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Background: Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with a high
mortality rate. PDAC exhibits significant heterogeneity as well as alterations in metabolic
pathways that are associated with its malignant progression. In this study, we explored the
metabolic and clinical features of a highly malignant subgroup of PDAC based on single-
cell transcriptome technology.

Methods: A highly malignant cell subpopulation was identified at single-cell resolution
based on the expression of malignant genes. The metabolic landscape of different cell
types was analyzed based on metabolic pathway gene sets. In vitro experiments to verify
the biological functions of the marker genes were performed. PDAC patient subgroups
with highly malignant cell subpopulations were distinguished according to five glycolytic
marker genes. Five glycolytic highly malignant-related gene signatures were used to
construct the glycolytic highly malignant-related genes signature (GHS) scores.

Results: This study identified a highly malignant tumor cell subpopulation from the single-
cell RNA sequencing (scRNA-seq) data. The analysis of the metabolic pathway revealed
that highly malignant cells had an abnormally active metabolism, and enhanced glycolysis
was a major metabolic feature. Five glycolytic marker genes that accounted for the highly
malignant cell subpopulations were identified, namely, EN O 1, LDHA, PKM, PGK1, and
PGM1. An in vitro cell experiment showed that proliferation rates of PANC-1 and CFPAC-1
cell lines decreased after knockdown of these five genes. Patients with metabolic profiles
of highly malignant cell subpopulations exhibit clinical features of higher mortality, higher
mutational burden, and immune deserts. The GHS score evaluated using the five marker
genes was an independent prognostic factor for patients with PDAC.

Conclusion: We revealed a subpopulation of highly malignant cells in PDAC with
enhanced glycolysis as the main metabolic feature. We obtained five glycolytic marker
gene signatures, which could be used to identify PDAC patient subgroups with highly
malignant cell subpopulations, and proposed a GHS prognostic score.
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INTRODUCTION

Pancreatic cancer has a high mortality rate, with a 5-year survival
rate of only 10%. Pancreatic ductal adenocarcinoma (PDAC)
contributes to approximately 90% of all pancreatic malignancies
(Siegel et al., 2021). Its high mortality rate is mainly owing to its
highly aggressive nature that exhibits significant heterogeneity
(Rodriguez-Aznar et al., 2019). Therefore, identifying highly
malignant subtypes will help to select patients who will benefit
most from neoadjuvant therapy before surgery.

Metabolic reprogramming has been recognized as a common
feature of cancer. Tumor cells adopt several metabolic pathways
using reprogramming to meet the large energy requirements of
cell growth (Vander Heiden and DeBerardinis, 2017). In PDAC,
the tumor develops in a highly fibrotic and connective tissue-
proliferating microenvironment that causes compression of
blood vessels and insufficient blood perfusion (Stylianopoulos
et al., 2012). Therefore, the glucose uptake rate of PDAC cells is
mostly moderate. However, it demonstrates a high growth rate in
a nutrient-deficit environment (Halbrook and Lyssiotis, 2017).
These features reflect the critical role of metabolism in PDAC
progression. Therefore, more therapeutic modalities focusing on
metabolic targets of PDAC have been developed in recent years
(Boudreau et al., 2016; Protopopova et al., 2016); however, there is
a lack of suitable biomarkers to differentiate metabolic subtypes.

Single-cell RNA sequencing (scRNA-seq), with its
characteristics of analyzing transcriptomic information at the
individual cell level, is often used to discover new cell subtypes,
reveal cell heterogeneity, monitor the dynamic process of disease
development, etc. (González-Silva et al., 2020). Metabolic gene
expression can help us to improve our understanding of
metabolic pathway activity (Lee et al., 2012). In contrast to
traditional bulk RNA-seq, the characteristics of scRNA-seq
will gain an insight into the metabolic heterogeneity in
malignant cells.

In this study, the metabolic and clinical features of a highly
malignant cell subpopulation were investigated in PDAC using
scRNA-seq data, bulk RNA sequencing (RNA-seq) data, and
cell function experiments. The highly malignant cell
subpopulation was identified to have a high degree of
glycolysis. In addition, five glycolytic marker genes were
used to differentiate patient metabolic subtypes and predict
tumor progression. Therefore, we provided an insight into
metabolic heterogeneity in PDAC.

