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ABSTRACT: Although graphene has exceptional properties, they are not
enough to solve the extensive list of pressing world problems. The
substitutional doping of graphene using heteroatoms is one of the preferred
methods to adjust the physicochemical properties of graphene. Much effort
has been made to dope graphene using a single dopant. However, in recent
years, substantial efforts have been made to dope graphene using two or
more dopants. This review summarizes all the hard work done to
synthesize, characterize, and develop new technologies using codoped,
tridoped, and quaternary doped graphene. First, I discuss a simple question
that has a complicated answer: When can an atom be considered a dopant?
Then, I briefly discuss the single atom doped graphene as a starting point
for this review’s primary objective: codoped or dual-doped graphene. I
extend the discussion to include tridoped and quaternary doped graphene. I
review most of the systems that have been synthesized or studied theoretically and the areas in which they have been used to develop
new technologies. Finally, I discuss the challenges and prospects that will shape the future of this fascinating field. It will be shown
that most of the graphene systems that have been reported involve the use of nitrogen, and much effort is needed to develop
codoped graphene systems that do not rely on the stabilizing effects of nitrogen. I expect that this review will contribute to
introducing more researchers to this fascinating field and enlarge the list of codoped graphene systems that have been synthesized.

1. INTRODUCTION
Humanity is facing a point of no return because if most of the
planet’s population does not change their lifestyle, we will
unchain the sixth extinction event on Earth. Chemistry alone
cannot solve all the problems; it cannot stop wars or end racism
or religious conflicts. However, chemistry can help humanity
solve many pressing difficulties that urgently need to be
circumvented, such as energy production, conversion, and
storage, water purification, development of CO2 capture
systems, drug design, and food production, to mention just a
few. To that end, discovering new materials with tailored
properties has become an obsession. Graphene1,2 is one of the
rising stars in science. Nonetheless, despite its fantastic natural
properties, the pristine form of graphene has limited use. Up to
now there is not a flagship product derived from graphene as
there is the transistor derived from silicon.
Several methods have been designed to modify graphene: it

can be chemically functionalized,3,4 external stress or electrical
fields can be applied, and some of the carbon atoms of the
graphene framework can be replaced by heteroatoms, a process
that introduces an impurity in the system.5−12 The latter will be
the focus of this review. Although significant advances have been
made in the preparation of single atom doped graphene, and the
properties induced by elemental doping are fascinating,5−12 a
new research direction has been opened: the introduction of
more than one dopant type in the graphene framework. This

transformation is known as the codoping of graphene or
sometimes as the dual doping of graphene when it exclusively
refers to introducing two foreign atoms. Experimental research
and theoretical research have demonstrated that the introduc-
tion of at least two dopants can dramatically alter the
physicochemical properties of graphene. As an example, I
mention the adsorption of lithium on mono- and codoped
graphene with 2p and 3p elements.13 As we can appreciate in
Table 1, the adsorption energies of Li on N and S doped
graphene are −0.72 and −1.25 eV, respectively. Interestingly,
when the N and S dopants are introduced simultaneously, the
adsorption energy of Li becomes −2.99 eV, about 1 eV larger
than the sum of the adsorption energies of Li on N and S doped
graphene.13 This is not an isolated example of the dramatic
effects that codoping can induce, as I will describe in this review.

Several examples in the literature that evidence the advantage
of introducing two, three, or even four different heteroatoms will
be reported below. The present review is organized in the
following way: I first discuss in section 2 what can be considered
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a dopant since there is no consensus in the literature, and then I
briefly inform in section 3 which dopants have been introduced
in the graphene framework. In section 4, I advocate commenting
on the codoped graphene systems that have been studied, and
finally, to conclude the review, in section 5 I indicate the
challenges that need to be surmounted for the title field to
mature. Finally, I apologize for all the articles that have not been
included in this review. The literature about doped graphene
contains over 1 million articles, thesis, books, and technical
reports. Including all of them in a single review would be
impossible. Nevertheless, I expect that the nearly 500 works
included cover most of the examples available in the literature
and contribute to developing this fascinating research area.

2. WHEN CAN A HETEROATOM BE CONSIDERED A
DOPANT?

In this review, heteroatom doping of graphene is considered to
be attained when at least one carbon atom of graphene is
replaced by another element. Although this definition seems
straightforward, when reading the literature, it is possible to
become confused. For example, several publications claim to
have doped graphene with fluorine atoms.14−21 Considering that
fluorine has a strong tendency to form only single bonds because
it has seven valence electrons, it is not easy to imagine this
element embedded in the graphene framework replacing a
carbon atom, as it will bind only with one carbon atom. Vineesh
et al.14 reported that N and F codoped graphene displays
“enhanced electrocatalytic efficiency than the ‘N’ and ‘F’
individually doped graphene” for the oxygen reduction reaction
(ORR). In Vineesh’s work,14 nitrogen was introduced by
thermal treatment of fluorinated graphene in the presence of
melamine. The amounts of N and F introduced were 2 and 4
atom%, respectively. XPS confirmed the presence of nitrogen in
several forms�pyrrolic, pyridinic, and graphitic�while in the
case of fluorine C−F and F−C−F bonds were confirmed. Along
the same line, Jiang et al.15 prepared N and F codoped graphene
by thermal treatment of graphene oxide/polyaniline composites

and NH4F. It was proposed as an efficient metal-free ORR
catalyst in fuel cells. XPS confirmed the presence of N and F.
Nitrogen was found in the same configuration discussed above.
However, fluorine was proposed to be present in ionic and semi-
ionic C−F bonds. Liu et al.16 also reported the preparation of N
and F codoped graphene. The method was simple: they
fluorinated N-doped reduced graphene oxide using XeF2 at 180
°C. XPS confirmed C−F covalent bonding, and two more peaks
corresponding to CF−CFn and CF2 were determined. The
material exhibited interesting photoluminescence properties.
Although the presented results represented a significant advance
over the existing literature, it is hard to accept that the fluorine
atoms are dopants. Instead, in my opinion it is fairer to consider
fluorine a functional group covalently attached to graphene but
not a member of the graphene framework because, once a
fluorine atom is added, nothing more can be bonded.

Fluorine is not the only halogen reported to accompany
nitrogen or phosphorus dopants. There are reports in the
literature of nitrogen and halogen codoped graphene, with
particular attention to iodine,22−24 and P−X codoped graphene
with X =Cl, Br, and I.25 In general, the amount of iodine is small,
below 1%, and XPS is not conclusive on the nature of the iodine
dopant. Wu et al.22 determined that, in PI codoped graphene,
the high resolution of the XPS signal corresponded to I3 and I5.
Thus it is unlikely that iodine was introduced in the graphene
framework. Instead, it is more likely to be adsorbed between
graphene layers. Nevertheless, it should be remembered that
halogens heavier than fluorine have the capability to form
multiple bonds andmay be able to replace carbon atoms. Finally,
it is essential to mention that, despite being adsorbed, halogens
can effectively “dope” graphene because they are natural σ-
donors and π-electron withdrawers.25 Therefore, despite the
nature of the halogen dopant, i.e., adsorbed or embedded, it
works as a dopant, but adsorbed halogens will not be covered in
this review.

Finally, it is interesting to mention the case of oxygen. First, it
is crucial to consider that it is a common practice to obtain
graphene sheets by reducing graphene oxide. In some cases, the
reduction is not complete, and also during this process, dopants
are introduced using a suitable gas. Considering that in some
cases oxygen is not 100% eliminated, in practice, two dopants are
present�the one whose introduction was pursued using a gas
(for example) and oxygen�somany cases of single atom doping
are truly codoped graphene systems. Zhan et al.23 observed the
O 1s peak when preparing the I and N codoped graphene
nanocomposite described above. The codoping with iodine and
nitrogen better facilitated oxygen bonding than the single atom
doping of nitrogen or iodine.23 Therefore, caution should be
taken when doping is claimed because doping may have been
achieved by functionalization, adsorption, or substitution. The
latter process is the one that I discuss herein. I considered that an
atom is a dopant if it is embedded in the graphene framework
replacing one or more carbon atoms.

