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Abstract

Background: Matrix metalloproteinase-9 (MMP-9) contributes to chronic lymphocytic leukemia (CLL) pathology by
regulating cell migration and preventing spontaneous apoptosis. It is not known if MMP-9 is involved in CLL cell response to
chemotherapy and we address this in the present study, using arsenic trioxide (ATO) and fludarabine as examples of
cytotoxic drugs.

Methods: We used primary cells from the peripheral blood of CLL patients and MEC-1 cells stably transfected with an empty
vector or a vector containing MMP-9. The effect of ATO and fludarabine was determined by flow cytometry and by the MTT
assay. Expression of mRNA was measured by RT-PCR and qPCR. Secreted and cell-bound MMP-9 was analyzed by gelatin
zymography and flow cytometry, respectively. Protein expression was analyzed by Western blotting and immunoprecip-
itation. Statistical analyses were performed using the two-tailed Student’s t-test.

Results: In response to ATO or fludarabine, CLL cells transcriptionally upregulated MMP-9, preceding the onset of apoptosis.
Upregulated MMP-9 primarily localized to the membrane of early apoptotic cells and blocking apoptosis with Z-VAD
prevented MMP-9 upregulation, thus linking MMP-9 to the apoptotic process. Culturing CLL cells on MMP-9 or stromal cells
induced drug resistance, which was overcome by anti-MMP-9 antibodies. Accordingly, MMP-9-MEC-1 transfectants showed
higher viability upon drug treatment than Mock-MEC-1 cells, and this effect was blocked by silencing MMP-9 with specific
siRNAs. Following drug exposure, expression of anti-apoptotic proteins (Mcl-1, Bcl-xL, Bcl-2) and the Mcl-1/Bim, Mcl-1/Noxa,
Bcl-2/Bax ratios were higher in MMP-9-cells than in Mock-cells. Similar results were obtained upon culturing primary CLL
cells on MMP-9.

Conclusions: Our study describes for the first time that MMP-9 induces drug resistance by modulating proteins of the Bcl-2
family and upregulating the corresponding anti-apoptotic/pro-apoptotic ratios. This is a novel role for MMP-9 contributing
to CLL progression. Targeting MMP-9 in combined therapies may thus improve CLL response to treatment.
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Introduction

Chronic lymphocytic leukemia (CLL) is characterized by the

accumulation of malignant CD5+ B lymphocytes in the peripheral

blood and their progressive infiltration of lymphoid tissues [1,2].

Frontline therapies for CLL consist in the administration of the

purine analogue fludarabine, alone or in combination with other

drugs such as anti-CD20 monoclonal antibodies or kinase

inhibitors [3–5]. Because CLL is a heterogeneous disease, patients

carrying specific molecular markers such as del17p13, unmutated

IgVH and/or high expression of ZAP-70 or CD38, do not respond

well to these treatments [4], making it crucial to continue

searching for new compounds useful in these cases. In this regard,

arsenic trioxide (ATO), an efficient therapy in acute promyelocytic

leukemia [6,7], has been shown to induce apoptosis in all CLL

cases including those with unfavorable prognosis [8]. We

previously reported that the mechanism by which ATO induces

CLL cell death is via c-jun N-terminal kinase activation and

PI3K/Akt downregulation and this was observed in all samples

tested, regardless of their prognostic markers [9]. ATO may thus

constitute an efficient alternative/complementary treatment for

CLL.

As with most tumors, CLL cell response to therapy is influenced

by the microenvironment, whose cellular and molecular components
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provide survival signals that favor drug resistance [10,11]. A

consistent component of CLL niches is matrix metalloproteinase-9

(MMP-9) [12], which is also produced by CLL cells and upregulated

by several stimuli [13–15]. Endogenous or/and exogenous MMP-9

binds to CLL cells via specific docking receptors and regulates cell

migration [16]. Surface-bound MMP-9 also prevents CLL cell

spontaneous apoptosis by a non-catalytic mechanism, consisting in

Lyn/STAT3 activation and Mcl-1 upregulation [17], thus contrib-

uting to CLL progression.

It is not known if MMP-9 affects CLL cell response to

chemotherapy. This is important to elucidate since MMP-9, as

other MMPs, may play dual roles in apoptosis, either facilitating or

antagonizing drug action [18,19]. To approach this issue, we have

studied whether MMP-9 is modulated by fludarabine or ATO

treatment and whether it is involved in the CLL cell response to

these compounds. Using primary CLL cells and a CLL-derived

cell line stably expressing MMP-9 [20], we show that MMP-9

contributes to chemoresistance by preventing downregulation of

anti-apoptotic proteins.

Materials and Methods

Patients, cells and cell culture
Approval was obtained from the CSIC Bioethics Review Board

for these studies. All patients signed an informed consent before

blood was drawn. B-lymphocytes were purified from the 20 CLL

samples listed in Table 1 as reported [9,17], using Ficoll-Paque

PLUS (GE Healthcare, Uppsala, Sweden) centrifugation and, if

necessary, negative selection with anti-CD3-conjugated Dyna-

beads (Invitrogen Dynal AS, Oslo, Norway). The resulting B cell

population was mostly .90% CD19+, determined on a Coulter

Epics XL flow cytometer (Beckman Coulter, Fullerton, CA).

Primary stromal cells were obtained from a bone marrow sample

of one CLL patient after 3 week culture in IMDM (Lonza,

Amboise, France)/15% FBS, and used for up to 4 weeks. The HS-

5 stromal cell line was obtained from Dr. Atanasio Pandiella

(Cancer Research Center, Salamanca, Spain) and cultured in

RPMI/10% FBS. The MEC-1 cell line, established from a CLL

patient [21], was obtained from Dr. Enrique Ocio (Cancer

Research Center, Salamanca), authenticated by short tandem

repeat DNA typing (Secugen S.L., Madrid, Spain) and cultured in

IMDM/10% FBS. MMP-9- and Mock-MEC-1 cells were

generated by lentiviral transfection exactly as described [20].

Briefly, full-length human proMMP-9 DNA cloned in the pEGFP-

N1 vector was amplified by PCR using cloned Pfu DNA

polymerase (Agilent Technologies, Waldbronn, Germany) and

inserted into the pCR-Blunt vector (Blunt Zero PCR cloning kit,

Invitrogen). After restriction enzyme digestion, DNA sequences

were inserted into the pRRL sin18.CMV.IRES.eGFP lentiviral

vector (Dr. Juan Carlos Ramı́rez, Viral Vector Unit, Centro de

Investigaciones Cardiovasculares, Madrid). Control constructs

(Mock) contained only GFP DNA. Viral stocks were obtained

after vector transfection of HEK293T cells and used to infect

MEC-1 cells. GFP-expressing cells were selected by several cell

sorting steps until more than 95% of the cells were clearly positive

for expression. Cells were maintained in IMDM medium (Lonza,

Basel, Switzerland), 10% fetal bovine serum (FBS).

Antibodies and reagents
Rabbit polyclonal antibodies (RpAb) to MMP-9 (sc-6841R),

Mcl-1 (sc-819), Bax (sc-526), Noxa (sc-52), Bcl-xL (sc-634),

RhoGDI (sc-360), and mouse monoclonal Ab (mAb) to Bcl-2

(sc-509) were from Santa Cruz Biotechnology (Santa Cruz, CA).