MATERIALS AND METHODS

Data Source
PDAC scRNA-seq datasets were downloaded from the Genome
Sequence Archive (GSA) database (https://bigd.big.ac.cn/gsa),
under accession number CRA001160 (Zhang et al., 2018). A
total of 41,986 cells from 24 human pancreatic cancer tissues
without preoperative radiotherapy were included in the analysis
(Peng et al., 2019). The RNA-seq data and corresponding clinical
records of PDAC were downloaded from the Cancer Genome
Atlas (TCGA)-PAAD (n = 146) and GSE62452 (n = 130). Image

data in the study were obtained from the Human Protein
Atlas (HPA).

scRNA-Seq Data Quality Control and
Analysis
Single-cell RNA-seq matrices were filtered out for cells (<200
transcripts/cell, >10% mitochondrial genes) and genes (<10 cells/
gene). We performed a subsequent analysis of the data using the
Seurat R package (Hao et al., 2021). The data are pre-processed
using standard steps (https://satijalab.org/seurat). Finally, single-
cell clustering was visualized using t-distributed stochastic
neighbor embedding (t-SNE) and Uniform Manifold
Approximation and Projection (UMAP) (Wu et al., 2019). The
transcriptome of quality filtered cells was further normalized
using the scran package (Lun et al., 2016).

Copy number variation (CNV) scores were inferred from
scRNA-seq data using the inferCNV R package (Version1.6.0,
https://gitmarker.com/broadinstitute/inferCNV). Quantification
of CNV scores of different cells was conducted using the hidden
Markov model (HMM) (Tirosh et al., 2016). Normalized
gene–cell matrices were used to calculate the metabolic
pathway scores and malignancy scores for each cell. We
referred to public methods for quantifying metabolic pathways
in scRNA-seq data (Xiao et al., 2019). All related code was
available on GitHub (GitHub, Inc., San Francisco, California)
at https://gitmarker.com/LocasaleLab/Single-Cell-Metabolic-
Landscape. Malignant genes were obtained from previous
studies, while metabolic-related genes were excluded (Peng
et al., 2019). The malignant score is the average expression
level of malignant genes. Gaussian mixture models were
estimated using the “mixtools” package (Version1.2.0, https://
cran.r-project.org/web/packages/mixtools/index.html) using
posterior probability to have soft assignment for each cell.
Correlation matrices of significant correlations were plotted
and visualized using the Corrplot function of the corrplot
package. Enrichment analysis of marker genes for highly and
lowly malignant cell subpopulations was done using
compareCluster function in clusterProfiler (Wu et al., 2021).
Enrichment pathways were ranked using false discovery rate
(FDR) from lowest to highest. To distinguish differentially
expressed genes in single-cell datasets, calculations were
performed using the edgeR package of R software (Robinson
et al., 2010). The relevant code to build the pseudo-bulk data was
obtained at https://hbctraining.github.io/scRNA-seq/lessons/
pseudobulk_DESeq2_scrnaseq.

Bulk RNA-Seq Data Quality Control and
Analysis
The count data of the bulk RNA-seq datasets were removed from
the batch effect using the ComBat-seq function of the sva package
(Zhang et al., 2020). Gene expression profiling interaction
analysis (GEPIA, http://gepia.cancer-pku.cn) was used to
analyze the mRNA expression of TCGA program and the
Genotype-Tissue Expression (GTEx) data (Tang et al., 2019).
Survival analysis was performed according to gene expression
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levels. The optimal cut-off point was determined using the R
package survminer. Patients were reclassified using the umap
package (Mcinnes and Healy, 2018). Immune cell infiltration
scores were computed through the GSVA R package with method
specification as single-sample Gene Set Enrichment Analysis
(ssGSEA) (Hnzelmann et al., 2013). Gene sets signatures of
anti-tumor and pro-tumor immune cells were obtained from a
study mentioned in another article (Jia et al., 2018).

Cell Culture
HEK293 cells, HPDE cells, and pancreatic cell lines, including
PANC-1 and CFPAC-1 cells, were purchased from the Cell
Bank of the Chinese Academy of Sciences (Shanghai, China).
HEK293, HPDE, and PANC-1 cells were cultured in Dulbecco’s
Modified Eagle Medium, and CFPAC-1 cell line was cultured
in Roswell Park Memorial Institute-1640 medium, both of
which were supplemented with 10% fetal bovine serum
(10099141, Gibco™) and antibiotics (100 U/ml penicillin and
100 μg/ml streptomycin, C0222, Beyotime) at 37°C, 5% CO2,
respectively.

Lentivirus Packaging for RNA Interfere
HEK293 cells were cultured for lentivirus packaging. Briefly,
HEK293 cells were seeded into 6-cm dishes at a density of 2.5
× 106 cells/dish and cultured in an incubator at 37°C with 5% CO2

