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Abstract: Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease
with limited therapeutic options. This review focuses on the role of retinoids, particularly
all-trans retinoic acid (atRA), and hypoxia in the pathogenesis of IPF. Despite an established
understanding of genetic and environmental factors in IPF, the interplay between retinoid
signaling and the response to hypoxia remains poorly explored due to its complexity. Pre-
clinical evidence suggests that atRA could help reduce pulmonary fibrosis by modulating
TGF-β signaling pathways and epithelial-to-mesenchymal transition (EMT). Additionally,
we mention other diseases where a relationship between hypoxia and retinoids has been
observed. We review how hypoxia, a key factor in the progression of IPF, may influence
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the efficacy of retinoid therapy. Combination strategies are explored to overcome hypoxia-
induced treatment resistance. Finally, we address the complex role of retinoids in lung
regeneration, balancing their potential benefits against the risk of exacerbating fibrotic
processes. This review suggests that retinoids have potential as a treatment or adjuvant
for IPF and highlights the need for further research to elucidate the precise mechanisms of
retinoid action in IPF, particularly in hypoxia.

Keywords: idiopathic pulmonary fibrosis (IPF); retinoids; all-trans retinoic acid (ATRA);
hypoxia; lung regeneration; combination therapy

1. Introduction
Disruption of cell homeostasis in the respiratory system, abnormal tissue repair caused

by a genetic deficiency, and exposure to risk factors lead to a potentially lethal lung disease
termed idiopathic pulmonary fibrosis (IPF) [1]. IPF is an incurable lung disease of unknown
cause that is predominantly seen in people older than 65 years old, and its prevalence
increases with age, suggesting a relation with aging [2–5]. It has a survival median of
2–3 years, and it is characterized for being progressive with a poor prognosis; patients
show progressive dyspnea and an unproductive cough that produces restrictive disrepair
with a decrease in carbon monoxide diffusion capacity, which leads to a declining quality
of life [6,7].

IPF is a multifactorial polygenic disease, and several genetic polymorphisms have
been identified as risk factors for the development of IPF. These include genes related to
telomere integrity, surfactant protein, and Mucin 5B (MUC5B) [8–10], and rare genetic vari-
ants enriched in smooth muscle cells, alveolar epithelial type II (AE2) cells, and endothelial
cells [11]. Approximately 20% of IPF cases are familial [11,12], but it has been suggested
that specific epigenetic patterns, specially DNA methylation, histone modification, lncR-
NAs, and microRNA, affect endophenotypes that underlie the development of IPF [13],
supporting the polygenic nature of the disease.

Environmental factors also play a role in IPF, observing an additive effect of air
pollution and genetic susceptibility in its pathophysiology [14]. Some studies shown that
pollution and exposure to NO2 could increase the risk of development and aggravate
the severity of IPF, leading to an increase in mortality [14–17]. Other known risk factors
are obesity, exposure to tobacco fumes in infancy, anxiety, depression, unhealthy lifestyle
combined with a genetic risk, malnutrition, circadian clock dysfunction, prolonged night
hypoxemia, and gastroesophageal reflux disease [18–25].

The type of immune response also has a role in IPF. It has been shown that IL-17A, the
main cytokine of type 17 immunity, is able to induce EMT through the production of TGF-β,
direct stimulation of fibroblasts and fibrocytes, and autophagy inhibition that otherwise
would protect against lung fibrosis [26]. Furthermore, the subtype of M2 macrophages
present could also be determinant in the development of IPF [27].

It is important to highlight that aging as a risk factor for IPF has recently taken
interest [27,28] since it is known that it results in progressive damage in lung function, even
in healthy individuals [29]. In addition, the transcriptomic data of old animals significantly
correlates with IPF patients [30]. It has been proposed that dysfunction and loss of AE2 cells
together with a failed regeneration contribute to IPF. Inducing lung damage leads to the
expression of aging-related genes even in young mice, which suggests a synergistic effect
of aging and AE2 cell lesions in the development of fibrosis [28]. Furthermore, cellular
senescence has been observed in lung epithelium and mesenchymal cells of IPF patients,
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suggesting that senescent fibroblasts could be enough to start a progressive fibrogenic
reaction in the lung [31,32].

2. Metabolic Changes in Idiopathic Pulmonary Fibrosis
Alterations in glycolysis, beta-oxidation, the tricarboxylic acid cycle, biliary acids,

heme, and glutamate/aspartate metabolism have been found in the lungs of IPF pa-
tients [33,34]. Furthermore, mitochondrial dysfunction is observed in the alveolar epithelia
of IPF patients [35] as well as metabolic heterogeneity. However, it remains unclear whether
this metabolic heterogeneity drives the clinical variability seen in patients or if the reverse
is true.