RpAb to Bim (559685) was from BD Pharmingen (Franklin Lakes,

NJ). Rp IgG (isotype control for flow cytometry) was from

Immunostep (Salamanca, Spain). mAb to vinculin (#V9131) was

from Sigma-Aldrich (St. Louis, MO, USA). mAbs to CD19 and

CD5 were from Diaclone (Besançon, France). mAbs against CD38

(16BDH), CD44 (HP2/9), a4 integrin subunit (HP2/1, function

blocking), a4 integrin subunit (HP1/7, inactive control, isotype

matched for HP2/1 and HP2/9), CD45, and b1 integrin subunit

(Alex1/4) were from Dr. F. Sánchez-Madrid (Hospital de la

Princesa, Madrid, Spain). HRP-labeled Abs to rabbit or mouse Ig

(used for Western blotting) were from Dako (Glostrup, Denmark).

Alexa 488- and Alexa 647-labeled Abs (used for flow cytometry)

were from Molecular Probes (Eugene, OR). Rabbit TrueBlot (18-

8816-31) was from Rockland Immunochemicals (Gilbertsville,

PA). Bovine serum albumin (BSA) was from Roche Diagnostics

GmbH (Mannheim, Germany). Propidium iodide (PI), MTT (3-

(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide), actino-

mycin D, arsenic trioxide (ATO), fludarabine (2-fluoroadenine-9-

b-D-arabinofuranoside) and the pan-caspase inhibitor Z-VAD-

FMK were from Sigma-Aldrich. FITC-Annexin V was from

Immunostep. MMP-9 was isolated from the conditioned medium

of MMP-9-MEC-1 transfectants by gelatin-Sepharose affinity

chromatography, as previously reported [17,22]. Purity and

identity of the protein was assessed by gelatin zymograhy and

Western blotting analyses (see below).

RT-PCR and RNA stabilization assays
Total RNA isolation and cDNA amplification were performed

as described [17] using the following primers: MMP-9: 59-

TGGGCTACGTGACCTATGAC-39 and 59-CAAAGGTGA-

GAAGAGAGGGC-39; c-fos: 59-TACTACCACTCACCCG-

CAGA-39 and 59-CAGGTTGGCAATCTCGGTCT-39; c-jun:

59-CGACAAGTAAGAGTGCGGGA-39 and 59-CCCGTTGC-

TGGACTGGATTA-39; glyceraldehyde-3-phosphate dehydroge-

nase (GAPDH): 59- GGCTGAGAACGGGAAGCTTGTCA-39

and 59-CGGCCATCACGCCACAGTTTC-39. PCR analyses

were performed for 25 cycles consisting of 1 min denaturation-

95uC, 1 min annealing-59uC, 1 min polymerization-72uC (MMP-

9/GAPDH) or 30 s denaturation-95uC, 30 s anneling-60uC, 45 s

polymerization-72uC (c-fos/c-jun). To assess mRNA stability, CLL

cells were cultured with or without 3 mM ATO and after 20 h,

5 mM actinomycin D was added. At various time points samples

were collected and mRNA levels of MMP-9 and GAPDH were

measured by RT-PCR. Bands were visualized by ethidium

bromide staining and quantified using the MultiGauge V3.0

program (Fujifilm Global Lifescience, Düsseldorf, Germany).

Quantitative PCR (qPCR)
Quantitative PCR (qPCR) was performed using iQ SYBR

Green Supermix (Bio-Rad Laboratories, Hercules, CA), and the

primers described above for MMP-9. The primers for TATA

binding protein (TBP) were: 59-CGGCTGTTTAACTTCG-

CTTC-39 and 59-CACACGCCAAGAAACAGTGA-39. Tripli-

cate assays were performed, and results were normalized

according to the expression levels of TBP RNA and expressed

by using the DDCT method for quantization.

RNA interference experiments
The siRNA sequence targeting human proMMP-9 was: sense

59-CAUCACCUAUUGGAUCCAAdTdT-39 (targets bases 377–

403); the siRNA sequence for negative control was: sense 59-

AUUGUAUGCGAUCGCAGACdTdT-39. siRNA duplexes were

verified to be specific for their targets by Blast search against the
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human genome and were custom-made by Sigma-Aldrich.

156106 Mock- or MMP-9-MEC-1 cells were nucleofected with

30 nM siRNAs using solution V and programme T-01 (Amaxa,

Cologne, Germany), and assayed 24 h after transfection. Efficien-

cy of transfection was confirmed by gelatin zymography and

Western blot analyses.

Cell viability assays
1.56105 CLL cells in RPMI/0.1% FBS were incubated with

ATO, fludarabine or vehicle and cell viability was determined

after 24 (ATO) or 48 (fludarabine) h on a Coulter Epics XL flow

cytometer (Beckman Coulter, Fullerton, CA), using FITC-

Annexin V and PI. In some experiments, live (Annexin V2/PI2)

and early apoptotic (Annexin V+/PI2) cells were separated on a

FACS Vantage cell sorter (Becton Dickinson, Franklin Lakes, NJ).

For MTT assays, 0.756105 MEC-1 cells in IMDM/0.1% FBS

were incubated with 50 mg MTT for 4 h in the dark. The blue

MTT formazan precipitate was dissolved in isopropanol-HCl

(24:1) and the absorbance at 540 nm was determined on a

Multiskan Bichromatic microplate reader (Labsystems, Helsinki,

Finland).

Cell fractionation
306106 cells CLL cells were serum-starved for 1 h and

incubated with 3 mM ATO or vehicle for 24 h. Cells were

collected, washed 16with cold PBS, and incubated (15 min, 4uC)

in 250 ml of ice-cold hypotonic digitonin buffer (5 mM Tris

pH 7.5, 10 mM NaCl, 0.5 mM MgCl2, 1 mM EGTA, 20 mg/ml

digitonin), containing a protease/phosphatase inhibitor cocktail

(Roche Diagnostics). Cytosolic (soluble) and membrane (pellet)

fractions were separated by centrifugation. The pellet was washed

16 with ice-cold PBS and extracted with 125 ml of NP-40 lysis

buffer (10 mM Tris pH 7.5, 40 mM NaCl, 1 mM MgCl2, 1% NP-

40, protease inhibitors). After 20 min at 4uC lysates were clarified

by centrifugation. For MEC-1 transfectants, 56106 Mock- or

MMP-9-cells were serum-starved for 3 h, washed with cold PBS,

and incubated in 500 ml of ice-cold hypotonic digitonin buffer

(containing 40 mg/ml digitonin). After separation of the cell

fractions the pellet was extracted in 100 ml of NP-40 lysis buffer

(containing 0.2% NP-40) and analysis continued as above. Soluble

proteins in membrane and cytosolic fractions were quantitated

using the Pierce BCA protein assay kit (Thermo Scientific,

Rockford, IL) and analyzed by gelatin zymography. RhoGDI

(typical cytosolic protein) and CD45 (typical membrane protein)

were visualized by Western blotting and used as internal controls

for the procedure.

Gelatin zymography
The conditioned medium of ATO untreated or treated CLL

cells was collected and concentrated 206using ultrafiltration spin

columns fitted with 30 kDa MWCO membranes (Sartorius Stedim

Biotech GmbH, Goettingen, Germany). This medium, as well as

membrane and cytosolic cellular fractions were analysed on 7.5%

polyacrylamide gels containing 0.1% gelatin (Sigma-Aldrich).

After electrophoresis gels were rinsed 3630 min in 2.5% Triton

X-100 and 1630 min in distilled water, followed by overnight

incubation in 50 mM Tris pH 7.5, 200 mM NaCl, 10 mM CaCl2
at 37uC. Gels were stained with 0.2% Coomassie blue and areas of

gelatinolytic activity were visualized as transparent bands. Bands

were quantitated using the MultiGauge V3.0 program.