overnight. Furthermore, cells were transfected with the following
plasmids: Lipofectamine 2000 reagent (11668019, Invitrogen™):
PXPAX2: PMD2G: target plasmid at a ratio of 10 μl:2 μg:1 μg:
2 μg. Cell cultured medium was collected at 24, 48, and 72 h, and
subsequently filtered using a 0.45-μm filter. Furthermore, PANC-
1, CFPAC-1, and HPDE cells were seeded into 6-cm dishes, and
prepared lentivirus solutions were added into corresponding
dishes. After 48 h, the cell culture medium was replaced with a
fresh medium supplemented with 2 μg/ml of puromycin (P8230,
Solarbio). Successfully transfected cells were selected and
confirmed using Western blot analysis with indicated
antibodies. The lentiviral-based short hairpin RNA (shRNA)
vector was collected from the Public Protein/Plasmid Library.
The detailed information was as follows: pPLK/GFP + Puro-
ENO1 shRNA (Catalogue number: 2023), pPLK/GFP + Puro-
LDHA shRNA (Catalogue number: 3939), pPLK/GFP + Puro-
PKM2 shRNA (Catalogue number: 5315), pPLK/GFP + Puro-
PGK1 shRNA (Catalogue number: 5230) and pPLK/GFP + Puro-
PGM1 shRNA (Catalogue number: 5236).

Measurement of Cell Proliferation
To evaluate the effects of knockdown of glycolytic enzymes on
PDAC cell proliferation, cell viability was measured using a CCK-
8 cell proliferation kit. For example, shCont, shENO1#1, and
shENO1#1 PDAC cells were seeded into 96-well cell culture
plates at a density of 5 × 103 cells/well and incubated with
CCK-8 working solution at 37°C and 5% CO2 for 2 h. The
optical density (OD) value at 450 nm was measured using a
micro-plate reader. The relative cell proliferation rate was
represented as mean ± standard deviation (SD). Each sample
included six replicates. The protocol was also performed to
evaluate the effects of LDHA, PKM2, PGK1, and PGM1

downregulation on PDAC cell as well as pancreatic normal
ductal cell proliferation.

Development of the Prognostic Glycolysis
Highly Malignant Related Genes Signature
Referring to the public method (Hao et al., 2018), we combined
the hazard ratio (HR) of five key glycolytic genes with the
standard estimations (SE) as the prognostic glycolytic gene
weights to generate the glycolytic highly malignant-related
genes signature (GHS) prognostic score, which has the
advantage of reducing the effect of sample size on the weight
of each gene. The GHS score of the sample is given by the
following equation:

GHS � ∑
5

i�1

HRi−1
SE(HRi)pgene(i)

Lastly, the prognostic value of the GHS score was assessed
using single-factor and multi-factor Cox proportional hazard
analysis. Predictive performance was assessed using receiver
operating characteristic (ROC) curves.

Statistical Analysis
The chi-square test was used to investigate the differences in
clinicopathological features among the three subtypes. ANOVA
was used to identify the expression levels of the three subtypes.
The t-test was used to investigate the differences between the two
groups. Correlation analysis was performed using Pearson’s
correlation coefficient. Statistical analysis was performed in R
(version 4.0.4) (Rdct, 2005). The experimental data in the article
were analyzed using GraphPad Prism 9.0 software. A p-value <
0.05 was considered statistically significant.

RESULTS

Single-Cell RNA Sequencing Identifies a
Highly Malignant Subpopulation of Ductal
Cells
High aggressiveness and heterogeneity of PDAC lead to
extremely low survival rates of patients. scRNA-seq data were
obtained from 24 patients with PDAC, and 10 different clusters
including acinar cells, B cells, ductal 1 cells, ductal 2 cells,
endothelial cells, endocrine cells, fibroblasts, macrophages,
stellate cells, and T cells were finally identified by
standardizing the single-cell processing steps. The marker
genes for each cell cluster were consistent with known cellular
markers (Figure 1A and Supplementary Figure S1A). To further
validate the assignment of cell subpopulations, we performed an
inferred gene copy number analysis using the InferCNV R
package. The CNV scores of ductal and acinar cells were
predicted using the HMM method. Ductal 2 cells had
significantly higher CNV scores than those of ductal 1 cells
(Figure 1B and Supplementary Figure S1B), which suggested
that ductal 2 cells were a malignant cell subpopulation.
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To investigate the possibility of distinctions among malignant
cells in terms of the degree of malignancy, we collated 136
genes involved in the malignant progression of PDAC
(Supplementary Table S1). After normalization of scRNA-seq
data (Supplementary Figure S1C), we scored malignant ductal 2
cells based on the collected PDAC malignant genes and found
a bimodal distribution of malignancy scores for ductal 2
cells. This finding implied that some cells in PDAC exhibited
features of highly malignant tendency. After a Gaussian fit of
the data, we classified the malignant ductal cells into a high-
and low-malignancy group according to the malignant score
(Figure 1C).