IPF has been broadly documented to present the altered synthesis and activity of fatty
acids, cholesterol, and other lipids [36–38]; homeostasis of their metabolism is required
to maintain the function of AE2 cells [39]. AE2 cells are key in regeneration and repair
processes, but they seem to be dysfunctional in IPF, probably due to lipid metabolism
alterations [40]. Accordingly, ectopic adipocyte deposits could be observed in subpleural
fibrotic regions [41], and AE2 cells increase cholesterol synthesis and lipofibroblast produc-
tion with aging [42]. In patients with radiation-induced fibrosis, metabolic changes have
been observed that may be due to a high energetic demand in fibroblast proliferation [43].
Fatty acid oxidation is needed to obtain energy in hypoxia [44], and it could explain the
increase in hypoxia-induced transcriptional factors in IPF patients [45].

3. Hypoxia and Progression of Idiopathic Pulmonary Fibrosis
Hypoxia is a key factor in the development and progression of IPF [45–49]. Hypoxia in

fibroblast foci leads to a poor response to treatment in IPF patients, which is why nanoparti-
cles have been designed to release drugs in response to hypoxia, thus improving treatment
response [50]. Oxygen therapy during lung rehabilitation improves lung function and
quality of life [51], and mechanical ventilation might be useful to treat acute exacerbation
in patients with interstitial lung fibrosis [52], which is why hyperbaric oxygen has been
proposed as treatment for lung fibrosis [53].

Progressive lung fibrosis is the result of dysfunctional tissue repair and is charac-
terized by extracellular matrix accumulation and fibroblast proliferation, activation, and
invasion. We have suggested that hypoxia-inducible factor 2α (HIF-2α), a paralog of HIF-1
and HIF-3α, is a key factor in IPF development by inhibiting lung repair or regenera-
tion [54–56]; this is evidenced by its elevated expression in pulmonary fibroblasts from IPF
patients, in contrast to its absence in the epithelial cell epithelium [45]. In our hypothesis,
hypoxia-response pathways are needed for regeneration, but, if maintained, they could
activate feedback circuits related to progression of the disease [57]. This is consistent with
a recent study showing that HIF2-α activation promotes the development of aberrant
epithelial cells and, thus, fibrosis progression [58]. In this work, HIF2-α inhibition attenu-
ated pulmonary fibrosis in several models by promoting alveolar repair through alveolar
epithelial cell differentiation [58]. These results suggest that HIF2-α inhibition represents
a promising therapeutic strategy for IPF. It is important to note that further investigation
is required, considering the heterogeneity of pulmonary fibroblasts obtained from IPF
patients [54,59].

4. Retinoid Uptake, Metabolism, and Storage
Though the term vitamin A refers to all-trans-retinol (atROL), it also groups its natural

derivatives and compounds with a similar biological activity. Sporn proposed the term
retinoid to name all the natural and synthetic structural analogs of retinol either with its
biological activity or not [60–62]. Since then, retinoid has been used preferentially over
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vitamin A, and its definition has been extended to include compounds with biological
activity similar to retinol but structurally different [60,63].

Retinoids cannot be synthesized de novo by animals; they have to be provided in the
diet as retinol, retinyl esters (REs), or in the form of provitamin A carotenoids. Retinol
and carotenoids are directly absorbed through diffusion by enterocytes in the small intes-
tine [64], while RE must be first hydrolyzed to atROL in the intestinal lumen by non-specific
pancreatic enzymes (e.g., pancreatic triglyceride lipase and cholesteryl ester lipase) or, in
the mucosal cell surface, by a specific retinyl ester hydrolase, i.e., the brush border phos-
pholipase B. On the other hand, the intestinal absorption of β-carotenes is mediated by
scavenger receptor class B (SR-B1) [64]. After cellular uptake, atROL binds to cellular
retinol binding proteins (CRBPs) that mediate its transport, protection, and solubilization
to facilitate further enzymatic reactions (Figure 1).

 
Figure 1. Retinoid metabolism. Retinoids are ingested in the diet and absorbed in the small intestine.
Once they are transported into the enterocytes, they can travel through the lymphatic system and
bloodstream in the form of all-trans-retinol (atROL) attached to cellular retinol binding proteins
(CRBP) or albumin, while retinyl esters (REs) are incorporated into chylomicrons. Most retinoids are
captured by hepatocytes, while a part of RE is hydrolyzed by lipoprotein lipase (LPL) into atROL and
also taken up by extrahepatic tissues. Both RE and atROL can be stored in hepatocytes and stellate
cells. PAC, provitamin A carotenoids; RE, retinyl ester; atROL, all-trans-retinol; SR-B1, scavenger
receptor class B; CRBP, cellular retinol binding protein; BCMO1, β-carotene-15,15′-monooxygenase 1;
BCO2, β,β carotene 9′,10′-dioxygenase; β-AC, β-apocarotenal; atRA, all-trans-retinoic acid; LRAT,
lecithin:retinol acyl transferase; LPL, lipoprotein lipase; LDLR, LDL receptor; RPB4, retinoid-binding
protein 4.