Analysis of MMP-9 protein expression
56106 CLL cells were cultured with or without 3 mM ATO

(24 h) or 3 and/or 5 mM fludarabine (48 h). Secreted MMP-9 in

the conditioned medium was analyzed by gelatin zymography.

Surface-bound MMP-9 was determined by flow cytometry on the

same cells, upon incubation with the anti-MMP-9 Ab or control

rabbit IgG (1 h, 4uC), followed by Alexa 488- or 647- labeled Abs

(20 min, 4uC). In some experiments, live (Annexin V2PI2) and

early apoptotic (Annexin V+PI2) cells were separately analyzed for

MMP-9 expression on a FACS Vantage cell sorter (Becton

Dickinson, Franklin Lakes, NJ). Cells were also pre-incubated with

anti-a4 integrin or anti-CD44 Abs for 1 h prior to ATO exposure,

and subsequently analyzed for surface-bound MMP-9 by flow

cytometry. Specific fluorescence (SF), also called ‘‘Generalized

Integrated Mean Fluorescence Intensity (GiMFI) [23] and defined

as mean fluorescence intensity (MFI)6% of positive cells, was

chosen to represent MMP-9 expression. SF/GiMFI measurements

have been previously used [24], as they may be more accurate

than the individual MFI or % of positive cells values.

Immunoprecipitation and Western blotting
For immunoprecipitation, 36107 Mock- or MMP-9-cells were

serum-starved for 3 h and incubated with or without 5 mM ATO

for 24 h. Cells were lysed in ice-cold 20 mM Tris-HCl pH 7.5,

150 mM NaCl, 1 mM EDTA, 0.5% NP-40, 1 mM PMSF, and

protease inhibitors (IP buffer). After protein quantitation lysates

were pre-cleared by incubating (1.5 h, 4uC) with 25 ml protein A-

Sepharose (GE Healthcare Bio-Science, Uppsala, Sweden). Pre-

cleared lysates were incubated (16 h, 4uC) with 3 mg primary or

control Abs and mixed with 25 ml protein A-Sepharose for 2 h at

4uC. Pellets containing the immune complexes were washed with

IP buffer and proteins extracted by boiling for 5 min in Laemmli

buffer.

For Western blotting, samples were resolved by SDS-PAGE and

transferred to nitrocellulose or PVDF membranes (Bio-Rad

Laboratories, Hercules, CA). After electrophoresis, membranes

were blocked with 5% BSA/TBS-Tween 20 for 1 h and incubated

(4uC, 16 h) with primary Abs, followed by incubation for 1 h at

room temperature with Rabbit TrueBlot HRP-labeled Abs

(immune complexes) or HRP-labeled secondary Abs (whole

lysates). To detect multiple proteins on the same membrane, after

identification of the first protein, membranes were washed with

TBS/0.1% Tween 20 for 10 min, followed by 3630 min

incubation in 1% glycine pH 2.2, 1% SDS, 0.0005% NP-40, at

room temperature. Membranes were washed 1610 min with

TBS/Tween, blocked with 5% BSA for 1 h, and re-probed with

subsequent primary and secondary Abs. Protein bands were

developed using the enhanced chemiluminiscent detection method

(Amersham) and quantitated as above.

Statistical analyses
Normal distribution of the data was confirmed by the Shapiro-

Wilk’s normality test, using the univariate procedure of SAS 9.3

software (SAS Institute, Cary, NC). Statistical significance of the

data was determined using the two-tailed Student’s t-test. A p

value of #0.05 was considered significant. Analyses were

performed using the GraphPad InStat v3.06 software (GraphPad

Software, San Diego, CA, USA). All values are expressed as means

6 standard deviation, except for the qPCR assays in which means

6 standard error are shown.

MMP-9 Involvement in CLL Cell Drug Resistance
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Results

ATO transcriptionally upregulates MMP-9 in CLL cells via
c-fos/c-jun activation

To first establish the best conditions to study ATO action, CLL

cells (1.56106/ml) were cultured for 24 h with or without various

concentrations of ATO and apoptosis measured by flow cytom-

etry, using FITC-Annexin V and PI. Figure 1A shows that the

percentage of apoptotic cells (Annexin V+PI2) increased in a dose-

dependent manner, reaching average values of 46.2% at 3 mM

ATO (Figure 1A). 16.6% of the remaining cells were viable

(Annexin V2PI2) and 37% were necrotic cells (Annexin V+PI+).

As the 46.2% level of apoptosis seemed appropriate for

biochemical studies, we chose 3 mM ATO concentration for

subsequent experiments, except when indicated.

We next studied whether MMP-9, a protein previously shown to

contribute to CLL survival [17], was modulated by ATO and

involved in the cellular response to this agent. In initial

experiments, 10–156106/ml CLL cells from three different

patients were treated or not with 3 mM ATO and MMP-9 mRNA

analyzed by RT-PCR. Figure 1B shows that MMP-9 mRNA

expression increased after 8 or 24 h of ATO treatment, compared

to control cells. Due to the endogenous MMP-9 production in

CLL cell cultures, MMP-9 mRNA was also slightly elevated in

untreated cells compared to constitutive values, with similar levels

at 8 and 24 h (Figure 1B). The same samples were then analyzed

by qPCR, which also showed a significant increase in MMP-9

mRNA expression of 2.4-fold and 9.3-fold, respectively, after 8 or

24 h treatment (Figure 1C). The average percentage of Annexin

V+PI2 in ATO-treated cells at these times was 23.6% (8 h) and

37.6% (24 h), compared to 15% (8 and 24 h) in untreated cells

(not shown).

To next study whether ATO affected the stability of MMP-9

mRNA, actinomycin D was added to CLL cells previously treated

with 3 mM ATO for 20 h. RT-PCR analysis of these samples at

various time points revealed that the increase in MMP-9 was not

due to stabilization of MMP-9 mRNA (Figure 1D), indicating that

ATO regulated MMP-9 at the transcriptional level.

Several transcription factors can activate the MMP-9 promoter

including NF-kB and AP-1 [25]. Because we previously showed

that ATO downregulates NF-kB and activates c-Jun N-terminal

kinase (JNK) in CLL cells [9], we studied whether ATO regulated

the JNK downstream effectors c-fos and c-jun, two components of

the AP-1 heterodimer. RT-PCR analyses indicated that both, c-fos

and c-jun mRNAs, were significantly upregulated upon cell

exposure to 3 mM ATO, with maximun levels after 2 h

(Figure 2A). At longer times expression declined but remained

higher than control cells even at 24 h in the case of c-jun

(Figure 2A). To determine whether this transcriptional modulation

correlated with increased c-Fos and c-Jun protein expression, CLL

cells from the same patients were treated with 3 mM ATO for

various times, lysed and analyzed by Western blotting. Figure 2B

shows the Western blot results for a representative sample and the

average quantitation of the 3 patients studied. As observed, c-Fos

increase was visible after 2 h, was maximal after 8 h and remained

higher than the control after 24 h. Likewise, c-Jun phosphoryla-

tion was clearly observed after 8 h and remained elevated after

24 h of ATO treatment, compared to controls. As these times for

c-Fos and phospho-c-Jun protein induction correlated with the

upregulation of MMP-9 gene expression, these results strongly

suggested that ATO regulated MMP-9 via AP-1 activation.

