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A B S T R A C T

Shanghai suffered a large outbreak of Omicron mutant of COVID-19 at the beginning of March 2022. To
figure out the spatiotemporal patterns of the epidemic, a retrospective statistical investigation, coupled with
a dynamic model, is implemented in this study. The hotspots of SARS-CoV-2 transmissions are identified,
and strong aggregative effects in the decay stage are found. Besides, the visualization of disease diffusion is
provided to show how COVID-19 disease invades all districts of Shanghai in the early stage. Furthermore, the
calculations from the dynamic model manifest the effect of detections to suppress the epidemic dissemination.
These results reveal the strategies to improve the spatial control of disease.
1. Introduction

In early March 2022, the Omicron variant of SARS-CoV-2 struck
Shanghai of China, impacting over millions of population and eventu-
ally causing the lockdown of city till early June, 2022, which resulted
in huge casualties and economic losses to China (Shanghai Municipal
Health Commission, 2022). The epidemic caused by Omicron variant
has two remarkable characteristics of high infectivity and high conceal-
ment, which quickly invaded most administrative districts in Shanghai
and generated numerous asymptomatic cases, increasing the difficulty
of detection. (The administrative division map is presented in Fig. 1.)
The epidemic was eliminated on 31th May, and the public traffic system
was allowed to restart on 1st June (The State Council Information
Office of the People’s Republic of China, 2022). The recognition of
spatiotemporal patterns of this pandemic process is helpful for future
disease prevention and control.

Spatial statistical analysis and dynamical modeling are powerful to
find out the main features of spatial spread of epidemics. For example,
the speeding-up pattern and spatiotemporal correlation of geographic
spread of the early geographic spread of COVID-19 in China were
obtained in Xue et al. (2021) and Gao et al. (2022). The transmission
ability of COVID-19 in the regional difference of China was studied
by Hu et al. (2020). The influences of direct and indirect infections
on the epidemic were considered by Zhong and Wang (2020). An age-
structured epidemic model was constructed by Duan et al. (2022) to
find that shortening the diagnosis period can result in an enormous
selective pressure on the evolution of SARS-CoV-2. A multi-scale model
study was given by Li and Xiao (2021) to investigate the interaction
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of SARS-CoV-2 transmission and information dissemination dynamics
during the outbreak of emerging infectious diseases. A probability
model was proposed to retrospectively quantify the confidence of giv-
ing the end-of-outbreak declaration during the COVID-19 epidemic in
Wuhan (Yuan et al., 2022). Recently, the epidemiological character-
istics of SARS-CoV-2 infection outbreak in Shanghai in the spring of
2022 were studied by Xian et al. (2022) and Liu et al. (2022), where
the infection force of the virus strain during the pandemic was analyzed
and the time-varying reproduction number was estimated.

In this study, we collect the whole epidemic data of daily new
asymptomatic cases and confirmed cases of various districts in Shang-
hai from the initial phase to the elimination phase of outbreak. On
the basis of the data from each district, we identify the spatiotemporal
pattern of the epidemic through two geographic statistics of Moran’s
𝐼 and Getis Ord 𝐺 statistics, which can judge the spatial distribu-
tion pattern of the epidemic in different stages, and then present the
diffusion patterns in import and diffusion stage. We also propose a
difference model to investigate the daily reproduction number of each
district, and implement the comparison between the statistical results
and dynamical results. The results are helpful to improve the spatial
prevention and control of epidemic diseases.

The organization of this paper is arranged as follows. The materials
and methods are given in Section 2, including data collection, spatial
geographic statistical methods and dynamic model formulation. The
results of statistics and dynamics are given in Section 3. In Section 4,
we present conclusions and draw some suggestions.
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Fig. 1. Administrative division map of Shanghai. There are 16 administrative districts
in Shanghai and the central downtown area consists of HP, XH, CN, PT, JA, HK, YP.