In the enterocyte, carotenoids could be symmetrically or asymmetrically cleaved.
The former is performed by the cytosolic enzyme β-carotene-15,15′-monooxygenase 1
(BCMO1) and produces two molecules of all-trans-retinal (atRAL) [65], while the asym-
metrical cleavage, which yields two β-apocarotenals of different length, is carried out by
enzymes such as mitochondrial β,β carotene 9′,10′-dioxygenase (BCO2) [66]. The longer
β-apocarotenal could then be (i) cleaved to yield atRAL [67], (ii) oxidized to β-carotenoid
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acid and then processed in a β-oxidation-like reaction producing atRA [67,68], or (iii) act as
signaling molecule [69,70]. The atRAL thus produced from carotenoids could be further
reduced to atROL by an intestinal retinal reductase or oxidized to atRA by a retinal dehy-
drogenase. Both metabolites can be directly secreted to the bloodstream bound to CRBP
or albumin.

atROL could then be esterified to fatty acids mainly by the enzyme lecithin:retinol
acyl transferase (LRAT) [71,72]. Diacylglycerol acyltransferase 1 (DGAT1) catalyzes this
reaction when atROL is not bound to a CRBP, e.g., when vitamin supplements are taken
and there is an excess of atROL [73,74]. REs thus produced are packed in chylomicrons
together with uncleaved carotenoid triglycerides, cholesteryl esters, and apoprotein B-48
(Figure 1) [64,75].

The nascent chylomicrons are secreted into the lymphatic ducts [76], and subsequently,
they reach the blood circulation. From here, chylomicron RE could be hydrolyzed by
lipoprotein lipase (LPL), and the released atROL is taken up by extrahepatic tissues such as
adipocytes [77] and skeletal and cardiac muscles [78]. Nevertheless, about 75% of the REs
and pro-retinoids present in chylomicrons remnants (CMRs) are captured by the liver [79].
This process is complex and involves several enzymatic reactions and retinol-binding
proteins acting in an ordered way; in fact, some steps in the process of hepatic storage
and the subsequent mobilization of retinoids and REs are still not totally characterized.
In the liver, hepatocytes take the CMRs either by direct endocytosis or by a receptor-
mediated process through the low-density lipoprotein (LDL) receptor, which recognizes
with high affinity apoprotein-E (ApoE), or by the alternative receptor, i.e., LDL receptor-
related protein. The REs can be hydrolyzed to produce atROL and transferred by an unclear
mechanism to the hepatic stellate cells (HSCs), where atROL is esterified again by LRAT and
stored inside cytoplasmic lipid droplets [80]. The identity of the RE hydrolases responsible
for releasing atROL from REs stored in lipid droplets remains uncertain; however, it is
suggested that four enzymes are involved at least in vitro: esterase-10 (ES-10), LPL, PLRP2,
and hormone sensitive lipase (HSL).

On the other hand, the mechanisms involved in the transport of retinoids between
hepatocytes and HSCs are unclear, but it is known that retinoid-binding protein 4 (RPB4) is
the natural ligand for retinoids in hepatocytes [81]. RPB4 is synthetized in the endoplasmic
reticulum as apoRPB4 and accumulates until atROL is available to bind it, and then it
is secreted from hepatocytes into the bloodstream. RPB4 is also expressed in different
extrahepatic tissues [82,83]; in fact, several reports suggested that extrahepatic RPB4 is
responsible for delivering atROL from tissues (adipose tissue, kidneys, retinal pigment
epithelium, testes, brain, and lungs) into the liver [83]. Rpb4 −/− mice accumulate retinoids
in HSCs, but the retinoids cannot be mobilized [84], while the knockout of Stra6, the tissue
receptor for RPB4, is lethal [85]. These findings show that when there is a deficiency in RPB4,
the liver is able to package and deliver retinoids in VLDL, highlighting the importance
of the regulatory lipoproteins such Apo C-II and Apo E in the transport of retinoids to
the tissues. In this sense, under these conditions, the roles of LPL and Stra6 gain more
relevance (Figure 1).

Retinoids reach the lungs through the bloodstream in several ways: (i) REs and
carotenoids in chylomicrons, chylomicron remnants, VLDL, LDL, and HDL; (ii) atROL
bound to extracellular retinol binding protein 4 (RBP4); (iii) atRA bound to albumin; and
(iv) β-glucuronides of atROL and atRA. Retinoids then could suffer reactions similar to
those that occur in the enterocyte, leading to the formation of REs, atRAL, and atRA. REs
are stored mainly in lipid droplets [86], and their accumulation in the lungs is enhanced
when RA or RA analogs are provided in the diet with atROL [87]. atRAL is produced by
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retinol dehydrogenase (RDH) or alcohol dehydrogenase (ADH) and can be further oxidized
to atRA by retinaldehyde dehydrogenases (RADHs).