Unique Gene Expression Profiles of Highly
Malignant Cell Subpopulations
To investigate the existence of a unique expression profile for the
subpopulation of highly malignant cells, we projected ductal 2
cells to a two-dimensional plane using the UMAP dimensionality
reduction method. Moreover, highly malignant cells were
distinguished (Figure 1D), suggesting that highly malignant
tumor cells had a unique expression profile (Supplementary
Figure S2A). Gene Ontology (GO) terms of the highly
malignant cell subpopulation were identified using the
compareCluster function in the R package clusterProfiler. GO
enrichment analysis revealed that the top five pathways associated
with highly malignant cells were mainly associated with actin-
binding, cadherin-binding, cell adhesion mediator activity,
laminin-binding, and enzyme-inhibitor activity (Figure 1F and

Supplementary Table S2). All terms were recognized to be
strongly associated with cancer progression and metastasis.

Metabolic Reprogramming of Highly
Malignant Cell Subpopulations
We referenced a public method to quantify the metabolic
pathways of different cell types. This allowed further
investigation of the variation and overall features of metabolic
pathways among different cell types, especially between the highly
and lowly malignant cell subpopulations. Distinct cell types
exhibited distinguished metabolic profiles. Among immune
cells, macrophages demonstrated the highest metabolic
activity. Riboflavin metabolism is significantly upregulated in
macrophages. In fibroblasts, glycosaminoglycan biosynthesis
was significantly upregulated. Strikingly, the subpopulation of
highly malignant cells illustrated the highest metabolic activity
among all cell types. Moreover, lowly malignant cells had a more
active metabolic pathway than that of ductal one cells. This
suggested that the metabolic activity was correlated with the
malignant progression of tumor cells (Figures 2A, B). Of all 79
metabolic pathways, 44 were highly expressed in highly
malignant cell subpopulations. The categories of overexpressed
metabolic pathways were mainly concentrated in carbohydrate
metabolism, metabolism of cofactors and vitamins, glycan
biosynthesis, and metabolism as well as the lipid metabolism
(Supplementary Figure S2B).

To further reveal the significant metabolic pathways of highly
malignant cell subpopulations, we performed a Pearson

FIGURE 1 | Identifying a highly malignant cell subpopulation in PDAC. (A) t-SNE dimensional reduction of gene expression in 40,986 cells showing major cell types
in 24 patients with PDAC. (B) Copy number variation (CNV) scores of ductal 1, ductal 2, and acinar cells via t-SNE analysis. (C) A density graph of malignant scores in
ductal 2 cells. (D) UMAP plots comparing highly malignant and lowly malignant cells in ductal 2 cells. (E) UMAP plots of corresponding malignant scores levels [scaled
from low (gray) to high (red)]. (F) Bar chart of highly malignant cell biological process (BP) GO terms (at most five) ranked by the FDR (p < 0.05).
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correlation analysis of all metabolic pathway scores with
cellular malignant scores. Pyrimidine metabolism, glycolysis/
gluconeogenesis, purine metabolism, tyrosine metabolism, and
drug metabolism-other enzymes demonstrated a significant
positive correlation with the malignancy of tumor cells
(Figure 2C and Supplementary Figure S2C), indicating that
these five metabolic pathways may be associated with the

malignant progression of PDAC. Subsequently, we compared
the expression of these five metabolic pathways in ductal 1 cells
and lowly and highly malignant cells. Glycolysis was found to be
most significantly elevated in highly malignant tumor cells
(Figure 2D). These analyses suggested that enhanced
glycolysis is the main metabolic feature in highly malignant
cell subpopulations.

FIGURE 2 |Metabolic reprogramming in highly malignant cell subpopulations. (A) Heatmap of expression demonstrating the abundance of Kyoto Encyclopedia of
Genes and Genomes (KEGG) metabolic pathways in different cell types in pancreatic ductal adenocarcinoma. (B) Violin plots for metabolic score of each cell type.
Wilcoxon rank test, p = 0.00084. (C)Correlation heat map (Pearson correlation) of the metabolic pathways (top five) with the highest correlation to malignant scores in all
carcinoma cells. Red, positive correlation; blue, negative correlation; white, no correlation. (D) Bar chart is shown with the pathway scores of five metabolic
pathways in three cell types, and p-values were calculated using ANOVA analysis. Ductal 1 cell, gray bar chart; lowly malignant, blue bar chart; highly malignant, orange
bar chart. ****p < 0.0001.
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Glycolytic Marker Genes of Highly
Malignant Cell Subpopulations
To further reveal key genes of glycolysis during malignant
progression of PDAC tumor cells, we compared highly and
lowly malignant cells by using |logfc| > 1 and p-value <0.01
and found a total of 364 genes to be significantly upregulated
in highly malignant cells (Figure 3A and Supplementary Table
S3). Among these 364 genes, glycolytic genes were identified,
including EN O 1, LDHA, PKM, PGK1, and PGM1 (Figures 3B,
C). In addition, 16 of these 364 genes belong to the five
malignant-related metabolic pathways identified previously.
The Protein–Protein Interaction (PPI) network confirmed the
centrality of glycolytic marker genes among malignancy-
associated metabolic genes (Supplementary Figure S4A).
Furthermore, we attempted to analyze the association of five
glycolytic genes with patient prognosis. High expressions of EN O
1 (p < 0.0001), LDHA (p = 0.00013), PKM (p = 0.00021), PGK1
(p = 0.00082), and PGM1 (p = 0.015) were related to significantly
poorer survival in patients with PDAC (Figure 3D), indicating
the five genes can be used as glycolytic marker for highly
malignant cell subpopulations.

