supplementary materials. The 
size of the randomly generated geometric property matrix corresponds to the number of simulations, with the 
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randomness generally ensuring that simulations in a dataset have a unique combination of the three geometric 
variables. While the xspan and zspan coordinates are randomly generated with values ranging from 0 to 10 um, the 
range of tsub and λmin to λmax properties are selected based on the material. A detailed description of the simula-
tion domain and setup are in the Methods section. Additionally, our simulations assume that there is no surface 
roughness or additional hierarchy to maintain simulation simplicity.

The geometric input parameters used in simulations and input into the DNN are the independent parameters 
xspan, zspan, tsub. We assume periodic boundary conditions for a unit cell that contains a single micropyramid with 
the specified geometric parameters. We divide the wavelength spectrum used in simulation into a set of single 
inputs. Each wavelength point has a set of λ-dependent n, k, εreal, and εim. The material properties are used as 
inputs to one multi-layer perceptron (MLP) and the geometric properties/wavelength are grouped as inputs 
for another MLP. The MLPs concatenate and connect to a larger DNN structure. The outputs of the DNN are a 
reflectivity and transmissivity point corresponding to λ.

The architecture of the neural network shown in Fig. 1 is designed to emulate the critical simulation inputs 
that influence the computed optical properties. In total, our network employs 8 inputs: xspan, zspan, tsub,, λ, n, k, 
εreal, εim. These inputs follow three classifications: geometric parameters, wavelength, and material data. The 
geometric parameters are xspan, zspan, and thickness of the substrate under the surface texture (tsub). We include 
the substrate thickness to capture the optical property behavior with respect to the thickness so that our model 
can more accurately interpret and predict the behavior of transmissive materials. The second input classification 
is the injection wavelength (λ). The wavelength is the fundamental determining factor that links the output and 
material data together. In a FDTD simulation, each frequency/wavelength point we solve at has a corresponding 
set of optical properties (ε, R, T) so to emulate that behavior we utilize a single wavelength point as a network 
input. The solution to Maxwell’s equations is not sequentially dependent, meaning that we can separate a large, 
simulated wavelength spectrum into smaller groupings of inputs for the neural network. Previous network 
designs employed the full simulation wavelength spectra and the corresponding wavelength dependent material 
properties, but we found that dividing the full-spectrum simulations into single wavelength inputs yields much 
more accurate results. Details on our design iteration can be found in the supplementary materials.

Corresondingly, the FDTD method uses the complex refractive index to differentiate between materials. At 
each wavelength point of the solution, there is a matching refractive index value (n) and extinction coefficient 
(k). The third grouping of the neural network’s input parameters—the material properties—enable the DNN 
to differentiate materials similar way to how a FDTD simulation would. To better strengthen the connection 
between material properties and the output, we include two correlated parameters—the real (εreal) and imaginary 
permittivity (εim), shown in Fig. 1. Compared to using only normalized n and k inputs to differentiate materials, 
the inclusion of the correlated parameters strengthens the connections between the material input and the output 
optical properties, enabling higher prediction accuracy for materials not included in the training of the model. 
The output of the neural network is the reflectivity and transmissivity that correspond to the wavelength input 
and material/geometric properties. This design emulates the output of the power monitors used in the FDTD 
simulations. Predicting all three optical properties is unnecessary as—assuming Kirchhoff ’s law is applicable—we 
calculate the emissivity from the other two properties. To further enhance the connection between input and 
output, we utilize two smaller multi-layer perceptron (MLP) architectures that allow the model to build connec-
tions with the geometry/wavelength and wavelength/material properties respectively. The outputs from these 
MLPs are fed into the larger DNN structure. The uncoupled MLP structures are implemented to increase the 
connections between the inputs and to develop separate non-linear relationships between the key independent 

Figure 1.   Visualization of Deep-Neural Network (DNN) construction and and overall process flow.
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parameter (λ) and the geometric information and the material information. The concatenated output of the MLPs 
is fed as an input to the larger and fully connected sequential DNN structure. In our design process, we have 
found that this methodology has led to increased accuracy in extrapolating optical properties for new materials.