Figure 1. ATO transcriptionally upregulates MMP-9 in CLL cells. (A) 1.56105 CLL cells in RPMI/0.1%FBS were incubated with or without the
indicated concentrations of ATO. After 24 h, cells were analyzed by flow cytometry using FITC-Annexin V and PI. (B) 10–156106 CLL cells were treated
with 3 mM ATO for the indicated times and MMP-9 mRNA expression was analyzed by RT-PCR, using GAPDH mRNA as internal control. Normalized
average values (fold change) are shown. (C) The same mRNA samples were also analyzed by qPCR using TBP as internal control and normalized
average values (fold change) are shown. (D) 10–156106 CLL cells were cultured with or without 3 mM ATO for 20 h. Cells were then treated or not
(Control, Ctl) with 5 mM actinomycin D and mRNA expression was analyzed at the indicated times. Values represent the average MMP-9/GAPDH ratio
from the two samples after normalizing control values to 100. Values for GAPDH mRNA are also shown. *P#0.05; **P#0.01; ***P#0.001.
doi:10.1371/journal.pone.0099993.g001
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ATO-induced MMP-9 mainly localizes at the cell
membrane via interaction with a4b1 integrin and CD44

To determine if ATO also regulated MMP-9 at the protein level

and because MMP-9 is mostly a secreted protein, we analyzed by

gelatin zymography the conditioned media of equal number of

CLL cells incubated with or without 3 mM ATO for 24 h.

Figure 3A shows that, in contrast to what was expected, the levels

of secreted MMP-9 in cells treated with ATO were significantly

lower (2.6-fold average) than those in untreated cells. Since CLL

cells also express MMP-9 on their surface [16] we studied whether

cell-associated MMP-9 increased upon ATO treatment. CLL cells

treated or not with ATO for 24 h were incubated with isotype

control or anti-MMP-9 antibodies and analyzed by flow cytom-

etry. The PI+ (necrotic) cell population was excluded from these

analyses to avoid false results due to non-specific antibody capture.

As shown in Figure 3B for 6 representative patients and

quantitated for all 10 cases studied, surface-bound MMP-9 was

significantly increased in cells treated with ATO (24% average

positive cells) compared to control cells (10%). Moreover, cell

fractionation analyses on two representative CLL samples

confirmed that, upon ATO treatment, expression of MMP-9

was much higher in the membrane fraction than in the cytosolic

fraction (Figure 3C). Parallel zymographic analyses of the

conditioned media of the same samples confirmed that secreted

MMP-9 was reduced on ATO-treated cells compared to controls

(Figure 3C).

To then study whether the observed MMP-9 membrane

association was via interaction with its reported receptors a4b1

integrin and CD44v [16], we blocked these receptors with specific

antibodies prior to cell incubation with 3 mM ATO. As shown in

Figure 3D for 2 representative patients and quantitated for the 3

cases studied, these antibodies significantly reduced the levels of

MMP-9 found at the cell surface from 30.4% to 11.5% and 8.1%,

respectively, for anti-a4 and anti-CD44 Abs upon ATO treatment.

Moreover, these Abs also decreased cell viability by 19% (anti-a4)

and 20% (anti-CD44) with respect to the effect of the control Ab

(results not shown), suggesting a correlation between cell-bound

MMP-9 and increased cell viability. In parallel gelatin zymogra-

phy analyses of the conditioned media of these cells we did not

observe an increase in soluble MMP-9, compared to control cells

(not shown). This is likely due to the small variation of secreted

MMP-9 under these conditions, with the consequent difficulty in

quantitating differences.

Next, we determined if increased transcription and surface

expression of MMP-9 was associated to apoptosis, the main effect

of ATO in CLL cells. To this end, live (Annexin V2PI2) and

apoptotic (Annexin V+PI2) cells were analyzed on a cell sorter for

MMP-9 surface expression after ATO exposure. The concentra-

tion of ATO in these experiments was adjusted to 2 mM to allow a

more similar distribution between live and apoptotic cells and

facilitate comparisons. Figure 4A shows for two representative

cases that increased MMP-9 expression in response to ATO

Figure 2. ATO treatment of CLL cells induces activation of the c-fos/c-jun transcription factors. (A) 10–156106 CLL cells in RPMI/0.1%FBS
from three different patients were treated with 3 mM ATO or vehicle. At the indicated times, c-fos and c-jun mRNA was analyzed by RT-PCR, using
GAPDH as an internal control. Average values (fold change) were normalized with respect to the control at 2 h. (B) 10–156106 CLL cells were treated
as above, lysed at the indicated times and analyzed by Western blotting, using vinculin as internal control. The results for one representative sample
and the normalized average values for the 3 samples studied, compared to the control at 2 h are shown. *P#0.05; **P#0.01.
doi:10.1371/journal.pone.0099993.g002
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(35.3% and 37.5% positive cells, respectively, compared to 7.5%

and 10.1%, respectively, in controls) was clearly coincident with

the apoptotic cell population. To confirm these results CLL cells

were incubated with the caspase-inhibitor Z-VAD-FMK prior to

exposure to 2 mM ATO. This treatment prevented apoptosis and

MMP-9 localization to the cell surface (Figure 4B). Moreover, the

absence of membrane-bound MMP-9 correlated with the lack of

MMP-9 mRNA upregulation by ATO, determined by qPCR

analyses on these Z-VAD-FMK treated samples (Figure 4C).

To then determine if the observed MMP-9 gene induction and

membrane localization preceded or was a consequence of the

ongoing apoptosis, we lowered the ATO concentration to 1 mM,

which had been previously shown to result in minimal apoptosis

(see Figure 1A). Initial analysis by RT-PCR on 2 different samples

clearly showed an increase in MMP-9 mRNA upon ATO

Figure 3. MMP-9 localizes to the CLL cell surface in response to ATO and in correlation with induction of apoptosis. (A) 56106 CLL
cells in RPMI/0.1% FBS were treated or not with 3 mM ATO for 24 h. The conditioned media was collected, concentrated 206and analyzed by gelatin
zymography. The results from four representative samples and the average normalized values (arbitrary units, AU) from all six samples studied are
shown. (B) 1.56105 CLL cells were incubated with or without 3 mM ATO for 24 h. MMP-9 surface expression was analyzed by flow cytometry using an
anti-MMP-9 pAb or a control pAb. Histograms from six representative cases are shown, where white areas correspond to control/untreated cells and
grey areas to ATO treated cells. Arrows indicate specific fluorescence (SF). Average normalized values from all ten samples analyzed are also shown.
(C) 306106 CLL cells in RPMI/0.1%FBS were incubated with or without 3 mM ATO for 24 h. Membrane (Mb) and cytosolic (Cyt) fractions were
separated and analyzed by gelatin zymography. RhoGDI and CD45 detected by Western blotting in the same lysates were used as controls for the
procedure. The conditioned media (CM) of these cells was also analyzed by gelatin zymography and the normalized average values of the
quantitated bands are shown (D) 1.56105 CLL cells in RPMI/0.1%FBS were incubated for 1 h with or without the indicated antibodies. 3 mM ATO was
added and after 24 h, surface-bound MMP-9 was determined by flow cytometry using an anti-MMP-9 pAb or a control pAb. Histograms for two
representative cases are shown. White areas correspond to untreated cells (2ATO) and grey areas (both light and dark) to ATO-treated cells (+ATO).
Average normalized SF values are also shown. **P#0.01; ***P#0.001.
doi:10.1371/journal.pone.0099993.g003
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treatment (Figure 4D). These results were further confirmed by

qPCR, which showed a 2.4-fold average increase in MMP-9

mRNA for the 2 patients studied (Figure 4E). Moreover, flow

cytometric analyses of these and 2 additional samples demonstrat-

ed the enhanced presence (from 8.8% to 20.4% positive cells) of

MMP-9 at the cell surface (Figure 4F). Parallel viability analyses

showed that, at the time studied, 1 mM ATO did not decrease cell

viability with respect to control cells (P6: 75% vs 79%; P10: 54%

vs 55%, not shown). Altogether these results suggested that CLL

cells responded to an apoptotic stimulus like ATO, by first

upregulating MMP-9 and its membrane localization. Upon the

onset of apoptosis, MMP-9 remained specifically associated to

apoptotic cells.