mRNA and Protein Expression Profiles of
Five Glycolytic Marker Genes in PDAC
To investigate the mRNA expression levels of the five glycolytic
marker genes in PDAC, datasets from the Gene Expression
Omnibus (GEO) database were used for further analysis. The
GSE62452 dataset containing a total of 130 samples was used,
including both tumor and paired normal biopsy samples. After
normalizing the expression profile, mRNA expression levels of

the five glycolytic marker genes in PDAC were significantly
elevated compared with paired normal biopsy tissues
(Figure 4A). Furthermore, the mRNA expression of these five
genes was similarly studied in the TCGA cohort. Similarly,
elevated mRNA levels of the five glycolytic marker genes were
observed in tumor tissues. This finding was observed in the
analysis that was performed using the TCGA program and the
GTEx program (Supplementary Figure S4B). The subsequent
step was to examine the positive expression of the five glycolytic
marker genes in PDAC using immunohistochemical (IHC)
analysis using the HPA. The mRNA and protein expression of
the five genes were all overexpressed in PDAC (Figure 4B). These
results are consistent with those of previous analysis of scRNA-
seq data.

Glycolytic Marker Genes Involved in the
Malignant Progression of PDAC Cells
To investigate the effect of glycolytic marker genes in PDAC cells,
we silenced the five glycolytic marker genes separately in PANC-1
and CFPAC-1 cell lines. Two unique silencing sites were used for
each gene. Western blot indicated a significant decrease in the
expression of ENO 1, LDHA, PKM2, PGK1, and PGM1 compared
with the control cells (Figure 4C). The absorbance of each group
at different time points was measured using the CCK8
proliferation assay. As demonstrated, in both PANC-1 and
CFPAC-1 cell lines, silencing of the glycolytic marker genes
decreased the proliferative capacity compared with the shCont
group (Figures 4D, E). In normal pancreatic ductal cell line
HPDE, the knockdown of these five glycolytic genes did not have
as marked an effect on proliferation rates as in tumor cells

FIGURE 3 | Identifying glycolytic marker genes in highly malignant cell subpopulations. (A) Scatter plot of differentially expressed genes. Green, lowly malignant
marker gene; red, highly malignant marker gene. (B) Venn diagram showing five marker glycolytic genes among the highly malignant cell marker genes. (C) Dot plot to
show the expression differences of five glycolytic marker genes ranked from highest to lowest. (D) The association of five marker glycolytic genes with survival based on
TCGA data analysis.
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(Supplementary Figure S3A, B). Collectively, these data
confirmed the contribution of the five glycolytic marker genes
in the malignant progression of PDAC.

Clinical Features of Highly Malignant Cell
Subpopulations
To determine the clinical features of the highly malignant cell
subpopulation, we obtained the expression profiles of the five
marker genes from TCGA (n = 146) and used UMAP to reduce
the dimensionality (Figure 5A). A linear ascending characteristic
was demonstrated for the five marker genes, and the patients were
divided into C1, C2, and C3 groups according to the interquartile
cut-off. (Figure 5B). The five glycolytic marker genes had the
highest expression in the C3 subtype and revealed significant

prognostic differences, with the C3 subtype having the lowest
survival rate (p = 0.043) (Figure 5C). A similar increasing trend
and survival difference were surprisingly maintained in the
GSE62452 (n = 65) cohort (p = 0.011) (Figures 5D–F). As
illustrated in Table 1, the expression of glycolytic marker
genes was correlated with pathological grade only in patients
with PDAC. Similar results were observed in the GSE62452
cohort (Table 2).