3. BRIEF SUMMARY OF SINGLE-ATOM-DOPED
GRAPHENE

When replacing a carbon atom with a dopant, it is not surprising
to find that, as early as 2009, Panchakarla et al.26 reported the
preparation of boron26−28 and nitrogen26,28−35 doped graphene.
These two elements present atomic radii of 85 and 65 pm,
respectively, very close to the value of carbon, 70 pm. Therefore,
the graphene sheet will not suffer excessive stress if these
elements are embedded in the graphene framework. The

Table 1. Interaction Energies, Magnetic Moments, Li−X
Distances and Charges Determined for XY Dual Doped
Graphene Interacting with a Single Lithium Atom, at the
VDW-DF/DZP Level of Theory

IE (eV)

XY position of Li XY orthoa XY parab
dLi−X (Å)
XY ortho

Q (μB)
XY ortho

AlB below Al −2.11 −2.52 2.75 1.0
AlN below Al −2.16 −2.03 2.66 1.0
AlO below Al −2.27 −2.23 2.83 0.0
SiB below Si −2.41 −2.59 2.62 0.62
SiN below Si −2.18 −2.14 2.70 0.0
SiO below Si −1.97 −1.90 2.77 0.0
PB below P −1.89 −1.45 2.67 0.06
PN below P −1.44 −1.41 2.65 0.19
PO below P −2.30 −1.34 2.73 0.0
SB below S −1.79 −1.87 2.81 0.06
SN below S and

bonded to N
−2.99 −1.35 2.77 0.0

SO below S −1.84 −1.38 2.74 0.0
B below B-hex −2.41 2.33 0.0
N below N-hex −0.72 2.34 0.0
graphene over hex −1.11 2.32 0.0

aOrtho disposition of dopants. bPara disposition of dopants.
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influence of precursors and synthesis conditions on the
preparation of N-doped graphene have been established in the
milestone investigation by Wang et al.30 as early as 2014. Also,
for a detailed review of the different strategies available to
synthesize N-doped graphene, we refer the readers to the
excellent review by Vesel et al.35 In particular, Table 1 of the
latter summarizes the postsynthesis of N-doped graphene while
Table 2, of the same reference, provides an overview of the
literature on the direct synthesis of N-doped graphene. A slightly
different situation is observed for Be-doped graphene. Although
this element has only four electrons, theoretical calculations
have shown that the Be atom does not lie in the graphene but
bulges out of the sheet.36,37 The protrusion is significant; for
example, in a 5 × 5 graphene sheet, the Be atom is located 0.78 Å
above the carbon atoms. Although this system is stable, it is
waiting to be synthesized. It is expected to have outstanding
properties that may render it valid as an anode material for
lithium ion batteries.37 Moving down in the periodic table, Al-
doped graphene was studied for more than 10 years by
theoretical materials scientists.38−44 It was not until recently that
Al-doped graphene was prepared.45−47 It was the last 3p element
used to dope graphene. Ullah et al.46 successfully prepared a
large area Al-doped graphene by chemical vapor deposition.
Zagler et al.47 showed that the Al dopants were found in 3- and
4-fold coordinated configurations. Occasionally N dopants were
found to be embedded in the graphene framework and bonded
to Al, as predicted by us.48,49

On the contrary, Si-doped graphene50−56 was prepared
earlier. In 2012, Zhou et al.50 reported that Si atoms could be
found in mono- and divacancies in the graphene layer. When Si
is bonded to three atoms, it prefers sp3 hybridization, but if it is
bonded to four atoms, sp2 d-like hybridization is adopted. As
observed for Al, nitrogen was sometimes found to replace one of
the carbon atoms bonded to the Si impurities, again in
agreement with our findings.48,49 Si-doped graphene is expected
to have outstanding mechanical,52 electronic,53−55 and optical
properties.54,55 Also, I have demonstrated that, when it is present
in the graphene layer, it can promote cycloaddition reactions,56

which can be difficult to attain on perfect graphene.57 The main
effect of the Si dopant is to reduce the enormous deformation
energy required to form a covalent bond with the diene or
dienophile. It has the same effect as a functional group58 present
before the cycloaddition reaction or the SiC surface in which
graphene can grow.59

The doping of graphene with phosphorus60−69 has been
developed at least since 2012 when Some et al.60 reported the
preparation of P-doped graphene, air-stable n-type field effect
transistors. The system consisted of P-doped, double-layered
graphene sheets. Subsequent reports by Li et al.61 and Zhang et
al.62 also reported the preparation of P-doped graphene in 2013.
This system has unique electronic and magnetic proper-
ties39,40,53,66,67 for designing metal-free ORR catalysts,61,62 Li
ion batteries,62 and NH3 sensors.

63 It is important to notice that
Susi et al.64 were the first to obtain atomic resolution imaging
and electron energy loss spectroscopy evidencing the presence
of phosphorus atoms in the graphene lattice.
In 2009, I reported one of the first studies about sulfur-doped

graphene and found that this material may have remarkable
properties.42,43,70 Three years later, Yang et al.71 reported the
preparation of sulfur-doped graphene as an efficient metal-free
cathode catalyst for ORR reactions. Similarly, Yang et al.72 also
reported the preparation of S-doped graphene based on
ultrathin graphene oxide for ORR reactions. Also, in 2012,

Rao et al.73 used liquid precursors to prepare S-doped graphene.
The synthesis of the latter has been mastered during the last
years, andmany routes are available to obtain S-doped graphene,
even large area sheets.71−76

Going down in the periodic table, I studied graphene doped
with the 4p elements Ga, Ge, As, and Se.77 These nanomaterials
exhibited outstanding electronic and magnetic properties and
high reactivity near the dopant site, which may render them
valuable catalysts. In 2018, Tripathi et al.78 implanted
germanium in a graphene framework. The authors claimed
that 74Ge+ was the heaviest impurity implanted into monolayer
graphene at that time. This atom can substitute a single carbon
atom, bonding to three neighbors, or be 4-fold coordinated in a
divacancy. In their 2012 article about S-doped graphene, Yang et
al.71 also claimed to have prepared Se-doped graphene by direct
annealing of graphene oxide in the presence of diphenyl
diselenide in argon. XPS studies confirmed the presence of Se
atoms, and Se content did not change after sonication.
Therefore, it was concluded that diphenyl diselenide was not
adsorbed. However, further studies are necessary to have a more
specific description of Se doping. In 2018,Meng et al.79 prepared
Se-doped graphene for high-efficiency triiodide reduction in
dye-sensitized solar cells. SEM mappings revealed the presence
of C, O, and Se. The distribution of Se was uniform, and it was
concluded that Se atoms were incorporated into the graphene
framework.

Turning our attention to the 3d metals, Toh et al.80 prepared
Mn-, Fe-, Co-, and Ni-doped graphene hybrids, which are
helpful in electrocatalysis. Carnevali et al.81 doped epitaxial
graphene by direct incorporation of Ni adatoms. Scandium-
doped graphene was also reported in 2019 by Wen et al.,82 but
nitrogen was necessary as a stabilizer. Again, as observed for Al
and Si, the presence of Sc−Nwas confirmed by XPS. Robertson
et al.83 studied the dynamics of Fe atoms in graphene single and
double vacancies, as can be appreciated in Figure 1, and as early
as 2014, Zhao et al.84 reported the synthesis of a free-standing,
single-atom-thick Fe layer in a graphene pore. More recently,
Mn-doped graphene85 was prepared with a Mn concentration of
0.04 atom %. Magnesium was unambiguously located in a single
vacancy, but the introduction in divacancies and other structures
were observed also. Nevertheless, their structural identification
is not clear.

Heavier elements like gold were implanted byTrentino et al.86

using a two-step implantation process. The new doping method
utilizes a two-step low-energy ion implantation technique that,
according to the authors, “overcomes the limitation posed by
momentum conservation on the mass of the implanted species.”
The gold atoms occupy double vacancy sites. Finally, Nb-doped
graphene was prepared by Li et al.87 The strategy employed to
obtain Nb-self-doped graphene was to prepare it from 2D NbC,
only by one step of incomplete chlorination. This proposal is
similar to the procedure I suggested to prepare Si-doped
graphene. The structure is shown in Figure 2. The partial
annealing to the SiC layer may leave some Si atoms in a specific
disposition of the dopants.88 Finally, Sofer et al.89 reported the
preparation of U- and Th-doped graphene. However, XPS was
not conclusive in the nature of the dopants since the energies of
the U 4f peaks indicated the presence of the form UO3, U3O8, or
uranium carbide.

4. CODOPED OR DUAL-DOPED GRAPHENE
4.1. B and N Codoped Graphene. Boron and nitrogen are

themost obvious choices to dope graphene because they bracket
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carbon in the periodic table. The fact that they have smaller and
larger electronegativities than carbon makes them very
appealing to develop metal-free catalysts, thanks to the charge
imbalance induced by their presence. In 2013, Zheng et al.90

reported the preparation of B and N codoped graphene with
long-term stability and excellent activity for the ORR. The two-
step method prevented the formation of catalytically inactive
byproducts such as hexagonal boron nitride and induced a
cooperative effect between the dopants. One year later, the
solvothermal synthesis of B and N codoped graphene was
achieved,91 and various theoretical studies were published
highlighting the unique electronic properties of this system.92−98

As discussed in section 3, one of the main applications of doped

graphene is as a catalyst for theORR. B andN codoped graphene
is not the exception, and multiple studies demonstrated that it
could be an excellent catalyst for the ORR.98−108 Another
essential use of B and N codoped graphene is in lithium
batteries109−112 and sodium ion batteries.113 Huang et al.109

reported a high capacity of up to 909 mAh g−1 and an excellent
discharge capacity after 125 cycles. Three-dimensional B and N
codoped graphene has been employed to construct symmetric
and asymmetric supercapacitor electrodes.114−116 The work by
Kang et al.114 demonstrated that the specific capacitance of 283
F g−1 at 1 A g−1, in alkaline aqueous electrolyte, is more
remarkable than those corresponding to N or B monodoped
graphene.