5. Retinoic Acid Receptors
atRA is the main retinoid signaling molecule, and it exerts its function by migrating

to the nucleus bound to either cellular retinoic acid-binding protein 2 (CRABP2) or fatty
acid-binding protein 5 (FABP5). CRABP2-bound atRA binds to one of the three retinoic acid
receptor (RAR) isotypes (i.e., α, β, and γ), which can further bind to Retinoid X receptors
(RXR) to promote the transcription of target genes with a retinoic acid response element
(RARE) in its sequence. FABP5-bound atRA binds to the transcription factor peroxisome
proliferator-activated receptors beta/delta (PPARβ/δ) [88]. RAR and PPARβ/δ have
opposing roles: RAR has anticarcinogenic activity by promoting cell differentiation, cell
cycle arrest, and apoptosis, while PPARβ/δ protects from apoptosis and induces cell
proliferation [88,89]. atRA binds mainly to RARs, but binding to a specific transcriptional
factor might be tissue-specific and depend on the concentration of atRA and expression
levels of CRABP2, FABP5, RARs, and PPARβ/δ [88]. Excess atRA is degraded by enzymes
of cytochrome P 450 subfamily 26 (CYP26).

Other atRA isomers are also present in the body, i.e., 9-cisRA, 13-cisRA, 11-cisRA, and
9,13-dicisRA, but atRA is the main biologically active isomer. 13-cisRA and 9,13-dicisRA
levels are equal or greater than atRA, but they cannot bind to nuclear retinoid receptors,
while 9-cisRA can bind to either RARs or RXRs but has been found at very low levels in
the human body except in the liver or in plasma following liver consumption [90]. The
fact that unlike atRA 9cRA can directly bind to RXR suggests an additional role for 9cRA
in promoting the transcription of genes with RXR responsive elements (RXRE). 13-cisRA
could exert its function by isomerizing to atRA and acting as a reservoir.

atRA and other retinoids could also bind to retinoic acid-related orphan receptors
(ROR) β and γ to inhibit their transcriptional activity in some neuronal cell lines when
tested in a GAL4/UAS assay [91]. RORγ and its related receptor RORα bind and are
negatively regulated by cholesterol and other oxysterols. Furthermore, the synthesis of
atRA is also regulated by cholesterol and oxysterols through the upregulation of RADH [92].
Unlike RARs, this family of receptors binds DNA as monomers, and they are unable to
bind to RXRs [93]. Their activity could be antagonized by REV-ERB nuclear receptors,
which bind to the same ROR response elements (ROREs) in the DNA [93,94]. By regulating
the transcription of their target genes, RORs are involved in immunity, circadian cycle
regulation, embryonic development, cell differentiation, and metabolism [93,94], and it has
been shown that RORα, which is also expressed in lungs, has a role in the development of
hepatic and gut fibrosis [95,96].

6. Retinoid Receptors and Hypoxia
RORα receptor plays a role in hypoxia response and the regulation of physiological

and pathological processes, including neuroprotection and cardiovascular function [91–99].
In the brain, RORα protects neurons and astrocytes from hypoxia- and stress-induced
apoptosis, possibly by downregulating HIF-1α [99]. In cancer, RORα interaction with
POU6F1 inhibits HIF1A transcription, thus suppressing the proliferation of adenocarcinoma
cells in the lung [100]. Furthermore, hypoxia regulation of HIF-1α affects the function
of regulatory T cells that express RORγt by modulating IL-10 production and immune
response [101]. Then, RORα modulates the cell response to hypoxia and regulates key
processes in diverse pathologies, highlighting its potential as a therapeutic target.
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Hypoxia also affects the expression and function of PPAR and retinoid signaling. In
cerebrovascular events, hypoxia induces LMO4 expression, a cofactor needed for PPARγ-
and PPARα-mediated neuroprotection [102]. In cardiac myocytes, hypoxia suppresses
the activity of the PPARα/RXR complex, thus regulating fatty acids metabolism [103,104].
Both retinoids and hypoxia induce expression of lipid transporters ABCA1 and ABCG1
needed for lipid homeostasis and for atherosclerosis prevention [105] (Figure 2).

Figure 2. Retinoid receptors and hypoxia. The activation of retinoic acid-related orphan receptor
α (ROR α) ameliorates the deleterious mechanisms induced by hypoxia, while the peroxisome
proliferator-activated receptor (PPAR) and Retinoid X receptor (RXR) signaling pathways are affected
by hypoxia.