Furthermore, to investigate themutation and immune features
of the C3 subtype, mutation data of 146 patients from the TCGA
database were analyzed. In terms of the count of mutations, the
C3 subtype exhibited the highest number of mutations
(Figure 5G). Specifically, the top 10 genes with the highest
mutation rate in the C3 subtype were KRAS, TP53, CKDN2A,
CKDN2A-DT, CKDN2B, SMAD4, MTAP, RN7SL151P, KLHL9,

FIGURE 4 |Glycolytic marker genes involved in the malignant progression of PDAC. (A) Expression levels of five glycolytic marker genes between tumor and paired
normal tissues in the GSE62452 cohort. Blue, normal; orange, tumor. (B) Expression levels of EN O 1, LDHA, PKM, PGK1, and PGM1 protein in 10 patients with PDAC
from the HPA database. Scale bar: 20 µm. (C) PANC-1 cells and CFPAC-1 cells were transfected with sh-control, sh-ENO1, sh-LDHA, sh-PKM2, sh-PGK1, and sh-
PGM1. Validation of knockdown efficiency using Western blot. (D) PANC-1 cells viability was measured by CCK8 assay after knockdown of five glycolytic marker
genes, respectively. (E) CFPAC-1 cells viability was measured by CCK8 assay after knockdown of five glycolytic marker genes, respectively. *p < 0.05; **p < 0.01; ***p <
0.001; ****p < 0.0001.
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and IFNE, which reflected the excessive mutational burden of the
C3 subtype (Supplementary Figure S4C and Supplementary
Table S4). Furthermore, we classified immune cells as anti-tumor
and pro-tumor based on the known functions of the cells. The
immune infiltration scores were calculated using the gene
signatures of immune cells. We observed a significant decrease
in the C3 subtypes of multiple anti-tumor immune cells,
including activated CD8 T cells, effector memory CD4 T cells,
effector memory CD8 T cells, type 1 T helper cells, and type 17 T
helper cells. Remarkably, we observed a low level of infiltration of
pro-tumor immune cells in the C3 subtype, including immature

dendritic cells, macrophages, myeloid-derived suppressor cells
(MDSCs), and plasmacytoid dendritic cells (Figure 5H). This
finding indicated that nearly all immune cells were suppressed in
the C3 subtype.

GHS Scores Constructed by Glycolysis
Marker Genes Is an Independent Prognostic
Factor
To evaluate the value of five glycolytic marker genes as prognostic
markers in patients with PDAC, by using the above formula, five

FIGURE 5 | Clinical features of patients with highly malignant cell subpopulation. (A) UMAP plot of five glycolytic marker genes expression values based on the
TCGA cohort and divided into clusters C1, C2, and C3. (B) Expression levels of five glycolytic marker genes in groups C1 (low expression), C2 (median expression), and
C3 (high expression) among TCGA cohort. (C)Overall survival of C1, C2, andC3 groups in TCGA cohort. (D)UMAP plot of five glycolytic marker genes expression values
based on the GSE62452 cohort and divided into clusters C1, C2, and C3. (E) Expression levels of five glycolytic marker genes in groups C1 (low expression), C2
(median expression), and C3 (high expression) among the GSE62452 cohort. (F)Overall survival of C1, C2, and C3 groups in GSE62452 cohort. (G)Comparisons of the
counts of mutations in groups C1, C2, and C3. (H) Infiltration scores of anti-tumor and pro-tumor immune cells in C1, C2, and C3 groups. *p < 0.05; **p < 0.01; ***p <
0.001; ****p < 0.0001.
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glycolytic marker genes were integrated to establish the GHS
score (Supplementary Figure S4D). Univariate and multivariate
Cox regression analyses were performed to further test the
independent role of GHS score on other clinical-pathological
variables. Our results revealed that the GHS score was an
independent prognostic factor for patients with PDAC (HR =
13.67; 95% confidence interval (CI) 1.46–127.66; p = 0.02;
Figures 6A, B).

Furthermore, we tested the reliability of GHS via survival
analysis and ROC analyses. In the TCGA cohort, Kaplan–Meier
survival analysis revealed a significantly worse prognosis in the
higher GHS scores group (p = 0.00041). GHS scores had
significant prognostic value after 1 (area under the curve
[AUC] = 0.68), 3 (AUC = 0.57), and 5 years (AUC = 0.66;
Figure 6C). Likewise, the same reliable prognostic value was
obtained in the GSE62452 cohort. The higher GHS scores group

exhibited a lower survival rate (p = 0.0063). The GHS scores of
time-dependent ROC analysis at 1, 3, and 5 years were 0.56, 0.74,
and 0.94, respectively (Figure 6D), indicating that the GHS score
could be used to predict the prognosis of patients with PDAC.

DISCUSSION

In this study, we combined scRNA-seq, bulk RNA-seq, and
clinical data for bioinformatics analysis. A subpopulation of
highly malignant cells with a high degree of glycolysis as the
main feature was identified in patients with PDAC. Five glycolytic
marker genes including EN O 1, LDHA, PKM, PGK1, and PGM1
were associated with the malignant progression of PDAC, and a
GHS score is proposed, which could also be used as biomarkers to
determine the metabolic subtype and prognosis of patients.

TABLE 1 | Correlation of C1, C2, and C3 subtypes of clinicopathological features in patients with PDAC from TCGA cohort.