MMP-9 upregulation and cell membrane localization in
response to fludarabine treatment of CLL cells

To determine whether MMP-9 modulation was a particular

feature of ATO exposure or a more general response to drug-

induced apoptosis, we studied the effect of fludarabine, a front-line

treatment for CLL, on MMP-9. CLL cells were incubated with or

without 3 or 5 mM fludarabine for 48 h and MMP-9 mRNA

analyzed by RT-PCR. Figure 5A shows that fludarabine increased

MMP-9 transcription in a dose-dependent manner, compared to

control cells. These results were confirmed by qPCR, which

showed an increase on MMP-9 mRNA of 4.9-fold and 17.5-fold,

respectively, for 3 and 5 mM fludarabine (Figure 5B). Parallel flow

cytometric analyses indicated that the average percentage of

apoptotic cells at this time was 45.2% and 48%, respectively, for 3

and 5 mM fludarabine (not shown). As observed in the case of

ATO, MMP-9 expression at the cell surface was enhanced (15.5%

to 26.6% positive cells) upon fludarabine treatment (Figure 5C).

These results indicated that MMP-9 upregulation in correlation

with CLL cell apoptosis was not restricted to ATO action.

MMP-9, isolated or present in stroma, induces resistance
of CLL cells to ATO and fludarabine

Having established that MMP-9 was modulated by ATO and

fludarabine and localized to the CLL cell surface, we aimed to

determine whether MMP-9 had a role in the cellular response to

these drugs. This was particularly relevant, given the dual role

played by MMPs in apoptosis [18,19]. CLL cells were cultured on

BSA (a control substrate that does not mediate cell adhesion or

induce intracellular signaling) or MMP-9-coated wells for 1 h prior

to exposure to ATO or fludarabine. Drug concentrations were

lowered in these experiments to avoid excessive reduction in cell

viability and allow comparisons. In control experiments in the

absence of drug, MMP-9-cultures had significantly more live cells

(Annexin V2PI2) than BSA-cultures (Figure 6A), in agreement

Figure 4. Upregulation and membrane localization of MMP-9 is an initial CLL cell response to the cytotoxic action of ATO. (A) Cell
sorter biparametric diagrams of PI2 CLL cells (1.56105) treated or not with ATO for 24 h and analyzed for MMP-9 expression. Numbers indicate the
percentage of cells expressing MMP-9 in the early apoptotic (Annexin V+, top) and live (Annexin V2, bottom) cell compartments. (B) Flow cytometric
analysis of MMP-9 expression in control or ATO-treated CLL cells with or without previous incubation with 50 mM Z-VAD-FMK. Histograms from two
representative cases are shown. White areas: control cells; grey areas: ATO-treated cells. Arrows indicate specific fluorescence (SF). Normalized
average values for all five samples analyzed are shown. The average % of early apoptotic (Ann V+/PI2) cells in these samples is also shown. (C) 10–
156106 CLL cells treated as in (B) were analyzed for MMP-9 mRNA expression by qPCR, using TBP as an internal control. Average normalized values
(fold change) are shown. (D,E) 10–156106 CLL cells were treated with 1 mM ATO for 24 h and MMP-9 mRNA expression analyzed by RT-PCR (D) and
qPCR (E). Normalized average values (fold change) are shown. (F) CLL cells treated as in (D, E) were analyzed for MMP-9 surface expression by flow
cytometry with an anti-MMP-9 pAb or a control pAb. Histograms for the same samples used in (D, E) are shown. Arrows, white and grey areas are as in
(B). Normalized average SF values of all four samples studied are shown. *P#0.05; ***P#0.001.
doi:10.1371/journal.pone.0099993.g004
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with our previous results in which MMP-9 prevented CLL cell

spontaneous apoptosis [17]. Importantly, cells cultured on MMP-9

and treated with ATO or, for comparison, with fludarabine, also

showed significantly higher viability compared to cells cultured on

BSA (Figure 6A).

The above results indicated that adhesion to MMP-9 induced

CLL cell resistance to ATO and to the commonly used drug

fludarabine. MMP-9 is an abundant component of the stroma

found in the CLL microenvironment and stromal cells contribute

to CLL cell resistance to certain drugs [10,26]. We therefore

studied whether stromal cells influenced the response of CLL cells

to ATO and whether this involved MMP-9. CLL cells from 4

different patients were incubated on BSA (control) or HS-5

stromal cells and treated with or without ATO. Cell viability was

determined after 48 h by flow cytometry and values for cells

cultured on stromal cells in the absence of ATO (69.2% average)

were normalized to 100. Figure 6B shows that in the absence of

ATO, the anti-MMP-9 Ab significantly reduced the viability of

CLL cells cultured on HS-5 cells compared to cells in the absence

of Ab, while a control Ab had no effect. As in the case of isolated

MMP-9 (Figure 6A), this confirmed our previous report showing

that MMP-9 protects CLL cells from spontaneous apoptosis in

culture [17]. Treatment with ATO reduced the viability of CLL

cells cultured on BSA by 74.4% but had a limited effect (32.8%

reduction) on HS-5 cultured-CLL cells (Figure 6B), indicating a

protective effect by stromal cells. This was completely overcome

by the anti-MMP-9 Ab, which reduced CLL viability to 15.5%,

while a control Ab had no effect (Figure 6B).

To confirm and validate these results, the same experiments

were carried out on CLL cells cultured on primary stromal cells

derived from a CLL patient. Primary stromal cells protected CLL

cells from spontaneous apoptosis (undergone in suspended cells)

and this was significantly reverted by an anti-MMP-9 Ab, but not

by a control Ab. Primary stromal cells also significantly induced

CLL cell resistance to ATO (67.1% cell viability compared to

14.5% on suspended cells) and the anti-MMP-9 Ab clearly

overcame this protective effect, reducing the stroma-induced

survival to 18.8% (Figure 6C). Altogether these results established

that stromal cells protected CLL cells from the cytotoxic effect of

ATO and that MMP-9 had a role in this protection.

MEC-1 cells also upregulate MMP-9 in response to ATO
and fludarabine

To further establish that MMP-9 conferred drug resistance in

CLL cells we used the MEC-1 cell line, derived from a CLL

patient and expressing very low constitutive levels of MMP-9. To

first determine if these cells behave like primary CLL cells, we

studied the response of MEC-1 cells to ATO and, for comparison,

to fludarabine. The viability of untreated cells after 24 h and 48 h

was 146% and 154%, respectively, compared to initial viability

normalized to 100 (due to cell proliferation), and these values were

normalized to 100. Figure 7A,B shows that after 24 h (ATO) or

48 h (fludarabine) treatment, the viability of MEC-1 cells,

measured by the MTT assay, decreased in a dose-dependent

manner. Because this assay primarily determines cell proliferation

and, indirectly, cell viability, we also measured MEC-1 cell

viability after ATO or fludarabine treatment by flow cytometry,

using FITC-Annexin V and PI. In results not shown, ATO

decreased cell viability by 39%, 58% and 79%, at 3, 5, and 8 mM,

respectively. Likewise, fludarabine treatment reduced viability by

13%, 29%, and 32%, at 3, 5 and 8 mM, respectively. These results

were very similar to those shown in Figure 7A,B, thus confirming

the validity of the MTT assay to assess cell viability.