In the catalysis area, it has been demonstrated that B and N
codoped graphene can be an excellent catalyst for the
electrooxidation of formic acid117 methanol118 and the
reduction of nitroarenes119 and triiodide.120 The development
of graphene based sensors is another field in which B and N
codoped graphene has excelled. It has been able to detect
aflatoxin B1,121 mercury(II),122,123 fluorine ions,123 hydrogen
peroxide,124 cymoxanil,125 and NO2,

126 to mention just a few
examples of molecules that can be monitored using B and N
codoped graphene.

B and N codoped graphene quantum dots have fascinating
optical properties.127−130 They can be used in imaging and
photothermal therapies.128 In a related area, B and N codoped
graphene was used in dye-sensitized solar cells,129,130 as a
counter electrode for iodine reduction.130 Finally, it has been
shown that codoping with B and N enhances the electro-
magnetic interference shielding (EMI)131−134 to −42 dB
(99.99% of attenuation) at a critical thickness of 1.2 mm.133

4.2. O and N Codoped Graphene. I explained above that I
considered an atom a dopant if embedded in the graphene
framework replacing one or more carbon atoms. Nevertheless, I
have includedO andN codoped graphene in this review because
plenty of works report preparations and applications of this
system.135−146 In 2014, Chen et al.135 reported that N and O
codoped carbon hydrogel could be used as substrate-free
electrode for highly efficient oxygen evolution reaction.135 The
nitrogen atoms were introduced with ammonium hydroxide, but
the oxygen atoms were residual oxygen impurities on graphene
prepared by a chemical method. Oxygen was present in the
forms carboxyl and epoxy, so it is questionable if oxygen is a
dopant because COOH and COC groups can be present
without replacing carbon atoms. I do not argue against the utility
of these groups as catalytic centers for the oxygen evolution
reaction, but they should be named functional groups instead of
dopants, in my opinion. Again the discussion if oxygen can be
considered a dopant emerges. Li et al.138 assembled O and N

Figure 1. False color aberration-corrected TEM images of (a) an Fe
substitutional defect in a graphene monovacancy (Fe@MV) and (b) an
Fe interstitial defect occupying a divacancy (Fe@DV). (c) Smoothed
aberration-corrected TEM image of the Fe@MV shown in (a). (d)
DFT optimization of the Fe@MV structure (the inset shows a side
view) and (e) a multislice TEM image simulation of the system. (f−h)
Similar to (c)−(e) but for a DFT-optimized Fe@DV. Scale bars denote
0.5 nm. Reproduced from ref 83. Copyright 2013 American Chemical
Society.

Figure 2.Top (a) and side (b) views of the optimized unit cell for 4× 4 siligraphene on 6H-SiC(0001). Carbon, silicon, and hydrogen atoms in SiC are
colored in gray, light blue, and white, respectively. Carbon and silicon atoms in the siligraphene layer are colored pink and orange, respectively.
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codoped graphene on hierarchical carbon networks for all-solid-
state flexible supercapacitors. XPS studies revealed that 11% of
N was pyridinic and 85% was pyrrolic. However, oxygen was
located at the edges as hydroxyl groups. Therefore, in this case,
the claim that oxygen is a dopant is at least questionable. In our
opinion, the material is N-doped graphene functionalized with
hydroxyl groups. Supercapacitor electrodes were constructed
using N- and O-doped graphene.136−139 Lithium140−143 and
potassium143−146 ion batteries based on N and O codoped
graphene are available. Excellent potassium storage was
achieved. For example, a reversible capacity of 464.9 mAh g−1

at 0.05 A g−1 was reported by Ruan et al.146

4.3. S and N Codoped Graphene. Despite the fact that
sulfur does not fit in the graphene plane and bulges out of the
sheet,70 the most studied codoped graphene system is sulfur and
nitrogen codoped graphene. There are so many articles
published about this system147−360 that a review could be
written. Including all the works dealing with this system would
be an interminable task, so I apologize for the papers not being

cited. In 2012, Liang et al.147 reported the one-step synthesis of
sulfur and nitrogen codoped mesoporous graphene for the ORR
with a synergistically enhanced performance. The ORR activity
was comparable to that of the best commercial Pt/C catalysts
and better than the activity measured when only one of the
dopants was present. The N and S elemental contents were 4.5
and 2.0 atom %, respectively. Nitrogen was present in the
typically observed forms of pyridinic, pyrrolic, and graphitic,
while sulfur was present in the thiophenic forms of C−S−C.
These results are in partial agreement with our investigations on
this system. By means of first principles calculations, I studied all
codoped graphene systems with one 3p and one 2p
element.48,49,148 Our results revealed a notorious preference
for the dopants to be located in specific positions. All XY
codoped graphene systems (X = B, N, O; Y = Al, Si, P, S)
preferred to replace contiguous C atoms (a CC bond) instead of
being separated at large distances or in para/meta positions, as
can be appreciated in Table 2; the structures are presented in
Figure 3. There was only one exception to this empirical rule: Si

Table 2. Relative Energies (eV) between the Five Configurations Studied of the Dopants and Heteroatom Bond Distances (Å) at
the M06-L/6-31G* and VDW-DF/DZP Levels of Theory

ortho M06-L meta M06-L para M06-L para VDW-DF same latt M06-L diff latt M06-L XY distance (Å)a M06-L

AlB 0.0 0.57 0.10 −0.20 0.76 0.80 2.16
AlN 0.0 1.82 1.90 1.70 2.19 2.18 1.81
AlO 0.0 3.97 3.69 3.48 4.55 4.65 1.97
SiB 0.47 0.22 0.0 −0.60 0.19 0.26 1.88
SiN 0.0 1.34 1.34 1.19 1.59 1.54 1.80
SiO 0.0 3.57 2.91 2.76 3.76 3.64 2.02
PB 0.0 0.35 0.04 −0.05 0.60 0.67 1.80
PN 0.0 1.01 0.70 0.61 1.09 1.00 1.78
PO 0.0 3.13 2.71 2.51 3.27 3.17 2.48
SB 0.0 0.86 0.82 0.67 1.25 1.34 1.82
SN 0.0 1.56 1.32 1.18 1.46 1.43 2.58
SO 0.0 5.20 5.64 5.28 5.17 5.41 2.59

aXY distance corresponds to the 2p and 3p dopants in an ortho arrangement (case a)).

Figure 3. Substitution sites considered to study the structure of codoped graphene.
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and B codoped graphene, for which there was a slight preference
for the atoms to adopt a para arrangement. The case of S and N
codoped graphene is very particular because the atoms replace a
CC bond but the dopants are not bonded. In effect, the nitrogen
atoms adopt a pyridinic disposition and the sulfur atom
protrudes out of the sheet, as shown in Figure 4. Therefore,

nitrogen prefers a C−N−C environment and sulfur prefers a C−
S−C environment. This particular dopant disposition may
explain this system’s unusual properties. For example, adding O2
to S and N codoped graphene is very exothermic, forming an
SO2 unit bonded to graphene.148

Many methods are capable of producing S and N codoped
graphene. It is possible to start from graphene oxide produced
via Hummers’ method and use melamine and benzyl disulfide as
N and S precursors. A different approach was proposed by
Kicinski et al.,155 who copolymerized S- and N-containing
heterocyclic aldehydes, whereas Chen et al.156 used methyl
blue/montmorillonite composites. A green route to S and N
codoped graphene is also available by using Chinese medical
herbs, as proposed by Feng et al.157 Along the same line, Wu et
al.158 reported that, assisted by supramolecular polymerization,
petroleum coke can be converted into S and N codoped
graphene. This approach is exciting because it starts from a
byproduct of the oil refinery industry. In theory, creating a new
synthetic route using a different heterocycle is possible. For
example, Zhang et al.159 self-polymerized polydopamide and
then reacted the product with cysteine. These are six examples of
the methods available to obtain S and N codoped graphene.
More synthetic routes can be found in the references cited, but
in our opinion, all of them offer advantages and disadvantages,
such as the quality of the sheets prepared, their area, and the
bonding nature of the dopants. The main problem with the
synthetic procedures available is that there is no good structure−
activity relationship.
The main application of the prepared S and N codoped

graphenematerials has been in perhaps the most critical reaction
in the industry, the oxygen reduction reaction. Following the
first work by Liang et al.147 commented on above, more than 40
papers were published reporting the catalytic power of S and N
codoped graphene for the ORR reaction.154,158−201 Most of
these works evidence a performance similar to or superior to
those of commercial Pt/C catalysts and superior stability.
Nevertheless, more work is needed because, to the best of our

knowledge, S and N codoped graphene is not the most used
catalyst for oxygen reduction/evolution reactions. For a more
detailed review of carbon based metal-free ORR catalysts, I refer
the reader to the review by Ma et al.202