Parameter — TCGA cohort p-value

— — C1(N = 37) C2(N = 72) C3(N = 37) —

Age <65 years 14 (9.59%) 30 (20.55%) 21 (14.38%) 0.21
— ≥65 years 23 (15.75%) 42 (28.77%) 16 (10.96%) —

Gender Male 22 (15.07%) 38 (26.03%) 18 (12.33%) 0.64
— Female 15 (10.27%) 34 (23.29%) 19 (13.01%) —

Stage Stage I 2 (1.37%) 8 (5.48%) 2 (1.37%) 0.66
— Stage II 32 (21.92%) 61 (41.78%) 34 (23.29%) —

— Stage III 1 (0.68%) 2 (1.37%) 0 (0.0e+0%) —

— Stage IV 1 (0.68%) 1 (0.68%) 1 (0.68%) —

Grade G1 9 (6.16%) 11 (7.53%) 1 (0.68%) 0.04
— G2 17 (11.64%) 45 (30.82%) 21 (14.38%) —

— G3 10 (6.85%) 16 (10.96%) 15 (10.27%) —

— G4 1 (0.68%) 0 (0.0e+0%) 0 (0.0e+0%) —

T T1 1 (0.68%) 2 (1.37%) 1 (0.68%) 0.65
— T2 4 (2.74%) 10 (6.85%) 2 (1.37%) —

— T3 30 (20.55%) 58 (39.73%) 34 (23.29%) —

— T4 1 (0.68%) 2 (1.37%) 0 (0.0e+0%) —

— NA 1 (0.68%) 0 (0.0e+0%) 0 (0.0e+0%) —

N N0 9 (6.16%) 21 (14.38%) 7 (4.79%) 0.38
— N1 28 (19.18%) 51 (34.93%) 29 (19.86%) —

— NX 0 (0.0e+0%) 0 (0.0e+0%) 1 (0.68%) —

M M0 17 (11.64%) 33 (22.60%) 19 (13.01%) 0.95
— M1 1 (0.68%) 1 (0.68%) 1 (0.68%) —

— MX 19 (13.01%) 38 (26.03%) 17 (11.64%) —

TABLE 2 | Correlation of C1, C2, and C3 subtypes of clinicopathological features in patients with PDAC from GSE62452 cohort.

Parameter — GSE62452 cohort p-value

— — C1(N = 20) C2(N = 31) C3(N = 14) —

Stage Stage I 1 (1.54%) 1 (1.54%) 2 (3.08%) 0.47
— Stage II 23 (35.38%) 7 (10.77%) 14 (21.54%) —

— Stage III 5 (7.69%) 3 (4.62%) 2 (3.08%) —

— Stage IV 2 (3.08%) 3 (4.62%) 1 (1.54%) —

— Stage >II 0 (0.0e + 0%) 0 (0.0e + 0%) 1 (1.54%) —

Grade G1 0 (0.0e + 0%) 0 (0.0e + 0%) 2 (3.08%) 0.02
— G2 16 (24.62%) 3 (4.62%) 13 (20.00%) —

— G3 15 (23.08%) 10 (15.38%) 4 (6.15%) —

— G4 0 (0.0e + 0%) 1 (1.54%) 0 (0.0e + 0%) —

— Gx 0 (0.0e + 0%) 0 (0.0e+0%) 1 (1.54%) —
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PDAC cells adopt different metabolic pathways to meet their
growth requirements. Targeting the signature metabolic pathway
of the tumor is expected to be a new anti-cancer strategy
(Martinez-Outschoorn et al., 2017); however, the poor
prognosis of patients with pancreatic cancer is not greatly
improved after the use of metabolic therapy (Baron et al.,
2021). This may be attributed to the differences in metabolic
subtypes.

It was reported that an extensive metabolite analysis of several
PDAC cell lines identified three metabolic subtypes exhibiting
different metabolite profiles related to glycolysis, lipogenesis, and
oxidation–reduction pathways (Daemen et al., 2015). In addition,
recent studies have established four metabolic subgroups, namely,
quiescent, glycolytic, cholesterogenic, and mixed, using genomic
and transcriptomic data from 325 patients with PDAC
(Karasinska et al., 2020). The glycolytic subtype had the worst
survival outcome, while cholesterogenic subtype had the longest
survival time. However, no suitable markers are available to
identify the metabolic subtypes of patients.

Previous studies mostly performed comprehensive genomic
analyses by using bulk RNA-seq (Espiau-Romera et al., 2020). In
contrast to classical bulk RNA-seq, scRNA-seq allows the
accurate discrimination between different cell types in bulk
tissue, broadening the understanding of tumor biology (Stuart
and Satija, 2019). However, scRNA-seq data are often extremely
noisy due to the low numbers of mRNA detectable in individual
cells and the large intercellular differences (Kim et al., 2020).
These limitations make it difficult to distinguish some lowly
expressed and non-expressed genes of interest. Notably, our
metabolic pathway analysis based on the single-cell resolution
has very similar results to that based on pseudo-bulk data
(Supplementary Figure S5A). The analysis based on pseudo-

bulk data demonstrates some differences in low expression
metabolic pathways.