2. Materials and methods

2.1. Data collection and stages classification

Shanghai suffered a severe epidemic resulted from Omicron variant
of SARS-CoV-2, which began on 1st March, 2022 and gradually faded
away in late May. Considering the public traffic system in Shanghai
was allowed to restart on 1st June, 2022 (The State Council Informa-
tion Office of the People’s Republic of China, 2022), the end time of
epidemic could be set on that day. There are multifold epidemic data
released in the official website of Shanghai Municipal Health Commis-
sion (Shanghai Municipal Health Commission, 2022). We extract the
daily new confirmed cases and the daily new asymptomatic cases of the
whole Shanghai from 1st March to 31th May, 2022. Besides, we record
the daily epidemic data of each district of Shanghai according to the
real time big data report of epidemic situation for novel coronavirus
pneumonia (Anon, 2022).

Based on the development process of this epidemic, the outbreak
in Shanghai is approximately divided into three stages: import and
diffusion stage (IDs), outbreak and epidemic stage (OEs) and decline
and elimination stage (DEs). Using Monte-Carlo Sampling Method, we
estimate the switch times 𝑡1 between IDs and OEs, and the switch time
𝑡2 between OEs and DEs.

2.2. Spatial geographic statistical methods

Spatial autocorrelation analysis is applied to represent the rela-
tionships among adjacent regions with respect to the same attributes.
Attributes of similar high or low values result in positive autocorrela-
tion, while opposing high and low attribute values result in negative
autocorrelation (Liu et al., 2008). In this study, we adopt two kinds
of autocorrelation analysis methods: Moran’s 𝐼 and Getis Ord 𝐺 Index
analysis. ArcGIS Desktop 10.5 software is used to for analysis and visual
presentation, including figures and video generation.

2.2.1. Global and local Moran’s 𝐼
The Moran’s 𝐼 takes values in [−1, 1]. When 𝐼 is close to 1, around

or close to −1, it implies the aggregated, random or dispersed distri-
ution in the interest region, respectively. Suppose that the number of
patial locations is 𝑛, and 𝑋𝑖 is the value of location 𝑖. The formula for

calculating the global Moran’s 𝐼 is

= 𝑛
∑𝑛

𝑖=1
∑𝑛

𝑗=1 𝑤𝑖𝑗 (𝑋𝑖 − �̄�)(𝑋𝑗 − �̄�)
∑𝑛 2

, (𝑖 ≠ 𝑗),
2

𝑆0 𝑖=1(𝑋𝑖 − �̄�)
where

�̄� =
𝑛
∑

𝑖=1
𝑋𝑖, 𝑆0 =

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝑤𝑖𝑗

and 𝑊 = {𝑤𝑖𝑗} is the link matrix of distance. If there is no spatial auto-
correlation, the expectation and variance of 𝐼 satisfy 𝐸(𝐼) = −1∕(𝑛− 1)
and

𝑉 𝑎𝑟(𝐼) =
1
2 (𝑛 − 1)𝑛2𝑠𝑤1 − (𝑛 − 1)𝑛𝑠𝑤2 − 2(

∑

𝑖≠𝑗 𝑤𝑖𝑗 )2

(𝑛 + 1)(𝑛 − 1)2(
∑

𝑖≠𝑗 𝑤𝑖𝑗 )2
,

here 𝑠𝑤1 =
∑

𝑖≠𝑗
∑

𝑗 (𝑤𝑖𝑗 + 𝑤𝑗𝑖)2 and 𝑠𝑤2 =
∑

𝑘(
∑

𝑖 𝑤𝑖𝑘 +
∑

𝑗 𝑤𝑘𝑗 )2. For
oran’s 𝐼 , a significance test of normal distribution can be performed

hrough the following equation

=
𝐼 − 𝐸(𝐼)
√

𝑉 𝑎𝑟(𝐼)
∼ 𝑁(0, 1).