The DNN is trained using the FDTD generated datasets and allow it to learn and predict the non-linear 
relationships between the input geometry, wavelength, material properties, and the output spectra. The simula-
tion data is divided into three separate subgroups: training, validation, and testing, which carry a 70/20/10 split 
respectively. We use the training and validation data in the model generation process. The test dataset—unseen 
during training—is used to evaluate the performance and accuracy of the network in interpolating optical 
properties for new geometric and wavelength combinations. The training/test datasets encompass simulations 
from 14 different materials of widely varying complex refractive index, including metals (Ni/Ag/Al/Cr/Fe/
Sn)79–81, refractory metals (Ta/W)79,82, a phase-change material (VO2 Metallic/Insulating)83, a polymer (PDMS)84, 
a semiconductor (SiC)85, a ceramic (SiO2)79, and a material with a near zero extinction coefficient across a wide 
spectrum (Diamond)86. The network predictions vs the simulation results for the test dataset are shown in 
Fig. 2a,b. The diverse set of materials enables the network to interpret a wide range of n and k inputs—including 
extreme values—during the training process. The values of the complex refractive index are plotted in Fig. 2c, 
to highlight the differences between the materials in the training/validation/test datasets.

The test dataset does not contain new material data, but it includes geometric combinations that the model 
has not seen in training. Our model demonstrates an ability to predict with an extreme accuracy new geometric/
wavelength combinations made of materials included in the training process. The error between the prediction 
and simulation values is plotted in Fig. 2a and broken down by material in Fig. 2b. The mean absolute error 
(MAE) for the training and validation sets are 0.0034 and 0.0035 respectively. These error values correspond to 
an MSE error for the training/validation datasets of 1.22e−4 and 1.34e−4 respectively. The test dataset has an 
MAE and MSE error of 0.0034 and 1.53e−4 respectively. While some outlier predictions do exist, as visualized 
in Fig. 2a, the error by material in Fig. 2b validates that our model is interpolating the optical properties for 
“seen” materials with high efficacy. An apparent relationship from Fig. 2b is that transmissive materials show a 
larger error in the predicted transmission, and metallic materials show an increased error in reflection. This is 
a manifestation of the role of the extinction coefficient, with a high extinction coefficient leading to reflection 
dominated optical properties and low extinction coefficient leading to transmission dominated optical properties. 
For some materials with a low extinction coefficient (k <  < 1), geometry has little to no influence on the reflection 
and tsub is the only geometric parameter that determines the optical properties. This relationship necessitates 
that the design of the network correctly connects the material properties, wavelength, and geometry, to make 
accurate predictions for any arbitrary material not included in training.

The small differences in error between the test/evaluation datasets and the training/validation training errors 
verify our network can predict the optical properties for inputs within the design limits with a high degree of 
accuracy. Additionally, the minimal difference in error between the test and training/validation datasets allows 
us to conclude with a high degree of certainty that our model is not overfitting during training. We validate this 
assumption by examining the overlap in geometric parameters between the test and training/validation data-
sets, shown in the supplementary materials. We discuss the precise architecture, details on the hyperparameter 
optimization, network parameters, network architecture optimization process, etc., of the model used to achieve 
these results in the Methods section.

Optical predictions for select materials unseen in training.  The network’s input design—with dis-
tinct material inputs, wavelength, and geometric parameters—enable our network to dynamically predict the 

Figure 2.   (a) neural network predictions of the optical properties compared to the properties obtained 
from FDTD simulations plotted for the test dataset. (b) By material average mean absolute error (MAE) for 
reflectivity (orange) and transmissivity (blue) separately for the test dataset. No error exceeds 0.01, the overall 
test dataset has an MAE of 0.0034. (c) The extinction coefficient (k) vs the refractive index (n) for all of the 
materials included in the test dataset, highlighting the differences between the materials used in the training of 
the network.
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optical spectra of micropyramids made of materials that are not included in the training process. We first test our 
network’s capacity to predict the optical properties of new materials with two new datasets: a metal (Titanium)79 
and a ceramic (Alumina, Al2O3)87 dataset comprised of 1500 simulations each. These materials are not used in 
the training or validation process, and they were explicitly chosen as Ti/Al2O3’s complex refractive index values 
significantly differ from the materials used in training. Comparisons of the refractive indices used in training to 
those predict the titanium and alumina datasets are shown in the supplementary materials. These datasets were 
generated with the same methodology as before and each simulation has a unique combination of tsub, xspan, and 
zspan. After making predictions with a trained neural network that does not include any Titanium or Alumina 
data in training, we generate a different model that includes 10 randomly selected simulations from the alumina 
and titanium datasets (< 1% of the simulations) to compare the prediction accuracy when a small amount of data 
is included in the training process.