7. Retinoids in Lung Regeneration and Fibrosis: A Delicate Balance
Lung development during embryogenesis is highly susceptible to changes in atRA

levels, and its deficiency leads to lung hypoplasia, agenesis, or aplasia. The lung bud
primordium is unable to form from lung progenitor cells in atRA-deficient foreguts due
to low Fibroblast Growth Factor 10 (FGF10) levels. Downregulation of FGF10 synthesis is
achieved by the (i) hyperactivation of TGF-β signaling and (ii) overexpression of the Wnt
pathway inhibitor DKK1 [106].

Lung regeneration involves activation of progenitor cells through several molecular
pathways that work together to replace damaged cells, thereby restoring the integrity of
the respiratory system. In adult tissues, these progenitor cells have the ability to self-renew
and generate different types of lung cells, including alveolar epithelial cells responsible for
gas exchange and bronchial cells that maintain airway integrity. Under normal conditions,
the lung appears to be largely quiescent, with the ability to respond to injury primarily
through the proliferation and differentiation of progenitor cells resident in the pulmonary
epithelium [107]. Regeneration could recapitulate development depending on the type
of injury and also involves the modulation of growth signals and transcription factors
that coordinate cell cycle entry and differentiation. As this process is intricate and highly
regulated, we review the role of retinoic acid and receptors in its modulation.

Since the 1990s, studies by Massaro and Massaro have established that atRA is involved
in postnatal lung regeneration [108]. It has even been shown that it may be capable of
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restoring regeneration in pathologies such as emphysema in animal models [109,110]. atRA
promotes AE2 cell proliferation, inhibits apoptosis, and induces differentiation into AE1
cells [111]. Furthermore, reservoirs of retinoic acid have been described in interstitial cells,
which are stored in the alveolar wall, increasing the expression of CRPB 1 and associated
with the formation of new alveoli [112].

Alveolar epithelium regeneration is beginning to be understood thanks to the dis-
covery of the stem cells involved [113,114]. It has been proposed that a subpopulation
of Wnt-responsive AE2 cells and fibroblasts are responsible for recovering the alveolar
epithelium. This interconnection between epithelial cells and fibroblasts drives the capacity
to support the alveolar niche and differentiation. It is important to note that, despite the
clear association between atRA and regeneration, the precise mechanisms have yet to be
fully determined. For instance, in both mouse and human organoids, direct treatment with
atRA resulted in smaller organoids with reduced differentiation, while the inhibition of
atRA led to organoid growth and differentiation through the activation of the YAP and
FGF pathways [115].

Single-cell RNA sequencing (RNA-Seq) has revolutionized our understanding of
cellular diversity by enabling the identification of previously unrecognized cell populations
and providing new insights into the complexities of normal epithelial and mesenchymal
cells. This technique has specifically established that lipofibroblasts, endothelial cells,
and alveolar epithelial cells are capable of capturing retinoids [116]. In the context of
tissue regeneration, the interstitial space plays a critical role, with retinoic acid signaling
regulating the activation of fibroblasts and/or myofibroblasts through FGF pathways,
particularly the PDGF-α receptor pathway, which is crucial for niche formation [117–121].
Furthermore, key signaling pathways involved in development, such as TGFβ and Wnt,
also play an active role in this process [122,123].

In the case of IPF, the pathogenesis of the disease has been associated with the aberrant
response of epithelial cells and excessive extracellular matrix (ECM) secretion by fibrob-
lasts. Additionally, atRA influences the regulation of pathways involved in the synthesis
and degradation of ECM proteins, such as collagen, laminin, and fibronectin [124]. The
epithelial–mesenchymal interactions, similar to those observed during tissue regeneration,
are fundamental to this pathology. There is an overlap of signaling pathways regulated by
atRA, including those involving FGF in fibroblasts, as well as TGF-β and Wnt signaling
in both epithelial and mesenchymal cells. It is important to highlight that, while normal
lung regeneration is efficient in repairing mild damage, aging, and epigenetic changes in
IPF, it can be disrupted, leading to impaired regeneration or pathological changes. In fact,
RNA-Seq studies have demonstrated the emergence of subpopulations of epithelial and
mesenchymal cells that contribute to the progression of the disease [125]. Using the lung
organoid model, it has been discovered that AE2 cells may have intermediate transition
states associated with aging, cellular senescence, TGF-β, and HIF1 [126]. Particularly, it
has been demonstrated in aging models that atRA indirectly induces reciprocal signal-
ing of PDGFA, which is essential for establishing the fibroblast niche that supports the
differentiation and repair of alveolar epithelial cells [119,127].