In order to find out whether there is a spatial autocorrelation in
the local space, i.e. hotspot, we use the local Moran’s 𝐼 , which was
proposed by Anselin (1995). It is a local indicator of spatial association
(LISA) to manifest the state of each region, and the computation
formula is given by

𝐼𝑖 =
𝑍𝑖

∑𝑛
𝑖=1(𝑋𝑖 − �̄�)2

𝑛
∑

𝑖≠𝑗
𝑤𝑖𝑗𝑍𝑗 ,

here 𝑍𝑖 = 𝑋𝑖 − �̄�, 𝑍𝑗 = 𝑋𝑗 − �̄�. A significance test of normal
distribution of the local Moran’s 𝐼 can be performed by

𝑍𝑖 =
𝐼𝑖 − 𝐸(𝐼𝑖)
√

𝑉 𝑎𝑟(𝐼𝑖)
∼ 𝑁(0, 𝑉 𝑎𝑟(𝐼𝑖)),

here 𝐸(𝐼𝑖) = −
∑𝑛

𝑗 𝑤𝑖𝑗∕(𝑛 − 1), 𝑠𝑦 =
∑𝑛

𝑗 (𝑦𝑗 − �̄�)2∕[
∑𝑛

𝑗 (𝑦𝑗 − �̄�)2]2 and

𝑎𝑟(𝐼𝑖) =
(𝑛 − 𝑠𝑦)
𝑛 − 1

𝑛
∑

𝑗≠𝑖
𝑤2

𝑖𝑗 +
(2𝑠𝑦 − 𝑛)

(𝑛 − 1)(𝑛 − 2)

𝑛
∑

𝑘≠𝑖

𝑛
∑

ℎ≠𝑖
𝑤𝑖𝑘𝑤𝑖ℎ − [𝐸(𝐼𝑖)]2.

2.2.2. Local Getis Ord G index
Local Getis Ord 𝐺 index was proposed by Geits and Ord (1992)

and Ord and A. Geits (1995). It is used to find the hotspots of disease
incidence in an interesting area and the computation formula is

𝐺∗
𝑖 =

∑𝑛
𝑗=1 𝑤𝑖𝑗𝑋𝑗
∑𝑛

𝑗=1 𝑋𝑗
.

Similarly, a significance test of 𝐺∗
𝑖 can be performed by

𝑍𝐺∗
𝑖
=

𝐺∗
𝑖 − 𝐸(𝐺∗

𝑖 )
√

𝑉 𝑎𝑟(𝐺∗
𝑖 )

∼ 𝑁(0, 𝑉 𝑎𝑟(𝐺∗
𝑖 )),

here

(𝐺∗
𝑖 ) =

1
𝑛

𝑛
∑

𝑗=1
𝑤𝑖𝑗 , 𝑉 𝑎𝑟(𝐺∗

𝑖 ) =

∑𝑛
𝑗=1 𝑤𝑖𝑗 (𝑛 −

∑𝑛
𝑗=1 𝑤𝑖𝑗 )𝑉 𝑎𝑟(𝑋)2

𝑛2(𝑛 − 1)�̄�2
.

.3. Difference equation model

Suppose that 𝐴𝑖(𝑡), 𝐶𝑖(𝑡), 𝑖 = 1, 2,… , 16, are the increments of
eported asymptomatic cases and confirmed cases of 𝑖th district on the
th day. In light of the regulations on epidemic prevention (Shanghai
unicipal Health Commission, 2022), the reported cases were imme-

iately quarantined and acquired treatment in medical institutions. We
uppose that the daily recovery rates of asymptomatic and confirmed
ases 𝑟𝐴, 𝑟𝐶 are invariant over time for simplifying simulation. There-
ore, we get the total numbers of reported asymptomatic and confirmed
ases of 𝑖th district on the 𝑡th day:

̃𝑖(𝑡) =
𝑡

∑

𝑒−𝑟
𝐴(𝑡−𝑘)𝐴𝑖(𝑘), �̃�𝑖(𝑡) =

𝑡
∑

𝑒−𝑟
𝐶 (𝑡−𝑘)𝐶𝑖(𝑡). (1)
𝑘=0 𝑘=0
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Fig. 2. Illustration of the daily new increment of confirmed cases, asymptomatic cases and their summation in Shanghai. The asymptomatic cases accounts for the majority of
positive cases and the confirmed cases accounts for a few. The data begins on 1st March and ends on 31th May.
Fig. 3. Illustrations of stage classification for the whole outbreak in Shanghai. Panel (a) presents the three stages including import and diffusion stage (IDs), outbreak and epidemic
stage (OEs) and decay and elimination stage (DEs) of total positive cases in Shanghai. The switch times are 28th March and 29th April. Panel (b) presents the difference values
of daily new increment of total cases in Shanghai.
Suppose that 𝑎𝑖(𝑡) and 𝑏𝑖(𝑡) are the proportions of unreported asymp-
tomatic and confirmed cases with respect to �̃�𝑖(𝑡), �̃�𝑖(𝑡), and 𝛽 is the
infection probability of each contact with an asymptomatic or symp-
tomatic individual. Since all the reported cases were immediately iso-
lated and did not cause any infection, we get the infection force of 𝑖th
district on the 𝑡th day:

𝑓𝑖(𝑡) = 𝛽
�̃�𝑖(𝑡)
�̃�𝑖

(

𝑎𝑖(𝑡)�̃�𝑖(𝑡) + 𝑏𝑖(𝑡)�̃�𝑖(𝑡)
)

,

where �̃�𝑖(𝑡) and �̃�𝑖 are the susceptible population of 𝑖th district on the
𝑡th day and the total population of 𝑖th district. Since �̃�𝑖(𝑡) is very close
to �̃�𝑖 in the outbreak in Shanghai, that is, �̃�𝑖(𝑡)∕�̃�𝑖 ≈ 1, the infection
force is further simplified as

𝑓𝑖(𝑡) = 𝛽
(

𝑎𝑖(𝑡)�̃�𝑖(𝑡) + 𝑏𝑖(𝑡)�̃�𝑖(𝑡)
)

= 𝛽𝐴𝑖 (𝑡)�̃�𝑖(𝑡) + 𝛽𝐶𝑖 (𝑡)�̃�𝑖(𝑡),

where 𝛽𝐴𝑖 (𝑡), 𝛽
𝐶
𝑖 (𝑡) are the effective transmission rates of asymptomatic

and symptomatic individuals, respectively.
Assume that 𝛬𝐴, 𝛬𝐶 are the transition ratio matrices of asymp-

tomatic cases and confirmed cases with the elements 𝜆𝐴𝑖𝑗 , 𝜆𝐶𝑖𝑗 , (𝑖 ≠ 𝑗)
representing the immigration ratios of asymptomatic cases and con-
firmed cases from 𝑗 district to 𝑖 district and 𝜆𝐴𝑗𝑗 , 𝜆𝐶𝑗𝑗 representing the
emigration ratios of 𝑗 districts satisfying
16
∑

𝑖≠𝑗
𝜆𝐴𝑖𝑗 = −𝜆𝐴𝑗𝑗 ,

16
∑

𝑖≠𝑗
𝜆𝐶𝑖𝑗 = −𝜆𝐶𝑗𝑗 .

Suppose 𝑝, 𝑞, (𝑝 + 𝑞 = 1) are the proportions of positive cases
flowing into the asymptomatic cases and confirmed cases respectively.
3

Then we get following difference equation model for asymptomatic and
confirmed cases:

𝐴(𝑡 + 1) = 𝑝𝐼𝐹 + 𝑒−𝑟
𝐴
𝛬𝐴𝐴(𝑡),

𝐶(𝑡 + 1) = 𝑞𝐼𝐹 + 𝑒−𝑟
𝑐
𝛬𝐶𝐶(𝑡),

(2)

where 𝐼 is a 16 × 16 identity matrix and

𝐹 = [𝑓1(𝑡), 𝑓2(𝑡),… , 𝑓16(𝑡)]𝑇 ,

𝐴(𝑡) = [𝐴1(𝑡), 𝐴2(𝑡),… , 𝐴16(𝑡)]𝑇 ,

𝐶(𝑡) = [𝐶1(𝑡), 𝐶2(𝑡),… , 𝐶16(𝑡)]𝑇 .