Figure 3a,b plots the predicted optical properties by FDTD simulation vs the neural network predictions. The 
MAE between prediction and simulation for the alumina and titanium datasets are 0.0175 and 0.0131 respec-
tively. Broken down by individual output, the MAEReflectivity is (0.026, 0.0063) and MAETranmissivity is (6.01e−5, 
0.028) for titanium and alumina respectively. The error in the reflectivity and transmission mirrors the results in 
Fig. 2b – metallic materials have reflection driven optical properties with geometry and show a very low error in 
transmission. Conversely, the relationship between the substrate thickness and extinction coefficient of alumina 
leads to non-zero transmission, with geometry playing a reduced role in determining the reflection and transmis-
sion properties. In Fig. 3c,d we compare the absolute difference between the neural network and FDTD predicted 
emissivity for the alumina and titanium datasets. Across both the geometric and wavelength space, we observe a 
high degree of accuracy in the neural network predictions. The exception to this is a significant deviation in the 
titanium dataset (Fig. 3d) that occurs in a region with high material/geometry specific resonance. Similarly, the 
network minorly underpredicts the role of transmission in Al2O3, leading to the observed prediction differences. 
Despite these differences, the model is clearly able to differentiate material in a meaningful way and extrapolate 
accurately beyond the dataset used in training.

To improve the prediction accuracy, we examine what occurs when we include a seemingly trivial amount of 
simulation data from the “unseen” materials in the training process. We select 10 simulations at random from 
the Ti and Al2O3 datasets (< 1%) and include them in the training/validation/test datasets. Figure 3a,b and 
Fig. 3e,f underscore that the small inclusion of data has a large impact on the prediction accuracy. The overall 
MAE score becomes (0.0073, 0.0049) while MAEReflectivity improves to (0.014, 0.004) and MAETranmissivity improves 
to (7.69e−5, 0.0058) for titanium and alumina when 10 simulations of each are included in the training dataset. 

Figure 3.   Neural-network predictions for two materials (Ti/Al2O3) that are not used in the in the training 
process. (a, b) The predicted optical properties vs. the FDTD computed properties, with and without 10 
simulations included in training for alumina and titanium. Surface plot of the absolute error between prediction 
and simulation with no simulations included (c, d) and with simulations included in training. The wavelength 
is on the x-axis and the geometric information is visualized with the aspect ratio on the y-axis. Including 10 
simulations (1% of the dataset) dramatically reduces the error in the alumina to a near zero value across all 
wavelengths and aspect ratios. For Ti, the resonance driven peaks in the low-aspect ratio structures are reduced 
and the error in all other sections becomes approximately zero.
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These error values are close to those shown in Fig. 2b for the materials in the test dataset, indicating that only a 
small amount of simulation data is required to calibrate the model for a new material. Figure 3e,f demonstrates 
that even this small amount of data—while not enough to completely remove error—effectively reduces pre-
diction error throughout, even in the highly erroneous resonant region of Ti. While the prediction error from 
completely unseen data is excellent, including a small number of simulations align the accuracy of the “unseen” 
materials with the accuracy of the much larger datasets included in training.

Optical predictions for a library of materials unseen in training.  To further demonstrate the capa-
bility of our model to provide accurate optical predictions for microstructures made of materials outside of the 
scope of the model’s training, we compare the network’s predictions to simulation results for 23 additional mate-
rials that were not seen in the training process. As many of these materials require much more time to simulate 
each geometric combination, we only perform 100 simulations for each material, for a total of 2300 additional 
simulations. The materials included in this library range dramatically in material properties, with the complete 
material list and compilation of prediction accuracy shown in Table 1.

The error between the predicted optical properties and simulated optical properties for the unseen material 
library is plotted in Fig. 4a, with the errors shown in more detail in Table 1. The only material with an MAE > 0.1 
is TiO2, with a transmission prediction error of 0.2003. Low extinction coefficient materials generally exhibit 
more error in transmission and high extinction coefficient materials exhibit a larger error in reflection. The 
results indicate that while the neural network does not perfectly replicate the physics of the FDTD simulations, 
it is nevertheless accurate in making predictions for materials that vary significantly from those used in train-
ing– the overall mean average error across all 23 materials is 0.0279.