We next studied whether ATO also modulated MMP-9 in

MEC-1 cells. Indeed, and as observed in primary CLL cells, ATO

upregulated MMP-9 mRNA on MEC-1 cells after 8 and 24 h,

compared to control cells (Figure 7C). These results were

confirmed by qPCR, which showed a 4.2-fold and 4.4-fold

MMP-9 mRNA increase, respectively, after 8 or 24 h treatment

(Figure 7D). Moreover, MMP-9 surface expression on these cells

also significantly increased (from 15.6% to 34.1% positive cells)

upon ATO treatment (Figure 7E). These results confirmed the

similar response of MEC-1 and primary CLL cells to ATO and

validated the MEC-1 cell system for subsequent studies.

MMP-9 expression in MEC-1 cells confers resistance to
ATO and fludarabine

Using the MEC-1 cell line, we recently established [20] stable

transfectants expressing a GFP-lentiviral vector (Mock-cells) or a

vector containing GFP-MMP-9 (MMP-9-cells), thus representing

an unambiguous system to study MMP-9 functions. As recently

reported [20], MMP-9-cells expressed cell-associated MMP-9,

determined by flow cytometry (Figure 8A), thus resembling

primary CLL cells [16]. This expression was further confirmed

by cell fractionation, which clearly showed the presence of MMP-9

on the membrane (92 kDa and 86 kDa forms) and cytosol (92 kDa

form) fractions of MMP-9-cells and its absence on Mock-cells

(Figure 8B). Additionally, MMP-9-cells secreted high levels of

MMP-9 into the medium, while secretion was very low in

untransfected or MEC-1 Mock-cells (Figure 8B).

Figure 5. Fludarabine transcriptionally upregulates MMP-9 and
induces its localization to the CLL cell membrane. (A,B) 10–
156106 CLL in RPMI/0.1% FBS cells from two different patients were
treated with 3 or 5 mM fludarabine (Fluda) for 48 h and MMP-9 mRNA
expression was analyzed by RT-PCR (A) and qPCR (B). Normalized
average values (fold change) are shown. (C) 1.56105 CLL cells from two
different patients were incubated with or without 3 mM fludarabine for
48 h and MMP-9 surface expression was analyzed by flow cytometry.
White areas, control/untreated cells; grey areas, fludarabine treated
cells. Arrows indicate specific fluorescence (SF) values for each cell
population. Normalized average values are also shown.
doi:10.1371/journal.pone.0099993.g005
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Mock- and MMP-9-cells where then incubated with various

concentrations of ATO (24 h) or fludarabine (48 h) or vehicle and

viability measured by the MTT assay. In the absence of drug, the

viability of Mock-cells and MMP-9-cells was similar (155% vs

149% at 24 h and 154% vs 152% at 48 h, compared to initial

viability) and these values were normalized to 100, for better

assessment of the effect of the drugs. Treatment with ATO

(Figure 8C) or fludarabine (Figure 8D) decreased cell viability in a

dose-dependent manner in both cell types, but at all doses tested

MMP-9-cells showed significantly higher viability than Mock-cells.

To further confirm that this was due to the presence of MMP-9

(cell-associated and in soluble form), we performed gene silencing

experiments using a specific siRNA for MMP-9 or a control

siRNA. Gelatin zymographic analyses indicated that MMP-9

silencing inhibited the already low MMP-9 expression in Mock-

cells, and produced an average 75% reduction in MMP-9-cells,

also confirmed by Western blotting (Figure 8E). This procedure

equally affected the viability of either transfectant cell type (35%

reduction). siRNA-transfected Mock- and MMP-9-cells were then

treated with several concentrations of ATO and the viability

measured after 24 h by MTT. Although the effect of ATO was

milder in these experiments, there were clear differences between

Mock- and MMP-9-cells. As shown in Figure 8F, the viability of

Mock-cells upon ATO exposure decreased in a dose-dependent

manner with no differences between MMP-9 siRNA-transfected

or control siRNA-transfected cells for all doses tested. The lack of

functional effect of MMP-9 silencing in Mock-cells could be

explained by the very low constitutive levels of MMP-9 in these

cells (see Figure 8E). Thus, modulation of these levels is therefore

unlikely to produce a detectable functional effect. In contrast,

silencing MMP-9 in MMP-9-cells significantly decreased cell

viability with respect to control siRNA-transfected cells, thus

reverting the protective effect of MMP-9 on these cells (Figure 8F).

These results clearly indicated that MMP-9 contributed to CLL

cell resistance to ATO.

MMP-9 induces drug resistance by modulating the
balance of anti- and pro-apoptotic proteins from the Bcl-
2 family

To determine the molecular bases responsible for the observed

drug-protecting effect of MMP-9, we analyzed whether the

expression of prototype Bcl-2 family members was modulated by

MMP-9. In initial experiments, Mock- and MMP-9-cells were

treated with 5 mM ATO or vehicle and, after 24 h, lysed and

analyzed by Western blotting. Figure 9A shows that upon ATO

exposure, expression of the anti-apoptotic proteins Mcl-1 and Bcl-

xL decreased in Mock-cells compared to their untreated counter-

part, while Bcl-2 remained unchanged. In MMP-9-cells, however,

all three proteins remained similar (Mcl-1) or were elevated (Bcl-

xL, Bcl-2) with respect to untreated MMP-9-cells. Moreover, Mcl-

1, Bcl-xL and Bcl-2 in ATO-treated MMP-9-cells were signifi-

cantly upregulated compared to ATO-treated Mock-cells

(Figure 9A). Similar analysis of selected pro-apoptotic proteins

showed that Bax and Bim significantly increased in Mock-cells

treated with ATO, compared to untreated cells, while Noxa

Figure 6. MMP-9, isolated or present in stroma, induces resistance of CLL cells to ATO and fludarabine. (A) 1.56105 CLL cells RPMI/0.1%
FBS were cultured on 0.5% BSA or 150 nM MMP-9 for 1 h prior to adding the indicated concentrations of ATO or fludarabine (Fluda). After 24 h (ATO)
or 48 h (Fluda) cell viability was determined by flow cytometry using FITC-Annexin V and PI. (B) 1.56105 CLL cells were treated or not with anti-MMP-
9 pAbs or control pAbs for 1 h and added to wells coated with 0.5% BSA, HS-5 cells or primary stromal cells (BMSC). After 2 h at 37uC, 2 mM ATO was
added and cells further incubated for 48 h. Cell viability was determined by flow cytometry using FITC-Annexin V and PI. The viability of CLL cells
cultured over stroma in the absence of ATO was normalized to 100 and average values are shown. *P#0.05; **P#0.01; ***P#0.001.
doi:10.1371/journal.pone.0099993.g006
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expression was not significantly altered (Figure 9A). In contrast,

the expression of Bax and Bim in MMP-9-cells treated with ATO

was lower than in untreated MMP-9-cells. Moreover, Bax and

Bim in ATO-treated MMP-9-cells were significantly lower than in

ATO-treated Mock-cells (Figure 9A).