2.4. Daily reproduction number

Based on model (2), we can further estimate the daily reproduction
number 𝑖(𝑡) on the 𝑡th day of the 𝑖th district in Shanghai. By definition,
the daily reproduction number is the infected numbers in susceptible
population by one positive case during its whole infectious period. At
time 𝑡, if one asymptomatic case or one confirmed case is invaded in
the 𝑖th district in Shanghai, i.e.,

(𝐴(𝑡), 𝐶(𝑡)) = (𝑒𝑖, 0) or (𝐴(𝑡), 𝐶(𝑡)) = (0, 𝑒𝑖). (3)

Here 𝑒𝑖 denotes a 16 × 1 vector with the 𝑖th element being 1 and others
being 0. In order to obtain the number of new infections caused by

this invader, taking (3) as initial conditions of model (2) respectively,
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Fig. 4. Local indicator spatial association (LISA) clustering maps for three stages of the outbreaks in Shanghai.
e can get the number of infections in each district after that. Since
he infectious durations of asymptomatic and confirmed cases are 1∕𝑟𝐴
nd 1∕𝑟𝐶 respectively, by taking the sum of abovementioned infections
n all 16 districts during the period, we get the daily reproduction
umbers 𝐴

𝑖 (𝑡) or 𝐶
𝑖 (𝑡), resulted from one asymptomatic case or one

onfirmed case,

𝐴
𝑖 (𝑡) =

16
∑

𝑗=1
�̃�𝑗 (𝑡 + [1∕𝑟𝐴]) +

16
∑

𝑗=1
�̃�𝑗 (𝑡 + [1∕𝑟𝐴]), (𝐴(𝑡), 𝐶(𝑡)) = (𝑒𝑖, 0),

𝐶
𝑖 (𝑡) =

16
∑

𝑗=1
�̃�𝑗 (𝑡 + [1∕𝑟𝐶 ]) +

16
∑

𝑗=1
�̃�𝑗 (𝑡 + [1∕𝑟𝐶 ]), (𝐴(𝑡), 𝐶(𝑡)) = (0, 𝑒𝑖),

(4)

where [⋅] is the rounding operator, �̃�𝑗 (𝑘) and �̃�𝑗 (𝑘), which are defined
in (1), denote the total numbers of asymptomatic and confirmed cases
of 𝑗th district on the 𝑘th day respectively.

3. Results

3.1. Stage classification

The stage classification is based on the total daily positive cases
in Shanghai. We draw the line chart of the daily new increment of
4

confirmed cases, asymptomatic cases and total cases in Fig. 2.
Based on the values of the total cases in Fig. 2 and the Monte-Carlo
Sampling Method, we obtain the estimated switch times:

𝑡1 = 28 ± 5, 𝑡2 = 61 ± 1.

For the convenience of analysis, we set 𝑡1 = 28 and 𝑡2 = 60, which
indicate that the corresponding switch times are 28th March and 29th
April. The line chart for the differences of daily new increment of total
cases is shown in Fig. 3.

3.2. Spatiotemporal pattern

We now present the global and local Moran’s 𝐼 and local Getis Ord
G Index, which are used to judge the spatial distribution patterns of the
epidemic in the aforementioned three stages. By using the software Ar-
cGIS Desktop 10.5, we get the summations of confirmed, asymptomatic
and total cases in IDs, OEs and DEs. Based on the summations, we
get the global Moran’s 𝐼 , 𝑍-score and 𝑃 -value related to confirmed,
asymptomatic and total positive cases in IDs, OEs and DEs respectively,
which are shown in Table 1.

From Table 1, we see that the full global Moran’s 𝐼s in DEs of
confirmed, asymptomatic and total cases pass the significance test

with 𝑃 < 0.01 and all 𝑍-scores are positive. It implies there is an



Journal of Theoretical Biology 554 (2022) 111279H. Zhong et al.

i
a

c

Fig. 5. Getis hotspot maps for three stages of the outbreaks in Shanghai.
Table 1
The results of global Moran’s I analysis in three different stages.