Another vital reaction that the graphene community has
intensively studied is the hydrogen evolution reaction
(HER).203−212 Jiang et al.203 used an intelligent approach to
synthesize S and N codoped graphene from a mixture of urea,
glucose, and phosphoric acid. The high dopant content and
porosity conferred a high catalytic activity in the HER reaction
with an onset potential of 0.12 V and a Tafel slope of 79 meV/
dec, values that are comparable with those of an average metallic
catalyst. There have been some improvements in these values.
For example, Guruprasad et al.204 reduced the Tafel slope to 47
meV/dec However, to the best of our knowledge, graphene
based catalysts have not replaced the ones previously utilized in
the industry. In this line, the photocatalytic production of
hydrogen from water splitting is crucial for humankind. S and N
codoped graphene has been combined with TiO2 to improve the
activity under visible light significantly. S and N graphene based
materials are generally used as light absorbers combined with
TiO2 or similar materials.208,209

The use of S and N codoped graphene as a catalyst is not
limited to the ORR and HER reactions. It has been used with
great success for catalytic phenol degradation,212,213 nitrogen
reduction,214 methanol213−217 and ethanol218 electrooxidation,
aerobic oxidation of alcohols219 under visible light irradiation,
and sonocatalytic decolorization of methylene blue.220 Another
area of utmost importance is organic catalysis. Some works
reported using S and N codoped graphene for Sonogashira221

and Heck couplings.222 Although Pd nanoparticles were still
necessary, the presence of the graphenematerial contributed to a
more effective use of the expensive Pd catalyst.

There are several examples in which S and N codoped
graphene has been employed in photocatalysis.223,224 For
example, it can degrade rhodamine B223,224 and methyl
orange.225 In the former case, the activity is 3 and 10 times
higher than those determined for N-doped graphene and P25
TiO2, respectively.

223 Efficient photocatalytic H2O2 production
was achieved since the codoped graphene induced a better light
absorption and promoted a more significant charge migra-
tion.226 Sulfur and nitrogen codoped graphene nanomaterials
have broad visible absorption223,224 and superb luminescence
properties.226−232 They can be used in bioimaging.233,234 Also,
they were reported to have a fluorescence quantum yield 9.3
times higher than that of undoped graphene. Thus, they are
promising materials for developing light-emitting devices.228

The development of alkali metal ion batteries is another area
that has been invaded by publications that use S and N codoped
graphene.235−269 In 2014, Ma et al.153 produced S and N
cocoped graphene using a chemical vapor deposition approach.
The three-dimensional codoped graphene networks were
utilized as anode materials for lithium ion batteries. The
capacity was 3525 mAh/g at a current density of 50 mA/g, and
the rate capability was as high as 870 mAh/g at 1000mA/g, with
with excellent cycling stability. FollowingMa et al.’s153 landmark
investigation, several works continued this line of re-
search.235−261 In some cases, metal nanoparticles,235,236 nano-
cables,237 and nanospheres238 are also combined with S and N
doped graphene to improve performance. Although the
numbers obtained are impressive, and are in agreement with
our theoretical predictions,13 to the best of my knowledge, there

Figure 4. Optimized 6 × 6 unit cell for sulfur and nitrogen dual-doped
graphene.
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is not a commercial lithium ion battery based on S and N
codoped graphene. Therefore much work is needed in this area.
The excellent performance observed for lithium batteries

prompted researchers to study if the effect was similar for heavier
and cheaper alkali metals like Na and K. In effect, superb
performances were observed for sodium261−267 and potassium
storage.268,269 Recent theoretical calculations that I carried out
support these results.152 I demonstrated that, as observed for
lithium,13 S and N codoped graphene presents the strongest
affinity toward Na and K adsorption.152 The adsorption energies
of Na and K are gathered in Tables 3 and 4, respectively, and the
structure is giving in Figure 5. The adsorption energies for Na
and K were dramatically increased by the presence of the S and
N dopants, another system for which I observed comparable
adsorption energies was Si and B codoped graphene. Therefore,
at least for Na and K, there seems to be another alternative to
dope graphene and improve alkali metal storage. Metal−air
batteries,270−277 in particular Zn−air ones,270−276 were also
constructed using S and N codoped graphene. Geng et al.270

used S and N codoped graphene decorated with CoS
nanoparticles as a cathode material for Zn−air batteries. The
product could be charged and discharged for 50 cycles at 1.25
mA/cm2, for 50 h with an almost constant discharge voltage of
1.23 V. In sharp contrast, the discharge voltage of the
commercial Pt/C catalyst was reduced from 1.36 to 1.20 V. In

general, the catalytic performances of the commercial catalyst
and the S and N codoped graphene based one were similar, so it
is a cheaper alternative. Ganesan et al.271 also claimed that N and
S codoped graphene/CoS2 nanoparticles could be a suitable air

Table 3. Sodium Adsorption Energies onto Codoped Graphene 5 × 5 and Circumcoronene
dopant VDW-DF/DZP G5×5a M06-2X/6-311G* circumcoroneneb PBE-D2/VASP G5×5 PBE-D2/6-311G* circumcoronene

AlB −1.58 −1.81 −2.44 −2.10
AlN −1.55 −1.98 −2.44 −2.05
AlO −1.63 −1.64 −2.43 −1.99
SiB −2.13 −2.90 −2.72 −2.94
SiN −1.63 −2.11 −2.42 −2.09
SiO −1.42 −1.34 −2.21 −1.62
PB −1.47 −1.75 −2.36 −1.91
PN −0.96 −1.15 −1.92 −1.37
PO −1.71 −1.97 −2.51 −2.18
SB −1.10 −1.96 −2.35 −2.03
SN −2.00 −3.35 −2.91 −2.92
SO −0.97 −1.30 −2.13 −1.49
G5×5 −0.67 −0.45 −1.08 −0.71

aCalculations were performed using periodic conditions and a 5 × 5 unit cell of graphene. bCalculations were performed using a graphene flake
(circumcoronene).

Table 4. Potassium Adsorption Energies onto Codoped Graphene 5 × 5 and Circumcoronene
dopant VDW-DF/DZP G5×5a M06-2X/6-311G* circumcoroneneb PBE-D2/VASP G5×5 PBE-D2/6-311G* circumcoronene

AlB −1.81 −2.22 −2.55 −2.33
AlN −1.75 −2.35 −2.51 −2.27
AlO −1.78 −1.95 −2.47 −2.18
SiB −2.42 −3.36 −3.06 −3.24
SiN −1.84 −2.47 −2.51 −2.32
SiO −1.64 −1.75 −2.31 −1.88
PB −1.81 −2.20 −2.51 −1.93
PN −1.40 −1.57 −2.05 −1.65
PO −1.95 −2.32 −2.58 −1.39
SB −1.08 −2.36 −2.47 −2.31
SN −2.42 −3.64 −3.03 −3.05
SO −1.20 −1.69 −2.22 −1.73
G5×5 −1.1 −0.96 −1.40 −1.10

aCalculations were performed using periodic conditions and a 5 × 5 unit cell of graphene. bCalculations were performed using a graphene flake
(circumcoronene).