These findings suggest a potential strategy to influence this pathogenesis; however,
this perspective must incorporate the bivalent potential of regeneration. Therefore, it can
be inferred that atRA signaling, through its regulation, is indirectly involved in both regen-
eration and IPF and potentially in the associated metabolic alterations [57]. Understanding
epithelial–mesenchymal interactions is crucial for unraveling the pathogenesis of IPF, par-
ticularly in the formation of the histological pattern of usual interstitial pneumonia (UIP),
a hallmark of the disease. Recent studies suggest that UIP could be considered a distinct
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diagnostic entity, highlighting the importance of these interactions in both the diagnosis
and potential treatment strategies for IPF [128].

8. All-Trans Retinoic Acid in Lung Fibrosis
As mentioned earlier, ADH1B has an important role in retinoid metabolism by cat-

alyzing the conversion of atROL in atRA. Downregulation of ADH1B has been observed
in some types of cancer, e.g., gastric, colorectal, and lung, where the reduction of atRA
contributes to alterations in cell proliferation and death [129–131]. Furthermore, in colon
cancer, loss of ADH1B in cancer-associated fibroblasts is linked to an increase in the tumor-
promoting cytokine IL-6 [132]. Moreover, ADH1B expression is regulated by bile acids
through the FXR receptor, which links retinoids and bile acid metabolisms [133]. Finally,
ADH1B expression levels decrease with age [134].

atRA inhibits the radiation-induced proliferation mediated by IL-6 of a human embry-
onic lung fibroblastic cell line transformed by SV40 (W138VA-13) and IMR-90 cells, also
derived from fetal lung fibroblasts. Likewise, IL-6 levels were reduced in the supernatants
of irradiated cells treated with atRA [135]. The same group published in 2006 two models of
lung fibrosis induced by exposing mice to Bleomycin (BLM) and radiation. In both models,
intraperitoneal administration of atRA increased the overall survival rate and attenuated
the increase in IL-6, TGFβ1, and collagen AI mRNA levels [136].

Xiaodong et al. (2013) reported that atRA attenuated lung fibrosis in a BLM model
in rats by regulating TGBβ1/Smad3 in a concentration-dependent manner [137]. In the
same way, atRA reduced the expression of EMT molecules present in lung fibrosis, such as
α-SMA and E-cadherin [137].

Since the last century, retinoids have been used as immunomodulators and regulators
of fibroblast collagen production. Fibroblasts derived from normal lung cultured in the
presence of TGFβ1 showed an increase in the production of type I and III collagen. However,
when atRA was added to these cultures, collagen production was inhibited. That regulation
is mediated by nuclear retinoic acid receptors [138]. More recent studies in A549 cells
pre-stimulated with TGFβ1 showed that atRA completely inhibited the phosphorylation of
Smad2/3 (pSmad2/3) [139].

The development of lung fibrosis in BLM-treated rats was associated with low levels
of RE, α-tocopherol, and vitamin D3 [140]. In mice treated with BLM, atRA attenuated
the upregulation of IL-17A, IL-10, IL-6, EphA2, EphriA1, PI3K 110γ, Akt, IL-6, TNF-α,
and TGFβ1, which reduced pulmonary fibrosis and significantly alleviated lung fibro-
sis [141,142] (Figure 3).

More recently, a research group demonstrated the interplay between atRA and hedge-
hog signaling (Hh). Rats instilled with intratracheal BLM were treated with atRA and
Forskolin (FSK), an inhibitor of Hh signaling, which synergistically reversed the effect
of BLM-induced lung fibrosis. FSK and atRA ameliorated oxidative stress and inflam-
mation, reduced TGF-1 levels, and reversed the effect on the expression of Ptch-1, Smo,
and Gli-2. Finally, FSK inhibited the Hh pathway and activated protein kinase A (PKA),
which is involved in the phosphorylation of RAR/RXR, a key factor in retinoid receptor
activation [143].

BLM-treated rats have an increase in TGF-β1/Smad, PI3K/Akt/mTOR, and NF-κB
pathways, resulting in the development of lung fibrosis. Retinoids attenuated lung fibrosis
mainly by inhibiting the inflammatory response through downregulating the expression of
NF-κB and by inhibiting the release of the downstream cytokines TNF-α, INF-γ, and IL-13.
Inhibition of fibrosis occurs via downregulation of the TGFβ/Smad signaling pathway in
lung tissue (Figure 3) [144]. The observed effects of retinoids in IPF are summarized in
Table 1.
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Figure 3. Retinoids and fibrosis. A fibrotic stimulus can upregulate transforming growth factor
beta 1 (TGFβ1), which binds to its receptor and activates the phosphatidylinositol 3-kinase (PI3K)
and serine/threonine-protein kinase (Akt) signaling pathways, as well as the Smad 2/3 signaling
pathway, which can induce the production of fibrotic proteins. The all-trans-retinoic acid (atRA) can
inhibit the TGFβ1 signaling pathway and downregulate the expression of EphA2, EphriA1, PI3K
110γ, proinflammatory cytokines, and nuclear factor kappa β (NF-κβ).