Phase IDs(Confirmed) OEs(Confirmed) DEs(Confirmed)

Moran’s 𝐼 −0.073 −0.040 0.292
𝑍-score −0.051 0.310 2.694
𝑃 -value 0.959 0.757 0.007

Phase IDs(Asymptomatic) OEs(Asymptomatic) DEs(Asymptomatic)

Moran’s 𝐼 −0.064 −0.051 0.316
𝑍-score 0.023 0.215 2.934
𝑃 -value 0.981 0.829 0.003

Phase IDs(Total) OEs(Total) DEs(Total)

Moran’s 𝐼 −0.065 −0.050 0.319
𝑍-score 0.018 0.219 2.948
𝑃 -value 0.986 0.826 0.003

aggregated distribution in various districts of Shanghai in the decay
phase. Furthermore, the clustering maps of LISA and local Getis Ord 𝐺
ndex in Figs. 4 and 5 show that the COVID-19 spread in Shanghai has
strong aggregation in two dimensions of time and space.

More specifically, in Fig. 4, the maps of (a)–(c) show that the
onfirmed cases are mainly concentrated in the downtown districts
5

over all the three phases. Note that the Omicron variant of SARS-
CoV-2 generates a large fraction of asymptomatic cases which account
for over 90%. The maps of (d)–(f) and (g)–(i) have similar patterns.
These indicate that in the first two phases, the total positive cases are
concentrated in downtown districts, Chongming and Fengxian Districts.
But in the decay phase, the epidemic mainly spreads in downtown
districts and Pudong New District; the surrounding districts control the
epidemic more quickly than the downtown districts, such as Qingpu,
Songjiang and Jinshan Districts. In Fig. 5, the pattern of each map
remains similar to that in Fig. 4. It implies the two statistic outcomes
are compatible with each other, and have a good reliability.

3.3. Dissemination pattern in IDs

Based on the 28 days’ data in the initial phase, we show the diffusion
process of districts with positive cases in Shanghai in Fig. 6. Fig. 6 only
presents the diffusion maps of the days when a district is reported with
at least one positive case, and the integral diffusion maps are shown
in Supplementary video file (ShangHai_InitialDiffusion_Movie.avi). The
initial areas of the outbreak in Shanghai are Putuo and Jiading Districts.
The general tendency of the diffusion is that the Omicron variant first
struck the surrounding districts, then invaded the central downtown
area and finally infected Chongming District. The intrusion order of
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Fig. 6. Diffusion maps of districts with positive cases in Shanghai. The color shades indicate the cumulative value of positive cases in each district.
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Omicron variant manifests that the prevention and control measures
of central downtown area are much more effective than that of sur-
rounding areas, and the district with the longer boundary burdens
relatively greater pressure of epidemic prevention and control. Indeed,
the invasion time to central downtown was not very early, but it
remains a hotspot in the maps in Figs. 4 and 5. This implies that the
Omicron variant is much easier to diffuse in the areas with high density
of population and high activity of economy. Moreover, Chongming
District, which was the last one invaded by the epidemic disease, could
be attributed to the Yangtze river, which limits the population mobility
as a natural barrier.

3.4. Dynamical results

First, we fix the transition matrices 𝛬𝐴 and 𝛬𝐶 in the difference
equation model (2) by

𝛬𝐴 = ℎ0(𝑡)𝐷𝑖𝑠𝑡 =
𝑐0

𝑒𝑡 + 1
𝐷𝑖𝑠𝑡, 𝛬𝐶 = ℎ1(𝑡)𝐷𝑖𝑠𝑡 =

𝑐1
𝑒𝑡 + 1

𝐷𝑖𝑠𝑡

here 𝐷𝑖𝑠𝑡 is an inverse distance matrix decided by the distance (km)
etween government offices of each district and ℎ(𝑡) is a decreasing
unction depicting the limiting force of traffic flow. With the develop-
ent of the epidemic and the strengthening of control measures, the
6

c

daily undetected rate is getting smaller and smaller. We suppose the
formations of daily undetected rate functions 𝑎𝑖(𝑡) and 𝑏𝑖(𝑡) are

𝑖(𝑡) = 𝑒−𝑠
𝐴
𝑖 ⋅𝑡, 𝑏𝑖(𝑡) = 𝑒−𝑠

𝐶
𝑖 ⋅𝑡,

n which 𝑠𝐴𝑖 and 𝑠𝐶𝑖 are positive constants, indicating the control
trength of the 𝑖th district (see Table 2).