Figure 5. Optimized structure for codoped graphene with an ortho
disposition of dopants and an alkali metal atom adsorbed below the 3p
dopant.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.2c06010
ACS Omega 2022, 7, 45935−45961

45941

https://pubs.acs.org/doi/10.1021/acsomega.2c06010?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06010?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06010?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c06010?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c06010?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


cathode for Zn−air batteries. Chen et al.272 went one step
further and did not use nanoparticles to construct a cathode for
Zn−air batteries. Instead, they used S and N codoped graphene
microwires and obtained a superior performance. For more
details on this topic, I refer the reader to refs 270−277. Finally,
vanadium redox flow batteries were built using S and N codoped
graphene by Li et al.278 and Daugherty et al.279 An improvement
of 85.37% at a current density of 80 mA/cm2 was reported by Li
et al.278

Symmetric and asymmetric supercapacitor electrodes were
created using S and N codoped graphene.280−305 As early as
2015, Xing et al.281 prepared three-dimensional S and N
codoped graphene hydrogels using thiocarbohydrazide as a
reducing and doping agent. Thanks to the highly porous
architecture and presence of dopants, the materials exhibited a
high specific capacitance of 141.1 F/g in KOH electrolyte. Their
specific capacitance could be maintained at 71.3% even with a
discharging current density of 10 A/g. Also, excellent electro-
chemical stability and reversibility were obtained, with about
90% of retention after 4000 cycles. Even more interesting results
were obtained by Tran et al.,283 who prepared a S and N
codoped hole defect graphene hydrogel. A maximum energy
density of 14.8 Wh/kg and excellent cycle stability were
reported. In general, the porous nature of the S and N based
materials is crucial for the performance of the super-
capacitor.280−305 Comparing the performances of the electrodes
prepared is not easy because different conditions are employed.
Thus, I refer the reader to refs 280−305 gathered on this topic.
The quest for dye-sensitized solar cells with higher efficiency

has also tested if the inclusion of S and N codoped graphene can
be useful.306−315 The advantages of codoping as compared with
the monodoping when preparing dye-sensitized solar cells
(DSSCs) were also confirmed by Luo et al.306 A power
conversion efficiency (PCE) of 4.23% was obtained for sulfur
reduced graphene oxide, while for sulfur and nitrogen reduced
graphene oxide the value increased to 4.73%. In 2015, Xu et
al.307 built bifacial DSSCs capable of utilizing incidental light
from the rear and front sides that relied on transparent S and N
codoped graphene as counter electrodes. A drastically enhanced
power conversion efficiency was obtained for both front and rear
illumination. Kannan et al.311 reported a PCE as high as 7.42%
when S and N codoped graphene was utilized as a counter
electrode. The latter value is comparable to the one determined
for the Pt counter electrodes, namely 7.42%. The high catalytic
activity of the codoped graphene electrode was attributed to the
difference in electronegativity between S and N as well as to the
structural distortions caused by the presence of the sulfur atom
in the graphene framework. Theoretical investigations have also
proven the utility of the codoping of graphene in this area. Liu et
al.312 performed first principles calculations to show that the
synergistic effect between the S and N dopants resulted in a
much better charge transfer between the substrate and the
adsorbed I2 on the surface of S and N codoped graphene.
Therefore, a much better efficiency would be obtained in DSSCs
that employ codoped graphene.
S and N codoped graphene based sensors have been

extensively studied in the literature.316−347 S and N codoped
graphene was used by Li et al.316 as a support for CuO
nanoparticles to promote electrocatalytic glucose oxidation. A
low detection limit of 0.07 μMwas reported by Li et al.316 and a
detection limit of 0.5 μM was reported by Tian et al.318 using S
and N codoped graphene prepared with a one-step and cost-
effective microwave assisted solvothermal method. Masteri-

Farahani et al.319 developed a fluorescence based sensor to
detect glucose. They combined boronic acid with the codoped
graphene sheets to obtain a lower detection limit of 5.5 μM. The
codoped graphene based new sensor is much cheaper because it
reduces the use of the expensive boronic acid. In the biological
area, S and N codoped graphene based sensors have been
constructed for L-cysteine,320 hydroquinone/catechol,321 cya-
nide,322 an immunosensor for cardiac troponin I,323 okadaic
acid,324 an immunosensor for cardiac troponin,325 ascorbic
acid,326,327 and dopamine,327,328 to mention just a few examples.
In the same vein, pesticides329 and toxic pollutants330 can be
detected. The sensor array built by Zhu et al.329 was able to
discriminate among five pesticides: lactofen, fluoroxypyr-
meptyl, bensulfuron-methyl, fomesafen, and diafenthiuron. In
this case, there was a practical application of the sensor array as it
was validated by discriminating pesticides in soil. In food
samples, ethion331 and nitrites332 are easily monitored using the
fluorescence properties of S and N codoped graphene quantum
dots. Martins et al.333 used glassy carbon electrodes modified
with S and N codoped graphene quantum dots for monitoring
multivitamins. The detection limits for vitamins B2, B6, and B12
were 0.30, 30.1, and 0.32 nmol/L. The sensor was effectively
implemented in the quantification of vitamins in classic and fruit
based energy drinks. Simpler molecules like water334 and
ammonia335 can be sensed using S and N graphene quantum
dots. Jlassi et al.334 constructed a S and N graphene carbon dot
based impedance sensor with good sensitivity for water and
excellent response and recovery times of 15 s and 55 s,
respectively. The detection of explosives is a very sensitive topic
that needs constant updates. Mondal et al.336 observed a
remarkable increase in fluorescence quenching effect using a
micromolar solution of 2,4,6-trinitrophenol (TNP). The
detection limit was as low as 19.05 ppb. Zhang et al.337 used
an electrochemical sensing platform using S and N codoped
graphene nanoribbons that showed a highly sensitive and
selective response to trinitrotoluene (TNT) with a wide linear
range from 0.0008 to 5.1 ppm and a detection limit as low as 0.1
ppb. Finally, S and N codoped graphene has been employed to
detect a variety of metal and nonmetal atoms. For example, the
fluorescence detection of Co(II) ions in water was reported by
Boonta et al.,338 while the successful detection of Hg2+ ions is
well documented.339−342 In general, the detection is related to
fluorescence quenching after interacting with the metal ion. Gu
et al.340 demonstrated that the sensitivity of S and N graphene
carbon dots was 4.23 times higher than that of N-doped
counterparts. The sensor was sensitive enough to ensure that
drinking water had less than 10 ppb Hg2+ ions. In addition to
this, a report by Tian et al.344 revealed that Hg(II) ultra-
selectively separated from Pb(II) and Cu(II). A high removal
ability above 99% was obtained. The list of elements that can be
detected in quite long, but it includes Fe3+, with a low detection
limit of 0.07 μM,342,343 Pb(II)345 with a detection limit as low as
0.29 nM, iodide341−346 with a detection limit of 4.23 nM, and
Cu2+ and Ag+ with detection limits of 250 and 50 nM,
respectively.347 Interestingly, the sensor constructed by Zhang
et al.341 was an off−on sensor that had the chemiluminescence
quenched by iodide and recovered by mercury ions.

We have listed a few areas in which S andN codoped graphene
hasmade an impact, but I limit them tomaintain a balance in this
review. There are others such as CO2 capture,348 removal of
organic dyes,349−352 design of efficient electromagnetic wave
absorbers,353−356 piezocatalysis,357,358 bioelectricity produc-
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tion,359 and synthesis of high performance polymer nano-
composites.360

4.4. P and N Codoped Graphene. It is not a surprise that
another of the most studied cocoped graphene systems also
contains nitrogen, but in this case it is chaperoned by a
pnictogen: phosphorus.361−420 In 2014, Zheng et al.361 reported
the synthesis of P and N codoped graphene and its use as
nonmetal catalyst for the hydrogen evolution reaction. The
performance was much better than those corresponding to
monodoped graphene and comparable to some commercial
catalysts. Two approaches were employed to synthesize this
material. In the first approach, a single-step method, graphene
oxide was annealed in the presence of melamine and
triphenylphosphine, while in the second approach, which
involved two steps, first P-doped graphene was obtained and
the nitrogen was incorporated. K-edge NEXAFS and XPS
studies indicated that nitrogen was present in pyridinic,
graphitic, and pyrrolic forms whereas phosphorus was bonded
to carbon or oxygen. The presence of P−N bonds was excluded.
This result is in contrast to experimental studies that indicated
the presence of AlN bonds in Al-doped graphene47 and SiN
bonds in Si-doped graphene.51 Also it is in disagreement with
our investigations which indicated that the P and N dopants
prefer to form PN in P and N codoped graphene. In effect, the
ortho disposition of the dopants is 1.01 and 0.70 eV more stable
than the meta and para ones, respectively.48,49 A few months
later, Xue et al.362 prepared P and N codoped graphene with air-
stable n-type characteristics. Phosphorus played a critical role in
achieving improved charge donation. The material was
synthesized over a Cu surface and using phosphonitrilic chlorine
trimer as a P andN source. A different approach to prepare P and
N codoped graphene was proposed by Li et al.363 The method
was facile and cost-effective; they pyrolyzed a dried hydrogel
composed of graphene oxide, polyaniline, and phytic acid. These
are three examples of how P and N codoped graphene can be
synthesized. Since there is not a standard method to obtain it, I
refer the readers to the references included, as most of them
report a uniquemethod.361−422 For example, Ananthanarayanan
et al.364 used adenosine triphosphate and Guo et al.365 used
hypophosphorous acid as a P source to dope graphene oxide.
In line with our discussion about S and N codoped graphene,

