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As an important part of the human intestinal microecology, the intestinal flora is

involved in a number of physiological functions of the host. Several studies have

shown that imbalance of intestinal flora and its regulation of the intestinal

barrier, intestinal immune response, and intestinal flora metabolites (short-

chain fatty acids and bile acids) can affect the development and regression of

female reproductive disorders. Herbal medicine has unique advantages in the

treatment of female reproductive disorders such as polycystic ovary syndrome,

endometriosis and premature ovarian insufficiency, although its mechanism of

action is still unclear. Therefore, based on the role of intestinal flora in the

occurrence and development of female reproduction-related diseases, the

progress of research on the diversity, structure and composition of intestinal

flora and its metabolites regulated by botanical drugs, Chinese herbal formulas

and active ingredients of Chinese herbal medicines is reviewed, with a view to

providing reference for the research on the mechanism of action of Chinese

herbal medicines in the treatment of female reproductive disorders and further

development of new herbal medicines.
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1 Introduction

The intestinal flora is a symbiotic microorganism colonized in the human intestine,

which is an important component of the intestinal microecosystem and is also known as

the “second genome” due to its large number, diversity and genetic information, and is

involved in regulating metabolic, immune, endocrine and other physiological processes of

the host (Blaut and Clavel, 2007; Lynch and Pedersen, 2016). In recent years, with the

development of life sciences, the research on human intestinal flora has received extensive

attention from scholars worldwide. Under normal circumstances, the intestinal flora is in

a dynamic equilibrium under the combined influence of external environmental

conditions and host factors, forming a “flora-host” symbiosis. Changes in internal and
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external factors, such as diet, hormones and inflammation, may

contribute to the alterations in the number, type, ratio, location

and biological properties of intestinal flora, resulting in

imbalance of intestinal flora and disruption of the intestinal

barrier, leading to a range of diseases (Schirbel et al., 2013; Zhang

et al., 2015). Studies have reported that an inextricable link

between intestinal flora imbalance and a variety of diseases,

such as obesity (Liu et al., 2017a), type 2 diabetes mellitus

(T2DM) (He et al., 2022), metabolic syndrome (Woting and

Blaut, 2016), inflammatory bowel disease (Ruigrok et al., 2021),

chronic heart disease (Hu et al., 2021) and Alzheimer’s disease

(Jiang Y. et al., 2021). Currently, an increasing number of studies

have also shown that intestinal flora played a crucial role in the

development and regression of female reproductive endocrine

disorders such as polycystic ovary syndrome (PCOS) (Rodriguez

Paris et al., 2022), premature ovarian insufficiency (POI) (Jiang L.

et al., 2021) and endometriosis (EMs) (Svensson et al., 2021).

Intestinal flora is involved in various aspects of female

reproduction, including follicle and oocyte maturation,

fertilization, embryo migration and implantation, and there is

a linear correlation between various intestinal flora and serum

sex hormone levels (Qi et al., 2021). Therefore, imbalance of

intestinal flora may affect female reproductive and endocrine

functions, and restoring intestinal flora homeostasis is beneficial

to improve female reproductive health and pregnancy outcomes.

The dialectical use of traditional Chinese medicine (TCM) to

treat diseases has been practiced in China for thousands of years.

Chinese herbal formulas are complex in composition and often

consist of combinations of multiple botanical drugs, which are

used to reduce toxicity and increase efficacy through complex

concoction processes and interactions between botanical drugs

(Yin et al., 2022). At the same time, Chinese herbal medicines are

rich in natural components with a wide range of action targets,

which can provide ideas for the screening and research of new

drugs. Chinese herbal medicines are widely used in the treatment

of female reproductive disorders (Jiang N. et al., 2020), including

PCOS, POI, and EMs, due to their significant efficacy and low

side effects. Moreover, herbal medicines can effectively alleviate

other concomitant symptoms of female reproductive disorders

such as acne, hirsutism, vaginal dryness, and dysmenorrhea

(Fang, 2020; Liang et al., 2021; Mao et al., 2022). However,

the underlying mechanism of action has not been fully

elucidated. Herbal medicines are mostly taken orally into the

gastrointestinal tract, and their multiple active ingredients

interact directly with intestinal flora to perform the function

of regulating the structure of intestinal flora and its metabolites.