From the real data, the range of the proportion of asymptomatic
ases in positive cases is about 𝑝 ∈ [0.9, 0.95]. Thus, 𝑝 = 0.91 is taken in
ur model (2). The initial values (𝐴(0), 𝐶(0)) of the difference equation
odel is set by the asymptomatic cases and confirmed cases on 1st
arch, 2022. In order to estimate the other parameters in the model,

he adaptive Metropolis–Hastings algorithm is used to execute the
arkov Chain Monte Carlo (MCMC) process (Haario et al., 2006) on the

asis of the real data. Specifically, the algorithm runs for 106 iterations
ith a burn-in of 5 × 105 iterations, and the Geweke convergence
iagnostic method is employed to assess the convergence of chains. As
result, the other parameters are estimated as following:

= 2.41, 𝑟𝐴 = 0.132, 𝑟𝐶 = 2.8𝑟𝐴, 𝑐0 = 0.1, 𝑐1 = 0.01,

Based on the estimated model parameters, the real data and simu-
ation results of 16 districts of Shanghai are shown in Fig. 7, which
apture well the basic characteristics of the outbreak. Indeed, they
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Fig. 7. Illustrations of the fitting result of model (2) in Shanghai. Panels (a), (b) indicate the real values of daily increment of asymptomatic (triangle marker) and confirmed
(square marker) cases in each district in Shanghai, and panels (c), (d) indicate the corresponding fitting values of asymptomatic and confirmed cases, respectively. Panels (e), (f)
indicate the daily undetected rate functions with respect to time of each district.
a
F

S

Table 2
Values of {𝑠𝐴𝑖 } and {𝑠𝐶𝑖 }.

Districts HP XH CN PD JA HK YP PD

𝑠𝐴𝑖 0.091 0.088 0.092 0.19 0.22 0.2 0.11 0.078

𝑠𝐶𝑖 0.109 0.106 0.11 0.228 0.264 0.24 0.132 0.093

Districts MH JD BS FX QP SJ JS CM

𝑠𝐴𝑖 0.1 0.2 0.18 0.1 0.23 0.18 0.12 0.21

𝑠𝐶𝑖 0.12 0.24 0.216 0.12 0.276 0.216 0.144 0.252

fit well with the peak value, hitting peak time and the end time of
the outbreak in Shanghai. Besides, the sort order of daily undetected
rate functions of each district is consistent with that by our numerical
simulations. For instance, the undetected rate function of Pudong New
District is the largest and our simulation curves of positive cases predict
this result. This means that shortening the time of contact tracing and
7

promoting the daily detected rate are the very effective method of
controlling the epidemic dissemination.

3.5. Daily reproduction number and its comparison

Using model (2) and formula (4), we can calculate the daily re-
production number 𝑖(𝑡) over the whole period of outbreak. First,
ccording to the stage classification in Fig. 3 and the hotspot maps in
ig. 5, we have the following spatiotemporal classification

tages = {IDs,OEs,DEs}, Regions = {S1, S2, S3}, (5)

where S1 = {XH, HP, HK, YP, PD} denotes the hotspot districts includ-
ing the central downtown area and Pudong New District, S2 = {CM, BS,
JD, JA, PT, CN, MH, FX} denotes the non-significant districts, which
surrounds the hotspot districts, S3 = {QP, SJ, JS} denotes coldspot
districts, which surrounds the non-significant districts. Therefore, based
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Fig. 8. Heatmaps and boxcharts of daily reproduction numbers under spatiotemporal classification (5). Panels (a) and (c) are the heat maps of daily reproduction number caused
by importing one asymptomatic or confirmed case, where the values are normalized values according to the stages. Panels (b) and (d) are the boxcharts of daily reproduction
number caused by importing one asymptomatic or confirmed case. In panels (b) and (d), *** and ### denote 𝑃 -values < 0.001 comparing to 𝑆1 and 𝑆2.
on the mean operation, 𝑖(𝑡) can be divided into 9 groups according to
the spatiotemporal classification (5).