the oxygen reduction reaction (ORR) and the oxygen evolution
reaction (OER) were the subject of several investigations that
tested the viability of using P and N codoped graphene as a
catalyst.363,365−373 Li et al.’s363 study was one of the first to not
only prepare the material but also to use P and N codoped
graphene as a catalyst for ORR and OER reactions. The authors
claimed that up to 2015 it was the best nonmetal bifunctional
electrocatalyst reported for the latter reaction, with a potential
gap of 0.71 V between the OER potential, at a current density of
10 mA/cm2, and the ORR potential, at a current density of −3
mA/cm2. A similar ORR and OER overpotential of 705 mV was
reported by Chai et al.366 using P and N codoped graphene
prepared via a one-pot hydrothermal method utilizing graphene
oxide, ammonium dihydrogen phosphate, and cyanamide as
precursors. The P sites were very active and could be oxidized,
becoming nonactive for catalysts. However, it was pointed out
by Chai et al.366 that if P is oxidized and bounded to an N
codopant it stabilizes the graphitic N and increases the reactivity
of the neighboring carbon atoms. For this reason the synthetic
conditions were tuned to increase the number of P−N bonds, in
line with our previous studies.48,49 P and N codoped graphene
can be synthesized using green chemistry. Cheng et al.367 used

low-cost inorganic fertilizers and graphene oxide as precursors to
obtain the said nanomaterial. The material presented super
electrocatalytic activity and methanol tolerance. In particular,
the electrochemical stability was better than those of commercial
Pt/C catalysts. Molina-Garciá et al.368 combined codoped
graphene and perovskites to build a catalyst for the ORR
reaction. Among the codoped graphenes tested, S/N, P/N, and
B/N were employed. The lowest overpotential was obtained
when perovskites were combined with P and N codoped
graphene. Further experimental369−372 and theoretical373

studies also corroborated the excellent performance of P and
N codoped graphene as a catalyst for the ORR.

Asmentioned above, the hydrogen evolution reaction has also
been studied using P and N codoped graphene. However, it has
received less attention than the ORR. Zheng et al.361

demonstrated that the HER activity of P and N codoped
graphene is comparable to those of metal catalysts such as gold,
molybdenum, andMo/Ni alloy. However, it is less effective than
nanostructured MoS2/WS2. It was speculated that, via
nanostructure engineering, the graphene based catalysts have
the potential to replace all the commercial ones for the HER.
Some years later, Hung et al.374 devised a procedure to dope
graphene with P and N, paying particular attention to obtaining
better crystallinity, conductivity, and elemental functionalities to
obtain improved catalytic performance. The amount of P doping
was as high as 6 atom %, and the electrode displayed excellent
catalytic activity with an increase of 142% in sp2 domain size and
enormous lowering in overpotential and the Tafel slope, namely
78%. The efficiency of the catalyst was 25% better than that of
theMoSx one. An et al.375 prepared a stable catalyst composed of
a Co/Ru alloy and P and N codoped graphene. The catalyst
exhibited high activity, a low overpotential of 52 mV at 10 mA/
cm2, and a Tafel slope of 38 mV/dec.

P and N codoped graphene has been used for methanol
electrooxidation. Chen et al.376 decorated the doped graphene
sheets with Pd nanoparticles. The nanomaterial delivered a
catalytic current density of 11.9 A/cm2 in 1 M KOH with 1 M
CH3OH at −0.2 V after a test duration of 3600 s. The aerobic
oxidation of alcohols was achieved using Co porphyrins
supported on P and N codoped graphene.377 The catalyst
converted 92% of the sample and exhibited a high selectivity of
86%, better than most reported photocatalysts. Among other
processes that P and N codoped graphene can catalyze, I can
highlight the work by Xi et al.,378 which reported the reduction
of nitroarenes or the good performance of P and N codoped
graphene as a cathode electrode catalyst in microbial fuel
cells.379

In the biological field, P and N codoped graphene has been
used for cellular imaging.364,380,381 Ananthanarayanan et al.364

used P and N codoped graphene quantum dots that exhibited
high photostability, strong two-photon upconversion, and small
molecular weight for real-time tracking of transferring in live
cells. Gong et al.380 also used the doped carbon dots for
monitoring because of their exceptional fluorescent properties.
The material was also utilized for doxorubicin delivery because
the effectivity of the drug was much better when combined with
the carbon material. Liu et al.381 were able to use similar carbon
dots for sensitive and selective detection of nitrite in live cells.
Finally, Shumba and Nyokong382 modified P and N codoped
graphene with Co(II) phthalocyanine to detect H2O2; the
sensitivity was 12 mA/M and the detection limit was 1.21 nM.

A topic that always is fueled by graphene doped with
heteroatoms is that of rechargeable batteries. P and N codoped
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graphene was successfully used in lithium,383−390 so-
dium,391−394 potassium,395 and Zn−air batteries.396−398 In
2015, Gu et al.383 prepared P and N codoped graphene using
graphene oxide, triphenylphosphine, and ammonia with
polytetrafluoroethylene as a binder. They constructed a
membrane which was used as blocking layer to conductively
confine polysulfides in the cathodes of lithium−sulfur batteries.
The performance of the new battery was remarkable and
significantly better than the ones prepared using monodoped
graphene. The initial capacity was 1158.3 mAh/g at a current
density of 1 C. The cycling stability was reasonable, decaying
0.09% per cycle. Wu et al.384 were able to suppress polysulfide
dissolution by physical confinement and chemical interaction;
the assembled Li−S batteries had an initial discharge capacity of
1446 mAh/g at a current density of 0.1 C. The capacity decay
was extremely low: 0.034% per cycle. Other reports by Zhou et
al.,385 Zeng et al.,386 and Zhang et al.387 also utilized P and N
codoped graphene to solve the shuttle effect of polysulfides and
volume expansion of sulfur that seriously affect performance. A
slightly different approach was chosen by Muhammad et al.,388

who prepared P and N codoped graphene microspheres
embedded with core−shell CoP@C andMoP@Cnanoparticles.
The interior carbon shell limited volume evolution and
prevented nanoparticle aggregation. As a consequence, excellent
lithium storage was achieved.
In an attempt to use sodium instead of lithium, Li et al.391

constructed carbonaceous anodes for sodium batteries. P and N
codoped graphene was obtained via low temperature
phosphidation of NH2 rich graphene precursor. A large
reversible capacity of 330 mAh/g at 50 mA/g was measured.
Studies byWang et al.,392 Qin et al.,393 andWu et al.394 were also
devoted to producing sodium battery anodes, with great
performances. Potassium ion batteries were prepared by Gao
et al.395 using P andN codoped graphene aerogels with a specific
capacity of 507 mAh/g at 100 mA/g. Zn−air batteries were the
focus of several studies that used P and N codoped graphene as
an efficient electrocatalyst.396−398 The 3D P and N codoped
holey graphene foam presented excellent activity, showing a half-
wave potential of 0.865 V in alkaline electrolytes. The design of
supercapacitors is another field that experienced important
innovations thanks to the use of P and N codoped
graphene.399−413 Wen et al.399 synthesized P and N codoped
graphene monoliths by a facile hydrothermal method that used
melamine phosphate as a single precursor. Excellent capacitive
performance was obtained. Supercapacitors with an energy
density of 8.2 Wh/kg were produced by Xia et al.400 when P and
N codoped graphene with a high surface area and hierarchical
pore structure was utilized. It was prepared by prefunctionaliza-
tion of graphene and subsequent one-step ammonia phosphate
activation. A high specific capacitance of 219 F/g at 0.25 A/g
was obtained. Hierarchical porous P and N codoped graphene
was also utilized by Zhao et al.;401 the specific capacitance
obtained was 204.4 F/g at 0.2 A/g. In this case, the codoped
graphene was produced using nitrogen-containing biomass
derived compounds in conjunction with phosphoric acid
treatment. The specific capacity retained 97% after 2000 cycles.
For more examples about this application of P and N codoped
graphene, I refer the readers to refs 399−419. In all of them, the
advantages of codoping are demonstrated. Finally, it has been
postulated that P and N codoped graphene can be used as a
flame retardant and smoke suppressant,414−416 CO oxidator,417

O2 adsorbent,
418 electronic transport material,419 and oxidation

retardant of reduced graphene oxide.420

4.5. Codoped Graphene with Other Main Group
Elements. The possibilities to construct codoped graphene
systems are almost unlimited as there are plenty of possibilities.
In this section I mention some of the systems prepared or
studied theoretically. P and B codoped graphene was prepared
this year by carbonizing in an Ar atmosphere a cellulose/
phosphoric acid supramolecular collosol. Then sodium
tetraborate decahydrate was used to adjust the B content, as
indicated by Meng et al.421 The nanomaterial presented an
outstanding catalytic performance for benzyl alcohol oxidation.
As early as 2015, I studied theoretically all 3p/2p codoped
graphene systems, finding that P and B codoped graphene was
very particular because it was one the few examples for which the
stability of the ortho and para dispositions of the dopants were
almost equally stable. In fact the ortho configuration, i.e., P and B
replacing a CC bond, was more stable by 0.04 eV at the M06-L/
6-31G* level.48 The system is nonmagnetic and a semi-
conductor with a band gap of 0.2 eV at a 2 atom % doping. In
a following article, I showed that when a B dopant is added to P-
doped graphene, the effective masses of holes and electrons
decrease.