Since regulation of apoptosis/survival involves the balance of

anti- and pro-apoptotic Bcl-2 family members, rather than

individual levels [27], we also determined the ratios of these

proteins in Mock and MMP-9-cells, before and after exposure to

ATO. Figure 9B shows that, upon ATO treatment, the balance

Mcl-1/Bim, Mcl-1/Noxa and Bcl-2/Bax, were all significantly

increased in MMP-9-cells, compared to Mock-cells. These ratios

were also significantly higher compared to untreated MMP-9-cells.

However, these ratios were diminished in ATO-treated Mock-

cells, compared to untreated Mock-cells (Figure 9B).

Mcl-1 is a critical molecule in CLL cell survival and exerts its

function by sequestering BH3-only pro-apoptotic proteins such as

Bim [28]. We therefore studied whether Mcl-1 and Bim were

complexed in MMP-9 transfectants upon ATO exposure. Lysates

of Mock or MMP-9-cells that had been treated or not with 5 mM

ATO for 24 h, were immunoprecipitated with anti-Mcl-1 Abs and

analyzed by Western blotting. Figure 9C shows that in untreated

cells, similar amounts of Bim were pooled down by the anti-Mcl-1

Ab in both, Mock and MMP-9 transfectants. In contrast, upon

ATO treatment, very little Bim co-immunoprecipitated with Mcl-

1 in Mock-cells, while Bim remained bound to Mcl-1 and even

increased in MMP-9 cells (Figure 9C).

Similar results were obtained for Mock- and MMP-9-cells

treated with 5 mM fludarabine. As shown in Figure 10A, Mcl-1

and Bcl-xL were also significantly higher in MMP-9-cells

compared to Mock-cells. Bcl-2 did not seem to play a role in

this case, as its expression remained similar for both cell types,

either in the absence or presence of fludarabine. As observed in the

case of ATO, the ratios Mcl-1/Bim and Mcl-1/Noxa upon

fludarabine treatment were significantly higher in MMP-9-cells

than in Mock-cells, while the balance Bcl-2/Bax did not seem to

play a role (Figure 10B).

MMP-9 regulates the balance of Bcl-2 family proteins in
primary CLL cells treated with ATO

We next determined whether MMP-9 also modulated Bcl-2

family members in primary CLL cells. Cells from 3 different

patients were cultured on BSA or MMP-9 for 1 h prior to adding

3 mM ATO. After 24 h, cells were lysed and lysates analyzed by

Western blotting. Figure 11A shows that Mcl-1 was significantly

upregulated, both in the absence or presence of ATO, in cells

cultured on MMP-9 compared to cells cultured on BSA. Bcl-xL

and Bcl-2 were also significantly increased on MMP-9-cultured

CLL cells upon ATO treatment, compared to BSA-cultured cells.

The ratios Mcl-1/Bim and Mcl-1/Noxa were also upregulated in

MMP-9-cultured cells, both in the absence or presence of ATO,

while the Bcl-2/Bax ratio was not modulated under these

conditions (Figure 11B). Altogether these results indicated that

MMP-9 induced drug resistance in CLL cells by regulating the

expression and function of crucial anti-apoptotic and pro-

apoptotic proteins of the Bcl-2 family.

Discussion

We have studied whether MMP-9 plays a role in CLL cell

response to cytotoxic drugs, such as arsenic trioxide and

fludarabine. We report for the first time the following findings:

1) upon an apoptotic stimulus, MMP-9 is transcriptionally

upregulated and localizes to the surface of early apoptotic cells;

2) MMP-9 by itself or present in stroma induces CLL cell drug

resistance; 3) MEC-1 cells stably transfected with MMP-9 show

increased survival upon drug treatment; 4) the MMP-9 anti-

apoptotic effect involves modulation of anti- and pro-apoptotic

proteins from the Bcl-2 family.

Upregulation and membrane localization of MMP-9 was an

early response to drug exposure that preceded detection of

apoptosis and was necessarily associated to this process. Evidence

for this comes from the fact that preventing cell death with the Z-

VAD-FMK caspase inhibitor blocked MMP-9 mRNA induction

and its cell surface localization upon ATO treatment. MMP-9

Figure 7. Effect of ATO and fludarabine on MEC-1 cells. (A, B)
7.56104 MEC-1 cells in IMDM/0.1% FBS were treated or not with the
indicated concentrations of ATO (A) or fludarabine (Fluda) (B). After
24 h (ATO) or 48 h (Fluda), cell viability was determined by the MTT
assay. Control cell viability was normalized to 100 and average values
are shown. (C,D) 56106 MEC-1 cells were treated with 3 mM ATO for the
indicated times and MMP-9 mRNA expression was analyzed by RT-PCR,
using GAPDH as internal control (C) and qPCR, using TBP as internal
control (D). Normalized average values (fold change) are shown. (E)
1.56105 MEC-1 cells were treated or not with 3 mM ATO for 24 h and
MMP-9 surface expression was analyzed by flow cytometry, using an
anti-MMP-9 pAb or a control pAb. Histograms from a representative
experiment and normalized average values for the three experiments
performed are shown. White areas, control/untreated cells; grey areas,
ATO-treated cells. Arrows indicate the specific fluorescence. *P#0.05;
**P#0.01; ***P#0.001.
doi:10.1371/journal.pone.0099993.g007
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membrane association was a specific event and involved interac-

tion with a4b1 integrin and CD44, two reported MMP-9

receptors in CLL [16]. Additionally, the cell population with

increased surface MMP-9 was coincident with that of early

apoptotic cells, suggesting that MMP-9 remained mostly surface-

bound to these cells upon secretion and modulated the apoptotic

response. As MMP-9, as other MMPs, may play dual roles in

apoptosis [18,19], one interpretation of our results could be that

upregulation of MMP-9 facilitates the apoptotic process by

targeting appropriate substrates or pathways. An alternative

explanation is that MMP-9 antagonizes the apoptotic cell response

to cytotoxic drugs, thus representing a survival compensatory

mechanism. In support of this explanation, several previous studies

have reported compensatory or survival response for MMP-9 in

various cell systems. For example, in melanoma and breast

carcinoma cells, apoptosis induced by TNF receptor ligands was

clearly enhanced by inhibiting MMP-9 (or MMP-2) [29].

Similarly, blocking MMP-9 function sensitized colon adenocarci-

noma cells to phorbol-esters [30] and glioma cells to Fas-induced

apoptosis [31]. In another report using a xenograft model in mice,

treatment of carcinoma cells with the chemotherapeutic agent

paclitaxel increased MMP-9 expression and tumor cell metastasis,

and this was also blocked with an MMP-9 inhibitor [32].