Table 1. Observed effects of retinoids in lung fibrosis.

Model Retinoid Observed Effects References

Human embryonic lung
fibroblastic cell atRA Reduced the increment of IL-6 levels [135]

LF-BLM in mice atRA Increased the overall survival rate and attenuated the
increase in IL-6, TGFβ1, and collagen AI mRNA levels [136]

LF-BLM in rats atRA Reduced the expression of EMT molecules (α-SMA
and E-cadherin) [137]

Fibroblasts derived
from normal lung atRA Collagen production was inhibited by nuclear retinoic

acid receptor activation [138]

A549 cells RA Completely inhibited the phosphorylation of Smad2/3 [139]

LF-BLM in rats atRA Attenuated in the expression of IL-17A, IL-10, IL-6,
and TGFβ1 [140,142]

LF-BLM in mice atRA Attenuated the upregulation of EphA2, EphriA1, PI3K
110γ, Akt, IL-6, and TNF-α [141]

LF-BLM in rats atRA
Ameliorated oxidative stress and inflammation, reduced
TGF-1 levels, and reversed the effect on the expression of

Ptch-1, Smo, and Gli-2 expression
[143]

LF-BLM in rats carotene

Downregulation of the TGFβ/Smad signaling pathway
via downregulation of TGFβ1, Smad2/3, and collagen I

in lung tissue and by inhibiting the release of the
downstream cytokines TNF-458 α, INF-γ, and IL-13

[144]

BLM, Bleomycin; atRA, all-trans retinoic acid, LF-BLM; lung-fibrosis-induced BLM model in mice.
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9. Hypoxia–Retinoid Interaction in Disease
In the tumor microenvironment, hypoxia promotes therapy resistance and cancer pro-

gression, as can be seen in ductal and hepatocellular carcinomas [145–147]. Retinoids such as
atRA and fenretinide have shown potential as novel cancer therapies by promoting a favorable
epithelial phenotype and reducing cancer stem cells [145], but their efficiency is also limited
by hypoxia [148]. However, the combination of retinoids with PPARγ and RXR agonists
in thyroid cancer [149] and of atRA with antiangiogenic therapy in breast cancer [150], as
well as with the restoration of proteins needed for retinoid signaling such as RBP1 [151], are
promising strategies to enhance the efficiency of cancer therapy in hypoxia-induced resistance.

Hypoxia plays a crucial role promoting tumor growth in the glioblastoma through up-
regulating HIF-1α, as shown by the downregulation of GRIM-19 [152]. Hypoxia-reducing
strategies, such as the use of the carotenoid crocetin, have shown therapeutic poten-
tial [153,154]. Retinoids have a dual effect on glioma angiogenesis by stimulating the
formation of blood vessels at low doses and blocking their formation at higher doses, which
could induce differentiation and apoptosis [155,156]. In addition, atRA can revert the stem
cell-like properties induced by hypoxia in multiple myeloma, suggesting its usefulness for
tumor progression in low-oxygen conditions [157].

In leukemia, hypoxia has a complex role by influencing differentiation and treatment
resistance. Retinoids modulate leukemic cell differentiation, often through the HIF path-
way [158–160]. atRA, mixed with other agents, has shown efficiency in the treatment of
high-risk acute promyelocytic leukemia (APL) [161]. However, hypoxia might induce resis-
tance to retinoids such as fenretinide in acute lymphocytic leukemia (ALL) [162]. Inhibition
of HIF-1α, e.g., by using EZN-2208, could be combined with atRA to eradicate leukemia-
initiating cells [163]. In addition, hypoxia might potentiate As2O3-induced differentiation
in APL through HIF-1α [164]. The thyroid hormone, through activation of heterodimer
RXR/TR, can also upregulate HIF-1α [164].

In neuroblastoma, intermittent hypoxia promotes an aggressive and undifferenti-
ated phenotype through HIF-1α and HIF-2α, thus promoting resistance to retinoid ther-
apy [165,166]. However, the inhibition of HIF-1α and HIF-2α combined with atRA induces
differentiation and senescence, suggesting a promising therapy [166]. Furthermore, treat-
ment with atRA and demethylating drugs restores sensitivity to retinoid therapy and
activates HIF-2α as a tumor suppressor [167].

In the myocardium, myocardial ischemia–hypoxia has a dual role: it causes oxidative
stress and apoptosis, thus damaging cardiac cells [168–170], and modulates retinoid activity,
which influences the heart damage response. Activation of RORα and RXR by retinoids
protects from hypoxia/reoxygenation injury [168,170]. In contrast, a local increase in
retinoids in the infarcted area worsens the prognosis [171,172]. The modulation of retinoid
uptake and RAR signaling together with HIF-1α regulation are potential therapies to
mitigate myocardial damage induced by hypoxia [171,173,174].