Although scRNA-seq has advanced our understanding of
tumor heterogeneity significantly, direct observation of cellular
metabolism at the single-cell level is challenging. Metabolic gene
expression levels are not equivalent tometabolic fluxes, but they can
predict metabolic fluxes to some extent (Bidkhori et al., 2018).
Sophisticated bioinformatics analysis methods are expected tomake
up for these limitations. Damiani et al. developed a computational
framework for transforming single-cell transcriptomes into single-
cell fluxomic (Damiani et al., 2019). However, the accuracy of this
calculation framework needs to be further explored.

All five glycolytic marker genes expressed in pancreatic cancer
were associated with the poor progression of PDAC. Alpha-
enolase (EN O 1), one of the three enolase isozymes,
participates in the adhesion, invasion, and metastasis of PDAC
by controlling integrin expression (Principe et al., 2017). Lactate
dehydrogenase A (LDHA) is a cytoplasmic enzyme, and
overexpression of LDHA promotes PDAC proliferation and
invasion in vitro by regulating phosphorylation of AMPK and
mTOR (Cheng et al., 2021). Inhibition of LDHA has no
significant toxic effects on normal tissues; therefore, LDHA
may serve as a promising target for tumor therapy. Pyruvate
kinase (PKM) has two isomers, namely, PKM1 and PKM2, and
exists as PKM2 in tumor tissues. When PKM2 is knocked down,
PDAC cells can temporarily provide pyruvate via cysteine
catabolism to meet cell growth requirements (Yu et al., 2019).
In addition, PKM2 has been reported to be involved in PDAC
invasion and metastasis through phosphorylation of PAK2
(Cheng et al., 2018). Phosphoglycerate kinase 1 (PGK1) is
secreted by tumor cells and plays a role in coordinating
glycolysis and the TCA cycle during tumorigenesis (Li et al.,

FIGURE 6 | GHS score is an independent prognostic factor for PDAC patients. (A) Forest plot of GHS related to overall survival in univariate Cox regression
analysis. (B) Forest plot of GHS related to overall survival in multivariate Cox regression analysis. (C) TCGA cohort overall survival (OS) curves for high and lowGHS score
groups (left) (time-dependent ROC curves for predicted 1-/3-/5-year overall survival by GHS score (right). (D) GSE62452 cohort overall survival (OS) curves for high and
low GHS score groups (left) (time-dependent ROC curves for predicted 1-/3-/5-year overall survival by GHS score (right).
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2016). Phosphoglucomutase 1 (PGM1) is mainly involved in
glucose catabolism and synthesis and enhances the
proliferation and metastasis of gastric cancer cells (Cao et al.,
2021). However, PGM1 is involved in tumor suppression in liver
cancer (Jin et al., 2018). Therefore, PGM1may play distinct roles
in different cancers. To the best of our knowledge, the study of
PGM1 in PDAC has not yet been reported, and our study revealed
that PGM1 is a marker of malignancy in PDAC and plays an
important role in PDAC glycolysis. Glycolysis is a vital
component of cellular metabolism, and it plays an important
role in maintaining cell growth, even in normal cells (Lunt and
Vander Heiden, 2011). Here, we found that the effect of the five
glycolytic genes on the proliferation rate of pancreatic normal
ductal cells was not as significant as in tumor cells.

In this study, the GHS score was proposed from five glycolytic
highly malignant-related genes. The effectiveness of the GHS
score was validated in the TCGA and GSE62452 cohorts, and the
prognostic value of the GHS score for PDAC patients should
further be verified in prospective clinical studies. The biological
mechanisms of the five genes, which contribute to the progression
of PDAC, require further investigations.

Moreover, metabolic reprogramming during the development
of malignant tumors causes alterations in the tumor
microenvironment. Recent studies have suggested three major
immune subtypes of tumors as follows: immune infiltrative,
immune exclusive, and immune desert (Desbois et al., 2020).
It is believed that excessive glycolysis in tumors suppresses anti-
tumor immunity (Cascone et al., 2018), while our study
demonstrated that the high glycolytic subtype in PDAC
exhibited a more immune desert profile. Tumor cells affect the
nutrition of almost all immune cells, and further investigation is
required for confirmation.

CONCLUSION

We have revealed a highly malignant cell subpopulation in PDAC
that exhibited a high glycolysis rate as the main feature and
obtained five glycolytic marker genes with their biological
functions that are closely related to the PDAC development.

These genes can be used as markers to determine the metabolic
subtype and prognosis of patients with PDAC.
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