We can improve this accuracy and calibrate the model by including a small number of simulations in the 
training/validation/test datasets. Here, we choose 5 random simulations from each of the 100 to include in the 
training/validation/test datasets. After training the model on this data, we show the improvement to the predic-
tions in Fig. 4b. Despite using only 5% of the simulations contained in these materials’ datasets, the small cali-
bration data has removed much of the error on every material. The combined MAE score after 5 simulations are 
included in the training process is 0.0118. The increase in accuracy provides further validation that our model 
has connected the inputs to the outputs via the simulation physics well enough that it only requires a small 
amount of calibration data to produce extremely accurate results across the rest of a material’s latent design space.

Material selection algorithm and thermal optimization.  We apply the strength of our network 
architecture by using it to make optical predictions for a library of materials. We use the resulting optical predic-

Table 1.   MAE Errors in the reflection and transmission without no simulations included in the training data 
and 5 simulations included in training. The relative error for each material is shown, with nearly all materials 
showing a significant decrease in error as a result of the small amount of data being included.

Material

MAE reflection MAE transmission Error difference

No simulations 5 Simulations No simulations 5 Simulations ΔR ΔT

Au88 0.0637 0.0456 2.63E−05 3.88E−05 − 0.018 1.25E−05

B4C89 0.0394 0.0098 0.0542 0.0091 − 0.030 − 0.045

BaF2
90 0.0040 0.0009 0.0907 0.0053 − 0.003 − 0.085

Be91 0.0086 0.0067 5.01E−06 3.72E−06 − 0.002 − 1.29E−06

C92 0.0972 0.0124 3.11E−04 3.12E−05 − 0.085 − 2.80E−04

Cu79 0.0709 0.0880 1.07E−02 1.80E−05 0.017 − 0.011

GaAs79 0.0249 0.0106 0.0927 0.0186 − 0.014 − 0.074

Ge79 0.0869 0.0216 0.0964 0.0094 − 0.065 − 0.087

In93 0.0312 0.0223 6.95E−06 4.30E−06 − 0.009 − 2.65E−06

InAs94 0.0036 0.0030 0.0849 0.0121 − 0.001 − 0.073

InP94 0.0098 0.0053 0.0722 0.0126 − 0.005 − 0.060

Li95 0.0570 0.0297 8.23E−04 8.21E−04 − 0.027 − 2.04E−06

Mg96 0.0434 0.0295 5.84E−06 4.14E−06 − 0.014 − 1.69E−06

Mo82 0.0316 0.0296 7.39E−06 5.04E−06 − 0.002 − 2.35E−06

Nb97 0.0156 0.0154 4.55E−06 3.13E−06 0.000 − 1.42E−06

Os98 0.0282 0.0291 1.21E−04 1.20E−04 0.001 − 1.70E−06

Pd91 0.0168 0.0109 1.48E−05 1.02E−05 − 0.006 − 4.56E−06

Pt79 0.0096 0.0086 5.49E−06 4.32E−06 − 0.001 − 1.17E−06

Rh79 0.0106 0.0125 8.07E−06 6.89E−06 0.002 − 1.18E−06

Si3N4
87 0.0021 0.0021 0.0321 0.0046 0.000 − 0.028

TiO2 0.0006 0.0016 0.2003 0.0359 0.001 − 0.164

Zn90 0.0554 0.0203 1.77E−05 1.34E−05 − 0.035 − 4.31E−06

Zr90 0.0141 0.0122 3.21E−05 2.17E−05 − 0.002 − 1.04E−05
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tions from the neural network to perform thermal optimization and search for the material and geometry that 
best optimize our selected thermal conditions. In total, we pass along 41 materials into the trained neural net-
work. The materials cross a wide spectrum and include all the materials that were included in training, titanium/
alumina, and the 23 other materials that are unseen by the network during training.

To fully demonstrate the speed of our network and how comprehensive we can be in searching the latent 
design space, we generate a grid of coordinates (xspan, zspan) that span from 0 to 10 um across both axes in 
increments of 0.1 um, for a total of 10,000 geometric coordinate pairs for each material. Over all 41 materials, 
this correlates to a total input of outputs of 410,000 optical simulations. For each of these simulations, there are 
100 wavelength points, for a total of 41 million sets of inputs to the network. The network requires approximately 
25 – 40 s to predict the optical properties across all 1,000,000 synthetic simulation input sets for each mate-
rial. In total, the network requires 15 to 20 min to make predictions for all 41 materials. Each individual DNN 
approximated simulation requires anywhere from 30 to 40 ms on our computer. The output encompasses a total 
of 82 million datapoints for all 41 materials. The remarkable speed of prediction punctuates our desire to use 
a neural network to mostly supplant FDTD simulations, as the trained network can comprehensively predict a 
library of materials’ optical spectrums in minutes.