In the kidneys, hypoxia induced by ischemia/reperfusion or vitamin A deficiency plays
a crucial role in kidney damage and renal anemia by affecting the expression of protecting
factors such as RORα and erythropoietin synthesis [175–177]. Retinoids, particularly atRA,
have a protective effect by counteracting the harmful effects of hypoxia, increasing cell survival,
downregulating proinflammatory and pro-fibrotic factors, and regulating the genetic expression
of LMX1B, prohibitins, and components of the renin-angiotensin–aldosterone system [178–181].
In addition, both hypoxia and atRA induce HIF-1α y RARβ expression, suggesting a link
between retinoid signaling and hypoxia response in kidney protection [182–184]. However,
in clear cell renal carcinoma, both hypoxia and vitamin A deficiency activate ATF4 signaling,
thus contributing to tumor progression [185]. On the other hand, in kidney cell carcinoma, the
retinoid response depends on VHL function, suggesting a potential therapeutic marker [186].
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10. Conclusions
Hypoxia has a key role in progression and therapy resistance in several types of cancer

and in myocardial and kidney damage. Hypoxia, a common component in many pathologies,
is intimately associated with retinoid signaling. Retinoids like atRA and fenretinide have
the potential to counter the negative effects of hypoxia by promoting cell differentiation,
lowering cancer stem cells, and protecting against tissue damage. However, their efficiency is
limited by hypoxia and, in some cases, might even have harmful effects. The combination of
retinoids with other therapies, e.g., PPARγ/RXR agonists, antiangiogenic drugs, HIF pathway
inhibitors, demethylating agents, and the recovering of key proteins in the retinoid pathway,
are promising strategies to overcome hypoxia-induced resistance, hence improving therapy
efficiency. Furthermore, the regulation of retinoid signaling and hypoxia response through
PPAR/RXR and RORα receptors is emerging as a relevant therapy in several pathologies.

Likewise, atRA has shown promise as a therapy for IPF by inhibiting fibroblast pro-
liferation, decreasing inflammation, and reducing collagen deposition in preclinical trials.
Its efficiency is based on the regulation of key pathways like TGFβ1/Smad3 and on the
reversal of EMT. However, like other pathologies, hypoxic conditions in the microenvi-
ronment could also limit atRA efficiency. By promoting therapy resistance and altering
retinoid signaling, hypoxia might reduce the ability of atRA to revert fibrosis. Nevertheless,
the combination of atRA with other therapies like Hh signaling inhibitors or antioxidants
could potentially lead to better clinical outcomes for IPF patients.

The presence of different retinoid nuclear receptors in the cells might explain the
opposite role of retinoids depending on their expression and the cell type where they
are present, e.g., the anticarcinogenic activity of RAR and the cell proliferation activity of
PPARβ/δ [88]. Furthermore, the presence and relative abundance of different retinoids,
such as other atRA isomers, could also account for the different effects [90]. This must be
studied to better understand their role in fibrosis.

Some things to take into consideration before administering retinoids include the
reported gender-related differences in topically administered retinoids [187], though there
are still no studies on oral administration. However, given that there are differences in
retinoid serum concentration between genders [188], a differential response should be
considered. Furthermore, retinoids are contraindicated during pregnancy and while breast-
feeding due to their teratogenic properties, and the initiation of contraception in conjunction
should be considered when used as a therapy in women of childbearing potential. Other
retinoid contraindications, such as an allergy to retinoids or hypervitaminosis A, should be
contemplated before starting a treatment [189].

In summary, atRA has noteworthy potential for IPF treatment, but further research is
required to better understand and overcome hypoxia-induced resistance to develop more
efficient therapies.
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BCMO1 β-carotene-15,15′-monooxygenase 1
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CRABP2 retinoic acid-binding protein 2
CRBP cellular retinol binding proteins
CYP26 cytochrome P 450 subfamily 26
DGAT1 diacylglycerol acyltransferase 1
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EMT epithelial–mesenchymal transition
FABP5 fatty acid-binding protein 5
FGF fibroblast growth factor
FGF10 Fibroblast Growth Factor 10
FSK Forskolin
Hh hedgehog signaling
HIF hypoxia-inducible factor
HSL hormone sensitive lipase
HSC hepatic stellate cells
IPF idiopathic pulmonary fibrosis
LDLR LDL receptor
lncRNAs long non-coding RNAs
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LRAT lecithin:retinol acyl transferase
MUC5B Mucin 5B
PI3K phosphatidylinositol 3-kinase
PPARβ/δ peroxisome proliferator-activated receptors be-ta/delta
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RARE retinoic acid response element
RBP4 retinoid-binding protein 4
RDH retinol dehydrogenase
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RXR Retinoid X receptors
RXRE RXR responsive elements
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TGF-β transforming growth factor-beta
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