In order to highlight the comparison results, we draw the heatmaps
and boxcharts for the 9 groups of (𝑡), which are presented in Fig. 8.
The values in heatmaps are the normalized values of (𝑡) according
to stages so as to avoid the extreme value impacts the dye of color
blocks. The values in boxcharts are the log values so as to make all data
visualized in the same panel. From Fig. 8, the central downtown area
and Pudong New District have relatively larger reproduction numbers,
and this phenomenon gets more significant in the decay stage of the
outbreak. The simulation results are in good agreement with the LISA
clustering map and the Getis hotspot map.

4. Conclusions and suggestions

In this study, we collect the epidemic data of various districts in
Shanghai. The whole outbreak is classified into three stages including
IDs, OEs and DEs. IDs is the period between 1st March and 28th March,
OEs is the period between 29th March and 29th April, and DEs is the
period between 30th April and 31th May. Through the geographical
statistics, we investigate the spatiotemporal distribution pattern and
find that the central downtown area and Pudong New District are
the aggregative areas of infected cases, while the surrounding districts
are of the less importance. In the study of epidemic dissemination
in IDs, we find that the prevention and control measures of central
downtown area are much more effective than that of surrounding areas
and the district with the long boundary burdens a relatively greater
pressure of epidemic prevention and control. Besides that, numerical
simulations on the basis of the real data of positive cases in various
8

districts are implemented according to the difference equation model.
We find that the higher the daily undetected rate is, the more severe
the epidemic in corresponding district is. Furthermore, we calculate
the daily reproduction number of asymptomatic and confirmed cases in
each district in the light of estimated parameters, which is consistent
with the idea of Creswell et al. (2022). The heatmaps and boxcharts
of the reproduction number fit well with the LISA clustering maps
and Getis hotspot maps. Furthermore, we find that the time that the
reproduction numbers declined to less than 1 was different in various
districts. In particular, Pudong New District was the latest one that the
reproduction number declined to less than 1, which was 8th April. This
result is almost same as the previous study (Liu et al., 2022).

Our results indicate that the outbreak has a great aggregative effect.
The central downtown area and Pudong New District are still the
‘‘high–high’’ type in the local spatial autocorrelation analysis in DEs,
i.e., when the number of infected people in the region is large, the
number of infected people in its neighboring regions is also large. Thus,
these districts could be deemed as the high-burden type threatening
the adjoined districts with higher incidence rates, and have a high risk
of rebound and recurrence, which is partially verified in the epidemic
notification in Shanghai on June 9, 2022 (Shanghai Municipal Health
Commission, 2022).

Based on these study conclusions, four suggestions related to epi-
demic prevention and control are proposed and listed as following.

• Notice that the outbreak in Shanghai mainly gathers in the central
downtown areas and Pudong New District, which has a great
aggregative effect. The central downtown areas usually has a
high population density, and Pudong New District is an impor-
tant transportation hub in Shanghai, with a dense transportation
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network. Thus, to better control the COVID-19 in an international
metropolis like Shanghai, it is crucial to reduce the frequency of
social contact and maintain social distance.

• According to the visualization of the initial diffusion process
in Shanghai, we find that the virus first invaded its surround-
ing districts, then gradually invaded the central downtown area.
However, the central downtown areas became soon a hotspot
and remained for a long time. Therefore, for the international
metropolis with epidemic situation, from the perspective of spa-
tial control, we suggest to focus on the prevention and control of
its core areas, which needs a long time to adhere to.

• Since more than 90% of the positive cases of Omicron variant
infection are asymptomatic cases, and the concealment infection
is significantly increased, it is advocated to strengthen personal
health protection, choose off-peak travel and reduce the travel to
densely populated areas.

• According to the different epidemic characteristics, it is more
economic and feasible to adopt a dynamical partition prevention
and control measures in corresponding districts because there
are different process and elimination time of epidemic in various
district.

We have two speculations that the dense traffic system and active
conomic vitality may contribute to the formation of hotspots for a
arge class of epidemic models. In addition, the invariance assumption
f daily reduction rates 𝑟𝐴 and 𝑟𝐶 may be improved. We leave these as
uture researches.
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