We then use the DNN spectral predictions to perform a material search process to identify what materials 
and geometries best optimize a set of imposed thermal optimization equations. The selection of the thermal 
optimization equation is application specific. For sake of demonstration, the optimization we present is for 
high-temperature cooling. Additional optimizations using different optimization conditions are presented in 
the supplementary materials. The equations and thermal optimization are discussed in the Methods section. We 
process the thermal optimization equations for each wavelength dependent spectral property matrix to generate 
a figure of merit (FOM), a task that requires a significantly larger amount of computational time than the neural 
network’s optical predictions. Figure 5 shows the materials and Table 2 shows the geometries identified by the 
search process that best optimizes the cooling thermal balance defined by Eqs. (2–3) at three different surface 
temperatures: 300, 500, and 1000 K. The definition of Eq. (3) leads to Au being the most optimal material for a 
single material cooling microstructure at 300 K, a result that hinges upon the role of transmission in the equation. 
Despite being a transmissive material, SiO2 is identified by the search algorithm as the most optimal material 
at 500 K. This as a result of a balance of the transmission of solar radiation with the large thermal emission at 
that temperature. It should be noted that we did not change the material data inputs into the network to account 
for temperature variation. The design of the network material inputs, allows us to adapt our material data for 
different temperatures if a significant difference in the material properties is expected.

Discussion
In contrast to FDTD simulations, which can take anywhere from minutes to hours to run, each DNN predic-
tion takes approximately 30–40 µs/input to predict the spectra of a geometry/material/wavelength combination. 
Comparatively, we estimate simulating the same 10,000 parametric grid of geometries would require on average 

Figure 4.   MAE for the transmission and reflection predictions compared to FDTD simulations for the 
23 unseen library materials. (a) Plotted error when the materials are completely “unseen” and (b) after 5 
simulations for each material are included in the training/testing/validation process. The log and then linearly 
normalized average extinction coefficient is shown in the z-axis, pointing to the role of the material in predicting 
where the error will occur. The error’s (x,y) distance from an MAE error of zero is shown with the color bar. 
Including 5 simulations systematically reduces the prediction error for the rest of the dataset, indicating that 
very little data is needed to calibrate the model for new materials and lead to accurate predictions.
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1–3 months for the solutions to compute in FDTD via our simulation computers for each material. Accordingly, 
the neural network approach is approximated to be 6–8 orders of magnitude faster than traditional simulation 
methodologies. This estimation changes based on the available computational resources, but a tremendous benefit 
to a neural network driven approach is that an already trained model requires a miniscule quantity of resources 
to operate and make predictions. Our methodology is also scalable beyond the 2D micropyramid simulations we 
used in this work. We utilized 2D simulations such that we could more rapidly generate large training datasets, 
but our approach can be easily applied to replace or significantly reduce the reliance on simulations of more 
complex geometries or designs of other microstructures to increase throughput by orders of magnitude.

While our approach cannot completely replace simulations, we dramatically reduce the necessity of com-
putationally expensive optical simulations. The use of material information and wavelength enables the model 
to build connections between the inputs and the physics, providing accurate predictions for a wide variety of 
materials that are highly dissimilar from those used in training the model. The model we show can be used to 
make generally accurate predictions for a material, with an overall MAE of 0.0279 for the library of completely 
unseen materials. Despite this accuracy, we can make more confident predictions by including a small amount of 
calibration data from simulations to tune the model to new physics, resonant behavior, etc., that may be present 
in the new material as a function of material properties or geometry. Including merely 5 simulations in training 
(500 datapoints) reduces our error on the remainder of the dataset to 0.0118. This indicates that our model is 
not merely interpolating existing material/geometry results and is making reliable predictions for materials that 
vary dramatically from those used to train the network.

The speed of the network combined with the ability to predict materials unused in training facilitates explora-
tions of the design space in ways that would be impossible with traditional simulations. Figure 5 shows several 
specific instances of material and or geometry combinations that suit several generalized thermal balance equa-
tions, but there are near limitless combinations of temperature and environmental conditions. Our methodol-
ogy allows for us to define a set of thermal conditions and search hundreds of thousands of material/geometry 
combinations in seconds to determine which combination yields the best result.