Some studies reported the synthesis of P and O codoped
graphene. I discussed above if oxygen can be considered a
dopant. In this section I recall that any P-doped graphene
produced from graphene oxide will have some amount of
residual oxygen, which may be comparable to the levels of
doping attained for P-doped graphene.60−69 Ma et al.422

reported the preparation of P and O codoped graphene with
exceptional properties as anode materials for potassium ion
batteries. The authors prepared the codoped graphene by
thermal annealing of graphene oxide with triphenylphosphine.
The material had ultralong cycling stability and a capacity of 474
mAh/g at 50 mA/g.

In 2016, Yu et al.423 utilized P and S codoped hierarchically
porous graphene aerogels for enhancing supercapacitor
performance. The material was prepared by heating graphene
oxide prepared by the modified Hummers method, thioglycoic
acid, and pythic acid. The doping level was 5.8 and 4.6 atom %
for S and P, respectively. XPS revealed the presence of S−C and
P−C bonds. The specific capacitance was 438 F/g at 19 mV/s,
greater than the ones measured for the monodoped counter-
parts. Patel et al.424 prepared P and S codoped graphitic carbons
for aerobic oxidation reactions. Further studies indicated that P
and S codoped graphene can be a good catalyst of the HER425

and methanol electrooxidation426 and improved capaci-
tance.427−429

Sulfur and boron doped graphene was synthesized and
combined with Au@Pt nanorods. It was utilized as a
immunosensing platform for the electrochemical determination
of aflatoxin.430 The codoped graphene was prepared using a
microwave-assisted hydrothermal approach. Boron trioxide and
sodium sulfide were used as heteroatom sources. XPS indicated
the presence of C−B and C−S bonds. Theoretical studies
characterized SBe,431 SiN,432 NAl,433 and SiP434 codoped
graphene, materials which presented outstanding electronic,
NO2 sensing, optical, and catalytic properties, respectively. I
note that Al and N codoped graphene has not been synthesized,
but when Al-doped graphene was reported, Al−N bonds were
observed.46,47 A facile synthesis for halogen (Cl, Br, and I) and
nitrogen codoped graphene was reported by Liu et al.435 The
material was utilized as advanced anodes for lithium ion
batteries. The Cl and N codoped system presented a specific
capacitance of 1200 mAh/g at 0.1 A/g.
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Among the theoretical investigations I can highlight my study
about graphene with two 3p elements,436 which revealed
unexpected properties because the addition of a second dopant
decreased the band gaps with respect to the monodoped
systems. Ullah and co-workers437−439 studied BeB, BeN,440 and
BeO codoped graphene, which exhibited outstanding properties
for alkali adsorption thanks to the presence of Be which makes
the graphene sheet electron deficient. I studied codoped
graphene with one 4p element and one 2p element, which
exhibited remarkable properties when a perfect sheet was place
above the codoped one because of the formation of interlayer
bonds, in particular whenGa andGe dopants were present.441 In
the same line, Safaei Ardakani et al.442 studied theoretically SeX
codoped graphene (X = Ga, P, and S), which exhibited
outstanding electronic properties. N and Cl dopants were
successfully incorporated into the graphene framework as
revealed by the different characterization techniques employed.
Finally, again with the help of nitrogen, Se and N codoped

graphene was prepared. Chen et al.443 synthesized codoped
aerogels that showed a synergistically enhanced capacitive
performance. The specific capacity was 302.9 F/g at 1 A/g. In
my theoretical study about Se and N codoped graphene,441 I
found that this system has the larger gap among the 4p/2p
codoped graphenes: 0.83 eV (spin up) and 0.84 eV (spin down)
at the M06-L/6-31G* level for a 4 atom % level of doping.
Excellent activity for iodine reduction reaction was calculated by
Zhong et al.444 for Se and N codoped graphene.
4.6. Transition Metal and Nitrogen Codoped Gra-

phene. Along this review I have highlighted the key role played
by nitrogen to synthesize codoped graphene systems. Although
in section 2 I mentioned that Mn, Fe, Co, Ni, Ir, and Au metal
dopants have been embedded in the graphene framework,80−86

nitrogen has been intensively used to stabilize metals in the
graphene sheet.445−471 Among these systems Fe and N codoped
graphene is one of the most studied ones,445−453 probably
because they can be used in single-atom catalysis. In 2015, Dong
et al.445 demonstrated that the latter system is a very effective
catalyst for the ORR. These authors exfoliated graphite using
cyclopentadienyl iron, and then upon pyrolysis and ammonia
activation, the material was converted into Fe and N codoped
graphene. The new catalyst exhibited excellent methanol
tolerance, superior to that of commercial Pt/C. Other studies
by Zitolo et al.,446 Niu et al.,447 and Jiang et al.448 also supported
the strong catalytic power of Fe and N codoped graphene. In
particular the study by Zitolo et al.446 revealed the existence of
porphyrin-like FeN4C12 moieties. Sibul el al.449 found that Fe
and N codoped graphene is a superior catalyst for anion
exchange membranes rather than proton exchange membranes
for fuel cell applications. Amaximum power density of 243mW/
cm2 was obtained. Continuing with the use of Fe andN codoped
graphene in catalysis, Zhang et al.450 employed density
functional theory to show that by anchoring two Fe atoms
with four nitrogen dopants it is possible to obtain an excellent
catalyst for the oxygen reduction reaction. In a different area,
Gao et al.451 reported a fluorometric and colorimetric dual-
mode sensor based on nitrogen and iron codoped graphene
quantum dots for detection of Fe3+ ions in biological fluids and
cellular imaging. Finally, there is evidence452,453 indicating the
usefulness of Fe and N codoped graphene in the development of
lithium−sulfur batteries. Zhang et al. found that the codoped
graphene can be used as an anchor material for sulfur in Li−S
batteries. Li2S and Li2S2 presented very low decomposition
energies on its surface.

Cu and N codoped graphene has been produced by Ni et
al.454 by the thermal conversion of Cu(II) 2,2′-bipyridine in the
confined space of lamellar montmorillonites. The product
presented excellent results in terms of ORR catalytic activity and
methanol tolerance in alkaline media. Mn and N codoped
graphene has been the subject of several investigations.455−460

Zhu et al.455 employed density functional theory to show that
this doped graphene is an excellent catalyst for the ORR, while
Luo et al.456 employed first principles calculations to postulate
that it can be a low-cost catalyst for CO oxidation at room
temperature. Finally, Lee et al.457 prepared Co and N codoped
graphene quantum dots used as bimodal resonance and
fluorescence imaging nanoprobes.

In 2015, Li et al.458 performed a landmark theoretical
investigation which proved that Co andN codoped graphene is a
superior catalyst for the ORR and OER. It had a high selectivity
for the four-electron-reduction pathway. These hypotheses were
confirmed by experimental investigations.459−461 Han et al.459

ultrasonicated g-C3N4, glucose, and Co(CH3COOH)2·4H2O,
and after several processes Co and N codoped carbon sheets
were obtained. As usual for codoped carbons, the material had
excellent ORR catalytic activity. The overpotential between
ORR and OER reactions was 0.80 V at 10 mA/cm2. A similar
behavior was observed by Liu et al.,460 but in this case the Co
and N codoped graphene was synthesized using a simple
Mg(OH)2 nanocasting method. In this case, the OER properties
were similar to those corresponding to IrO2. Finally, Du et al.461

studied the use of Co and N codoped graphene as a single-atom
catalyst for high sulfur content lithium−sulfur batteries, a result
also supported by the work of Zhang et al.462 It is important to
note that the latter work studied not only Co and N codoped
graphene as an anchor material in Li−S batteries but also the V,
Cr, Mn, Fe, Co, Ni, and Cu counterparts. The Co−N−C
coordination center served as a bifunctional electrocatalyst that
facilitated the formation of Li2S in discharge and its
decomposition in the charge process. Finally, Ir and N codoped
graphene which mimicked Ir porphyrins was synthesized by
Xiao et al.,463 and it exhibited ORR catalytic activity significantly
higher than that of Ir nanoparticles. These properties were
attributed to the moderate adsorption energies of the
intermediates. The idea of embedding metal atoms on N-
doped graphene was extended to include more and different
metals. Dual-metal and N-doped graphene has been predicted
by theoretical calculations to have outstanding HER activity464

and catalytic effects for the CO2 reduction reaction.462

Other combinations of metals were used to codope graphene
include; for example, Fe and S codoped graphene quantum dots
were synthesized by Kharangarh et al.466 using a facile one-pot
hydrothermal method. The material had excellent electro-
chemical properties and improved electrical conductivity. The
specific capacitance was 476.2 F/g, about 3.3 times higher than
that corresponding to the undoped material. Gu et al.467