In addition, intestinal flora can transform the components of

herbal medicines to produce secondary metabolites with strong

pharmacological activities, such as converting polysaccharide

components into short-chain fatty acids (SCFAs) such as

propionic acid and butyric acid, which have

immunomodulatory effects on human body through

fermentation fatty acids to maintain host immune and

metabolic homeostasis for disease prevention and treatment

(Cockburn and Koropatkin, 2016). Based on this, regulation

of intestinal flora dysbiosis may be an important potential

target for herbal medicines in the treatment of female

reproductive disorders.

Therefore, this paper reviews the mechanism of action of

herbal medicines in intervening female reproductive disorders

from the perspective of intestinal flora, and introduces natural

herbal medicines for treating female reproductive disorders, in

order to provide a reference for clinical treatment and further

research of herbal medicines for female reproductive disorders.

2 Overview of intestinal flora and
female reproductive disorders

The intestinal flora is a microbiota parasitic in the human

intestine, with a large number of species and a total number of up

to 1014, which is about 10 times the total number of human cells

(de Clercq et al., 2017). The intestinal flora is mainly divided into

three major groups: probiotics, pathogenic bacteria and

conditionally pathogenic bacteria, mainly composed of the

phylum Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria

and Actinobacteria. Probiotics, together with intestinal mucosal

epithelium, intestinal mucus, secretory immunoglobulins,

intestine-related lymphoid tissue, bile salts, hormones and

gastric acid, form the intestinal mucosal barrier to prevent

harmful substances such as bacteria and toxins from entering

other tissues, organs and blood circulation in the body through

the intestinal mucosa, and regulate body metabolism and

immunity. The balance of intestinal flora is a key factor for

normal intestinal barrier function. Dysbiosis of intestinal flora

impairs the intestinal barrier and decreases the expression of the

tight junction proteins occludin and zonula occludin-1 (ZO-1) in

the intestinal mucosa, thus promoting increased intestinal

permeability and the release of endotoxins into the

circulation, which bind to the corresponding receptors to

conduct signals, leading to chronic inflammation, insulin

resistance (IR) and hyperandrogenemia (HA), affecting

immune and metabolic homeostasis (Lam et al., 2012). In

addition, SCFAs are metabolites of the intestinal flora and are

important components in the regulation of host metabolic

activity, with important roles in the regulation of lipid

metabolism, feeding control, weight loss and chronic

inflammation.

In recent years, studies on the relationship between intestinal

flora and female reproductive endocrine disorders such as PCOS,

POI and EMs have been frequently reported, mainly in terms of

correlations, but with the advancement of research techniques,

the mechanisms are gradually being investigated. The intestinal

flora is involved in a wide range of metabolic activities in the

human body and is also known as the “endocrine organ” for

maintaining human health, influencing the reproductive
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endocrine system by regulating hormones, inflammatory factors,

metabolism and immunity (Sjogren et al., 2009; Yu and Chen,

2018; Qi et al., 2021). It was reported that estrogen levels

decreased significantly following the use of antibiotics,

suggesting that intestinal flora may play an important role in

estrogen metabolism. The beta (β)-glucuronidase enzyme

secreted by the intestinal flora can metabolize estrogen from

the bound form to the unbound form. If dysbiosis of the flora

results in reduced ß-glucuronidase activity, this would lead to a

reduction in circulating estrogen, triggering hypoestrogenic

changes such as obesity, metabolic syndrome and cognitive

decline (Plottel and Blaser, 2011; Franasiak and Scott, 2015).

Increasing the number of ß-glucuronidase-producing bacteria

can lead to an increase in circulating estrogen levels, which can

lead to EMs and cancer (Baker et al., 2017). Furthermore,

dysbiosis of the intestinal flora leads to disruption of the

intestinal barrier, increased intestinal permeability and the

entry of lipopolysaccharides into the bloodstream, forming

metabolic endotoxemia, which activates inflammatory

pathways and releases large amounts of pro-inflammatory

factors (Gonzalez et al., 2019), manifesting as a systemic low-

grade chronic inflammatory state, and eventually developing a

PCOS phenotype such as IR, HA and follicular dysplasia.