Figure 5.   Material search algorithm identifying the most optimal microstructures for cooling at surface 
temperatures of 300, 500, and 1000 K based on the figure of merit defined by Eqs. (5–6). Due to the role 
of transmission in Eq. (5), the most optimum microstructure for cooling at room temperature is Au 
(FOM = 0.772) as typical cooling materials such as PDMS and SiO2 transmit thermal radiation in the visible 
wavelengths, negating cooling for a surface below. At 500 K, we identify SiO2 micropyramids as being most 
optimal (FOM = 0.852). At 1000 K, the algorithm identifies VO2 as best performing micropyramid structure 
(FOM = 0.982) among all 41 materials that were predicted by the network. All materials are predicted assuming 
a minimum wavelength of 0.3 and maximum wavelength of 16 um to capture both thermal emission and solar 
absorption optical properties.

Table 2.   Identified optimal material(s) and geometries that maximize the cooling figure of merit equation 
Eq. (4).

Temperature Material FOM Xspan (μm) Zspan (μm)

300 Au 0.772 7.141 0.304

500 SiO2 0.852 1.415 5.555

1000 VO2 0.982 0.203 9.293
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The network can perform thermal optimization in minutes—a task that would take years to generate a simi-
larly sized dataset to search through using FDTD. The capability to explore the comprehensive material and 
geometric latent space of our problem empowers us to solve complex problems both rapidly and comprehensively. 
An example of this is using the network to identify optimal fabrication designs within particular constraints: 
for example, if the aspect ratio needs to be limited, we can identify in seconds both the material and geometric 
combination that provide the best expected results under the constraints. We provide an example of this in the 
supplementary materials. The network can also be utilized to quantify expected fabrication and experimental 
uncertainty by exploring the effects of nanoscale changes in the geometric parameters on the optical properties.

Ultimately, a fundamental problem facing surrogate models is the diminishing returns: to provide accurate 
results, more data is required, to the point where the design space has been thoroughly explored to generate the 
neural network model. The test dataset exemplifies this. While we can still explore minutia and small variations 
in geometry, a large amount of computational time was invested in generating the combined training dataset, to 
the point where the necessity of the neural network is diminished for these materials. Where our network is dif-
ferent from others that merely interpolate geometric or existing results is in the prediction of materials that have 
drastically different relationships between the incident wavelength, material properties, and geometry. We desire 
a network that can accurately extrapolate optical properties from any input material, without needing distinct 
and/or limiting classification methods or a large amount of new data. A particular challenge in developing the 
model to this end was overcoming errors in the prediction of transmissive materials. Whereas the reflection is 
primarily a material/geometry dependent phenomenon, transmission depends on more parameters. The inclu-
sion of separate MLP’s, the permittivity inputs, and different normalization methods were all designed to improve 
the prediction accuracy of the model for both reflective and transmissive materials, ultimately improving the 
model’s connection to the relevant physics.

The ability of the model to take different material inputs and predict outside of its original training scope—not 
bound to classification—unlocks many possibilities. This includes predicting optical changes at different tem-
peratures, enabling much more complex temperature dependent optimizations. While we do not demonstrate a 
reversible network in this work, the network shown could also serve as a basis for a reverse-network structure. 
Multiple problems—such as multiple material solutions for the same desired optical output—will need to be 
overcome to implement a successful reverse network capable of predicting across a wide array of materials. These 
insights will inform the next generation of models that move to more complex microstructures with more mate-
rial, geometric, and thermal parameters.

Conclusion
We have demonstrated a Deep-Neural Network that can emulate finite difference time domain simulation outputs 
that can be used for the rapid thermal and optical optimization of microstructured surfaces. The network can 
make accurate predictions for micropyramids across a wide array of materials and can accurately extrapolate 
optical properties from input data that is outside of the scope of training. Further, the network design allows us 
to accommodate and train on any number of materials and allows us to make predictions for the optical prop-
erties of micropyramids made of materials the model has not been trained on. We have demonstrated how our 
model can be used as the basis for a material search algorithm that can identify materials and geometries that 
best optimize a thermal environment and set of constraints. The neural network driven predictions occur at a 
rate 6–8 orders of magnitude faster than the simulations that were used to train the model. The network predicts 
the optical spectra of over 1 million simulations per minute regardless of material choice, generating output 
datasets in seconds that would take years to simulate in FDTD. The material search process demonstrated in this 
work can identify the optimal material/geometry combination across a vast latent space nearly instantaneously. 
Furthermore, the methodology can be easily translated to other geometries beyond micropyramids, enabling 
DL based models that can significantly reduce the need for computationally expensive simulations for a variety 
of microstructure surface textures. Our methodology effectively replaces FDTD simulations for micropyramids, 
decreases the time required to optimize surface conditions, and allows for more complex and comprehensive 
studies to explore the latent space of the problem.