Figure 8. Effect of ATO and fludarabine on MEC-1 Mock-cells and MMP-9-cells. (A) 1.56105 Mock- or MMP-9-cells were analysed by flow
cytometry using an anti-MMP-9 pAb or a control pAb. Histograms for two representative experiments are shown. White areas: negative control; grey
areas: MMP-9 surface expression. Arrows indicate the specific fluorescence (SF). (B) The membrane and cytosolic fractions from 56106 Mock- or MMP-
9-cells were separated and analyzed by gelatin zymography. RhoGDI and CD45 were visualized by Western blotting of the same lysates and used as
controls for the procedure. The conditioned medium (CM) of the same cells was also analyzed by gelatin zymography. (C,D) 7.56104 Mock- or MMP-9-
cells in IMDM/0.1% FBS were treated or not with the indicated concentrations of ATO (C) or Fluda (D) and cell viability was determined after 24 h
(ATO) or 48 h (Fluda) using the MTT assay. The viability in the absence of drugs was normalized to 100 and average values are shown. (E) 156106

MEC-1 transfectants were nucleofected with MMP-9 or control siRNAs and analyzed after 24 h by gelatin zymography and Western blotting. Average
quantitation of the MMP-9/vinculin ratios is also shown. (F) 7.56104 siRNA-transfected Mock- or MMP-9-cells were treated or not with the indicated
concentrations of ATO. After 24 h cell viability was determined by MTT. The viability in the absence of drugs was normalized to 100 and average
values are shown. **P#0.01, ***P#0.001.
doi:10.1371/journal.pone.0099993.g008
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Using two different approaches we have obtained strong

evidence to support an anti-apoptotic role for MMP-9 in the

CLL cell response to ATO and fludarabine. First, the higher

viability observed on cells cultured on MMP-9 during drug

treatment compared to cells cultured on BSA. Notably, this anti-

apoptotic role of MMP-9 was also observed in co-cultures of CLL

and stromal cells, where blocking MMP-9 with antibodies

completely reverted the stroma-induced drug resistance. We

previously reported a role for MMP-9 in the protective effect of

stroma against CLL cell spontaneous apoptosis in culture [17].

Other investigators have shown the involvement of several

proteins (integrins, chemokines, Bcl-2 family proteins) in the

resistance to certain therapeutic agents induced by stroma [33–

35]. We now show for the first time that stromal cells induce CLL

cell resistance to ATO and that MMP-9 has a prominent role in

this resistance.

Further evidence for a survival role for MMP-9 in response to

cytotoxic drugs comes from the fact that MEC-1-MMP-9

transfectants, representing an unambiguous system to identify

MMP-9 functions, consistently showed higher viability in the

presence of ATO or fludarabine than their corresponding MEC-1-

Mock controls. Indeed, this effect was mediated by MMP-9 as

silencing this protein reverted the survival advantage of the MMP-

9 transfectants. Since our results show that MMP-9 is present in

these transfectants as a cell-associated form as well as in the

conditioned medium, it is possible that both fractions contribute to

the increased survival of these cells. It is not known if the MMP-9

survival effect involves the same or different mechanisms as MMP-

9 upregulation upon apoptotic stimuli, but the results of our study

strongly support a compensatory survival role for MMP-9 in CLL.

We have addressed the molecular bases accounting for this

drug-resistance effect of MMP-9 and have focused on molecules

Figure 9. MMP-9 expression in MEC-1 cells prevents downregulation of anti-apoptotic Bcl-2 family proteins in response to ATO. (A)
56106 Mock- or MMP-9-MEC-1 cells were treated or not with 5 mM ATO. After 24 h cells were lysed and the expression of the indicated proteins was
analyzed by Western blotting, using vinculin as an internal control. A representative experiment is shown for each case and numbers indicate the
average values from all experiments performed, after normalizing Mock control values to 1. (B) The indicated ratios of anti-apoptotic/pro-apoptotic
proteins are shown. (C) 36107 Mock- or MMP-9-cells were treated or not with 5 mM ATO for 24 h. Cells were lysed and lysates immunoprecipitated
with anti-Mcl-1 or control Abs and analyzed by Western blotting. Values indicate the amount of Bim found in the Mcl-1 immunoprecipitates in both
types of MEC-1 transfectants. * or #P#0.05; ** or ##P#0.01; *** or ###P#0.001. Symbols are: *, Mock- vs MMP-9-cells; #, Mock- or MMP-9-cells
treated with ATO compared to their respective untreated counterparts.
doi:10.1371/journal.pone.0099993.g009
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Figure 10. MMP-9 expression in MEC-1 cells prevents downregulation of anti-apoptotic Bcl-2 family proteins in response to
fludarabine. (A,B) 56106 Mock- or MMP-9-cells were treated or not with 5 mM fludarabine (Fluda). After 48 h cells were lysed and the indicated
proteins (A) and ratios (B) analyzed as in Figure 9. * or #P#0.05; ** or ##P#0.01; *** or ###P#0.001. Symbols are: *, Mock- vs MMP-9 cells; #, Mock-
or MMP-9-cells treated with Fluda compared to their respective untreated counterparts.
doi:10.1371/journal.pone.0099993.g010

Figure 11. Culturing CLL cells on MMP-9 modulates Bcl-2 family proteins in response to ATO, preventing downregulation of Mcl-1,
Bcl-xL and Bcl-2. (A,B) 106106 primary CLL cells in RPMI/0.1% FBS were incubated on BSA- or 150 nM MMP-9-coated wells for 1 h prior to adding
3 mM ATO or vehicle. After 24 h, cell were lysed and the indicated proteins (A) and ratios (B) analyzed by Western blotting as explained. * or #P#0.05;
** or ##P#0.01; *** or ###P#0.001. Symbols are: *, CLL cells on BSA vs CLL cells on MMP-9; #, ATO-treated cells compared to their respective
untreated controls.
doi:10.1371/journal.pone.0099993.g011
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from the Bcl-2 family, well-known regulators of apoptosis [27].

The apoptotic action of ATO has been shown to involve

downregulation of the anti-apoptotic protein Mcl-1 in several cell

systems, including myeloma [36] and myeloid leukemia cells [37]

and, in many cases, upregulation of the pro-apoptotic proteins Bax

and/or Bim [36,38,39]. Indeed the balance Mcl-1/Bim was

shown to be determinant in myeloma cell response to ATO [36]

and in the resistance of acute and chronic leukemic cells to

fludarabine [40]. Our present results clearly show that MMP-9,

both in MEC-1 transfectants and in primary CLL cells, not only

prevented downregulation of anti-apoptotic proteins (Mcl-1, Bcl-

xL, Bcl-2) in response to ATO but also upregulated their levels

with respect to basal expression. As this was accompanied by

downregulation (or no alteration) of pro-apoptotic proteins (Bim,

Bax), the anti-apoptotic/pro-apoptotic balance was clearly elevat-

ed in the presence of MMP-9, likely contributing to the MMP-9

survival effect. We previously reported that prevention of CLL cell

spontaneous apoptosis by MMP-9 involved upregulation of Mcl-1

but not Bcl-xL or Bcl-2 [17]. We now show that, in the presence of

ATO, MMP-9 seems to affect several of these proteins, perhaps to

amplify the compensatory survival effect. In this regard, our results

also indicate that Mcl-1, a crucial anti-apoptotic protein in CLL [28]

was not dissociated from Bim upon ATO exposure on MMP-9-

transfected cells, thus preventing Bim from causing mitochondrial

damage and apoptosis. Our results further show that Mcl-1 and Bcl-

xL were also upregulated by MMP-9 in response to fludarabine. This

is in agreement with our previous report showing the involvement of

these proteins in the fibronectin/a4b1 integrin-induced CLL cell

resistance to fludarabine [41]. As in the case of ATO, the anti-

apoptotic/pro-apoptotic protein ratio was elevated, suggesting that

the protective effect of MMP-9 against apoptosis may be a general

CLL cell response to cytotoxic drugs. In conclusion, our study is the

first to establish that MMP-9 induces drug-resistance in CLL by

modulating the balance of Bcl-2 family members. Targeting MMP-9

in combination with therapeutic agents may thus improve the CLL

response to treatment.
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