reported the preparation of Ni and Al codoped graphene by the
reduction of graphene oxide. The product had an impressive
hydrogen storage uptake of 5.7 wt %, at 473 K.
4.7. Triple-Atom and Higher Codoped Graphene. The

obvious question that some scientists asked was that if two are
good why not three or more dopants? I studied XBN tridoped
graphene where X = Al, Si, P, or S.468 As expected, the XNB
motif was preferred because nitrogen stabilizes most dopants.
The exception was sulfur, which preferred an SBN motif. In line
with my previous findings for two dopants, the theoretical
calculations indicated that in general the dopants considered
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preferred to be bonded instead of separated. The tridoped sheets
presented interesting electronic properties and high reactivity.
For AlNB, PNB, and SNB the carbon atoms are more reactive
than in their AlN, PN, and SN codoped counterparts. However,
for SiNB the reactivity is lower than that of SiN dual-doped
graphene. As a consequence I recommended that, in order to
increase reactivity, Al, P, and S should be combined with BN
motifs. There is experimental evidence available indicating that
the use of three dopants is beneficial. Razmjooei et al.469

prepared P, S, and N triple-doped graphene finding that its ORR
activity is 2 times higher than that of S and N codoped graphene
and 5 times higher than that of single P-doped graphene. Three
dopants were also used by Wang et al.470 to capture the harmful
bisphenol A, but in this case the dopants utilized were P, S, and
N. The same combination of dopants was selected by Wang et
al.471 to design a electrocatalyst of the ORR in alkaline medium.
The material presented superior properties which indicated that
it is a promising cathode catalyst for alkaline fuel cells. The good
performance of P, S, and N triple-doped graphene for the ORR
was also confirmed by the investigations of Dou et al.472 Last
year, Wang et al.473 also prepared P, S, and N codoped graphene
and showed that it is an excellent metal-free bifunctional catalyst
for superior electrocatalytic oxygen reaction in rechargeable
Zn−air batteries. The dopants were introduced by an interesting
modified ball-milling process. Zheng et al.474 also incorporated
P, S, and N codoped graphene as cathodes for Zn−air batteries,
but in this case the triple-doped graphene was derived from
onium salts. Finally, Xu et al.475 reported that P, S, and N
tridoped graphene quantum dots are a very interesting ion
fluorescence probe. Thematerial was prepared from inexpensive
coal, and fluorescence was quenched by Pb2+.
Some reports are focused on N, F, and S tridoped

graphene476−479 and N, P, and S tridoped graphene.480

However, as I mentioned in the preceding sections, it is highly
questionable whether fluorine is a dopant or not. Nevertheless,
these materials were useful in catalysis,476,477,480 solar cells,478

and photoluminescence.479

B, N, and P tridoped graphene has been synthesized at least in
two reports that observed excellent catalytic properties for the
ORR.481,482 Lin et al.481 synthesized the material using boron
phosphate and a B/P source and ammonia as the N-dopant
agent. First graphene oxide was combined with boron phosphate
to introduce the B and P dopants. After the B and P codoped
graphene aerogel was obtained, it was activated with NH3
atmosphere to obtain the final tridoped graphene. P, N, and O
tridoped graphene was reported by Zhao et al.483 and was
proposed as a supercapacitor electrode and a metal-free catalyst
for the oxygen reduction reaction. The specific capacitance was
426 F/g. Again the question of whether oxygen is a dopant is
open because it is hard to evaluate if it is replacing a carbon atom
or it is a functional group.
The high stabilization of metal dopants induced by graphene

elicited several investigations of tridoped graphene containing
two different metals and nitrogen. Hu et al.484 performed
theoretical calculations which revealed that Fe, Co, and N
tridoped graphene can be a superior catalyst of the ORR and
OER. An extremely low overpotential of 0.22 V for both
reactions was obtained. He and Santiago485 combined a variety
of metal dimers on N-doped graphene, finding ultrahigh
efficiency for the nitrogen reduction reaction. The landmark
experimental and theoretical investigation by Zhou et al.486

proved that FeNi-N6 sites, where each metal is coordinated to
four nitrogen atoms, dominate the catalytic activity of noble

metal free catalysts. Excellent methane activation was indicated
by the theoretical calculations performed by Wu et al.487 for
tridoped graphene with two 3d metals and nitrogen.

Fe, S, and N tridoped graphene was obtained by Qiao et al.488

and Feng et al.489 In both works, it was fond that this tridoped
graphene is an excellent catalyst of the ORR. Feng et al.489

obtained this material by using melamine and 2-aminotriazole.
The addition of melamine increased the number of nitrogen
atoms with pyridinic structure, and as a consequence the amount
of FeNx was augmented.

Finally, I mention the study by Molina-Garciá el al.490

published in 2018 that achieved the inclusion of four dopants in
the graphene sheet: boron, nitrogen, phosphorus, and sulfur.
The level of doping was determined via XPS as 6.4, 6.1, 2.6, and
0.5% for B, N, P, and S, respectively. The presence of P−N, P−
C, B−C, and S−C bonds was confirmed among many other
types. There was improved performance of the quaternary-
doped graphene as indicated by the effective number of electron
transferred: 3.2.

5. CONCLUSIONS AND FUTURE PROSPECTS
In this review, I have presented a thorough analysis of the
multiple atom doped graphene systems that have been
synthesized and studied theoretically. I first raised the question
of when a foreign atom can be considered a dopant. Although I
have discussed works that claim to have doped graphene with
fluorine, I believe that this atom cannot be considered a dopant
but is a functional group. The case of oxygen is more
complicated because it may possibly replace a carbon atom in
graphene’s framework. However, if oxygen is considered a
dopant in all the chemical forms that it can adopt, most of the
single-atom graphene systems that have been prepared from
graphene oxide are likely to be considered as codoped graphene
systems. The amount of oxygen present may be similar to that
achieved for the introduced dopant. Also, the effect of this
residual oxygen on the properties studied should be clarified.
Will it be the same if oxygen is not present?

Regarding the codoped graphene systems synthesized, the list
includes (but is not limited to) B/N, N/O,N/F, S/N, P/N, P/B,
P/O, S/P, S/B, Si/N, Cl/N, Se/N, TM/N (where TM is a
metal), Fe/S, and Al/Ni. By far, the most studied system is S and
N codoped graphene, followed by P/N, B/N, and TM/N
codoped graphene. From this list of codoped systems, it is crystal
clear that nitrogen dominates the list not only in the number of
systems but also in the list of articles published because it is
present in the four most studied codoped graphene systems.
Therefore, the question emerges: are we codoping graphene or
doping N-doped graphene? The strong electron-withdrawing
properties of nitrogen and its ability to form multiple bonds are
crucial for introducing other heteroatoms. Also, nitrogen can be
present in various forms�pyridinic, graphitic, and pyrrolic�
that can adapt to the needs of the dopant. For example, in B/N
doped graphene, it may prefer to be in graphitic form to pair
boron. However, for sulfur it can adopt a pyridinic structure,
allowing sulfur to be present in thiophenic formCSC (see Figure
4). In the case of transition metals, they can be trapped in an N4
environment, as in porphyrins, anchoring the metal to
graphene’s surface and avoiding the undesired metal clustering.
Therefore, one of the field’s critical challenges is synthesizing
new codoped graphene systems that do not include nitrogen.
Finally, the question of what the effect is of the residual oxygen in
the codoped graphene systems prepared remains open.
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Related to the latter point, it is impossible not to mention the
article by Martin Pumera’s research group11 asking if any “crap”
that we put in graphene will enhance its catalytic activity. I
believe this challenging paper has not received enough attention,
and more studies are needed to give a final answer. In my
opinion, one of the significant problems in the field is that the
large number of methods available to synthesize codoped
graphene makes it almost impossible to have a clear structure−
property relationship. It is crucial to devise more promising
approaches to synthesize codoped graphene systems with a
specific disposition of the dopants. This may be attained, for
example, by using adequate substrates as I proposed for
siligraphene,88 or with the aid of specific molecular precursors
as in the work by Nguyen et al.491 that reported the bottom-up
synthesis of sulfur-doped graphene nanoribbons.
In this review, I have commented on how the multielemental

doped graphene has been utilized in catalysis to develop new
energy storage systems, sensing, protection against microwave
radiation, piezoelectronics, and solar cells. Even though most of
the works report outstanding properties, to the best of my
knowledge, there is no widespread use of these nanomaterials in
the industry. Maybe it is a bit soon because graphene was
synthesized only 18 years ago and the time that doping has been
investigated is even shorter. However, to achieve more maturity,
this field needs an improved relationship with real-life
applications so that society can realize how important graphene
is. To that end, in my opinion, theory can be coupled with
experiment to improve the synthesis protocols improving the
structure−property relationship.
I expect that this review will contribute to introducing more

researchers to this fascinating field and enlarge the list of
codoped graphene systems that have been synthesized.
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