Methods
Data and code availability.  The datasets generated and/or analyzed during the current study are available 
in the Optical-Prediction-Neural-Network repository, [https://​github.​com/​jmsul​liv/​Optic​al-​Predi​ction-​Neural-​
Netwo​rk.​git].

FDTD simulations.  We perform FDTD simulations in Lumerical/ANSYS’s commercially available FDTD 
simulation software. The unit cell shown in Fig. 1 replicates the major variables simulated—xspan, zspan, and tsub. A 
plane wave source with normal incidence is placed in the z-direction. For this work we do not consider angular 
dependence of the optical properties or of the dependence of the optical properties on the polarization angle. 
The injection wavelength spans a linearly spaced vector of 100 wavelength points that begins with λmin and ends 
with λmax. Perfectly matched layers are applied in the direction of the injection source to prevent boundary 
reflection at both the top and bottom of the domain and periodic boundary conditions are placed perpendicular 
to the wave source. Frequency-domain field and power monitors are placed above and below the PML bound-
ary layers to monitor reflection and transmission respectively. Emissivity is computed using Kirchhoff ’s Law, 
α = ε = 1 – R – T. The monitors are solved at every frequency/wavelength point, leading to a one-to-one matching 
of the simulation output to the wave source.

For each material dataset we generate, we specify a different λmin and λmax. The selection of these values depend 
on knowledge of the material data. For materials that are transmissive in UV–VIS, (PDMS/SiO2) λmin/λmax are 

https://github.com/jmsulliv/Optical-Prediction-Neural-Network.git
https://github.com/jmsulliv/Optical-Prediction-Neural-Network.git
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set to 2 um/16 um. Most metals (Ni, Al, Ag, W, Sn, Fe) are simulated with λmin/λmax of 0.3 μm/10 μm. All other 
materials and some metals (VO2, Cr, Ta) are simulated with λmin/λmax of 0.3 μm/16 μm. The unseen materials (Ti, 
Al2O3) have a λmin/λmax of 0.3/16 μm and 2/16 μm respectively. Vanadium Dioxide is divided into two separate 
materials: that of an insulation phase (ceramic behavior) and metallic phase (metallic behavior)83.

The value of tsub also depends on the material selection. For metals (Ni, Al, Ag, W, Sn, Fe, Ta, Cr, Ti) and SiC 
we simulate over a range of random tsub values confined by a minimum value of 1 μm and a maximum of 3 um. 
For transmissive materials with a wide range of substrate dependent performance (VO2, SiO2, PDMS, Al2O3) we 
choose the minimum thickness to be 1 um and the maximum to be 100 μm. More information on the simulation 
output’s variation vs. the substrate thickness for these materials is in the supplemental section.

Network Architecture and optimization.  We use a deep neural network with fully connected dense 
layers as shown in Fig. 1. Our deep learning approach is built upon the open source keras library in python99. 
Our optimized DNN uses 8 fully connected dense layers with 400 neurons per layer, and both MLPs are 4 layers 
of 50 neurons each. Optimization of the hyperparameters is performed with the built-in hyperband optimization 
method100. We also utilize manual cross-fold validation for limited hyperparameter optimization. For training, 
we utilize a MSE loss function and validate/evaluate using an MAE score based on Eqs. (1, 2) respectively, where 
Yi is the predicted value.

Adam is the optimization engine used for the network training. To minimize overfitting, we utilize L2 regu-
larization in the training and validation process, in addition to utilizing early-stopping, checkpoint save, and 
reduce learning rate on plateau callbacks.

Datasets and normalization.  All datasets used by the neural network are derived from FDTD simulation 
inputs and outputs directly. For each material in the training/validation/test dataset, we simulate a minimum 
of 1,000 individual combinations of xspan, zspan, and stub. We generate a uniformly distributed random matrix for 
each of the geometric properties to use as inputs for the simulation. The simulation wavelength and n and k 
values are taken from each simulation and split into sets of input data, spanning a total of 8 neural inputs (n and 
k are converted into εreal and εim). The simulation output is 100 emissivity and 100 reflectivity points that one-
to-one match the simulation wavelength vector, which is divided into pairs for each λ. For this work we utilize 
several normalization methods depending on the input dataset. X, Z, and λ are considered uniform, and a simple 
linear normalization is applied to each separately using Eq. (1). For the refractive index (n) we use a log-linear 
normalization, using Eq. (4) with α = 0 and then Eq. (3) to bring the values between 0 and 1.

The distribution of k, tsub, εreal, and εim pose a more significant normalization challenge. The εreal permittivity 
value is of particular concern due to the negative values induced by −k2. The dataset distribution before and after 
normalization for each input is shown in the supplementary materials. A fundamental problem faced is that 
optically, the difference between k = 1e−4 and 1e−3 is not mathematically large, but the difference does have a 
large impact on the transmission behavior through the substrate. Thus, the data is grouped near 0 but we need 
to differentiate values in a meaningful way to distinguish the physical behavior of each material. Log normaliza-
tion reduces the severity of the weighted inputs but does not solve it. Thus, for these variables, we turn to more 
complex normalizations. For this work, we utilize quantile normalization with sklearn’s built in quantile trans-
former, to generate a uniform distribution of inputs for k, tsub, εreal, and εim. To ensure our values for all materials 
stay between 0 and 1 on all inputs, we normalize all of the simulations together. This is done to have consistent 
normalization, and the complete dataset (all simulations—unseen, library, and train/val/test) is included with 
our github before and after normalization.

We combine 35,500 FDTD simulations for micropyramids made of 14 different materials to form our train-
ing, validation, and test dataset. We follow a 70/20/10 percentage split respectively. The test dataset is used to 
evaluate the performance and overfitting of the model and it is not seen by the network in the training process. 
The prediction accuracy of the optimized network architecture is shown for all 13 materials in the test dataset 
in Fig. 2. We shuffle the complete dataset every time the model is run or generated such that the training, vali-
dation, and test datasets are never identical from iteration to iteration. We utilize several other datasets in the 
grading our of model and the prediction of performance. The prediction performance of the model for unseen 
materials is evaluated with normalized datasets constructed of 1500 titanium and alumina FDTD simulations, 
and we have 100 simulations for each material in the 23 unseen material library. In total, our combined dataset 
used for normalization contains 40,300 2-D FDTD simulations in 41 different materials. Our thermal predictions 
shown in Fig. 4 are generated from “gridpoint” neural inputs where the only variation between the inputs for each 
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material are the xspan, zspan , and tsub neurons that follow a meshgrid of coordinates. We take the outputs for each 
synthetic combination of xspan, zspan, and tsub and use that to predict geometric dependent thermal performance 
for each material’s generated input grid.

Thermal optimization.  While we can choose to define thermal optimization equation for specific appli-
cations such as radiative cooling or heating, high temperature cooling, etc., for this work we use a simple rela-
tion for easy comparison in the unseen material predictions. The cost function used in this work neglects solar 
absorption and focuses only on maximizing thermal emission. We define the objective function with the heat 
transfer balance,

where Pmax,rad is the maximum amount of blackbody radiation that can be emitted by the surface, Prad is the emit-
ted radiation, Pabs is the amount of absorbed solar radiation, Ptrans is the amount of transmitted power through 
the surface, and Psolar is the amount of power available to absorb from the sun. Pabs and Ptrans cannot be larger 
than Psolar, as defined by the integrals in Eq, 4. We do not include the effects of atmospheric emission in the heat 
balance equation to maintain a simple relationship between the maximum emission and achieved emission by 
the surface in the optimization process. The heat transfer equation shown in Eq. (5) is a cost-function equa-
tion that prioritizes cooling performance when subjected to solar radiation. Preferentially, the surface should 
reflect all incident radiation while maximizing thermal emission. As we are only considering a single material 
system, we include a term that accounts for transmitted power. Some materials (such as PDMS or SiO2) are 
good emitters but would allow solar radiation to pass through, leading to deceptive performance unless a term 
that accounts for transmission is included. In our search process utilizing these equations, we are attempting to 
minimize the cost function.

For this work, we present the results in terms of the figure of merit—as seen from the coordinate grid contour 
plots of Fig. 5a–c which is defined by Eq. (7) as,
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