Similarly, POI has been associated with abnormal lipid and

glucose metabolism in addition to inflammation and

autoimmune disorders (Ates et al., 2014) and with the

development of T2DM (Anagnostis et al., 2019), suggesting

that POI may not be a localized lesion of the ovary, but a

systemic metabolic disease affecting multiple factors and

closely related to the intestinal flora. Therefore, the relative

stability of the intestinal flora is important for maintaining

female reproductive endocrine health (Figure 1).

3 The role of intestinal flora in female
reproductive disorders

3.1 Intestinal flora in PCOS

PCOS is a complex endocrine metabolic disease

characterized by sporadic ovulation or anovulation, HA and

polycystic ovary -like changes, affecting 6%–20% of women of

reproductive age, clinically manifesting as sporadic

menstruation, infertility, hirsutism, acne, IR and obesity, and

in the distant future may be complicated by T2DM, hypertension

and cardiovascular disease (Escobar-Morreale, 2018). The

etiology of PCOS has not been fully elucidated and may be

related to genetic, lifestyle and endocrine disorder factors. Several

FIGURE 1
The molecular mechanisms of intestinal flora involved in the development of female reproductive disorders.
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studies have shown that the diversity and relative abundance of

intestinal flora in patients with PCOS are different from the

general population, inferring that intestinal flora may be related

to the etiology of PCOS. The intestinal flora is involved in

endotoxemia, SCFAs production, bile acids (BAs) metabolism,

amino acid metabolism, and brain-gut peptide secretion, and the

above physiopathological processes are associated with the

manifestations of HA, IR, chronic inflammatory response, and

abnormal brain-gut peptide levels in PCOS (Chen et al., 2020; Jia

and Liu, 2021). Therefore, intestinal flora may be involved in the

pathogenesis of PCOS through HA, IR, chronic inflammation,

and the gut-brain axis, which affect follicular development, sex

hormones, and metabolic levels.

3.1.1 Interaction between intestinal flora
structure and sex hormone levels in PCOS

There is a two-way interaction between intestinal flora and

sex hormones, and intestinal flora may not only be involved in

regulating sex hormone levels, but also its diversity and

distribution are influenced by sex hormones (Rizzetto et al.,

2018; Shin J. H. et al., 2019). Most PCOS studies on the

relationship between sex hormones and intestinal flora have

focused on serum testosterone (T) levels, with a small number

involving estrogen levels. Studies have shown that serum T levels

and hirsutism are negatively correlated with the alpha (α)
diversity of the intestinal flora. Bacteroidetes and Firmicutes

are two intestinal flora that affect the homeostasis of energy

metabolism, and people or animals with obesity or disorders of

glucolipid metabolism have more Firmicutes and less

Bacteroidetes (DiBaise et al., 2008). Compared to normal

women, PCOS patients have reduced α diversity (Jobira et al.,

2020) and increased ß diversity (Zeng et al., 2019) in their

intestinal flora, with Bacteroides vulgatus being strongly

associated with PCOS (Qi et al., 2019; Jobira et al., 2020).

Compared to control rats, PCOS rats had lower levels of

Lactobacillus, Ruminococcus and Clostridium, and higher level

of Prevotella (Guo Y. et al., 2016). A cross-sectional study

involving 46 adolescents found that the diversity and

composition of the adolescent intestinal flora were influenced

by a combination of gender, sex hormone concentrations, and

that sex hormones altered the diversity of the intestinal

flora.conversely, intestinal flora is involved in regulating sex

hormones (Insenser et al., 2018). A study in which the

intestinal flora of adult male mice was transplanted to juvenile

female mice resulted in significantly higher T levels in juvenile

females, with higher T levels in the germ-lined environment than

in the germ-free environment (Markle et al., 2013). This

suggested that intestinal flora can affect the secretion of T in

vivo and can cause endocrine disruption in severe cases. In

addition, another study transplanted feces from healthy

women and PCOS patients into two groups of mice bodies

and showed that mice transplanted with fecal samples from

PCOS patients showed PCOS-like manifestations such as IR,

increased number of cystic follicles, and elevated levels of T and

luteinizing hormone (LH) compared to control mice (Qi et al.,

2019). Indicating that dysbiosis of intestinal flora can alter sex

hormone levels in the body and trigger PCOS, directly affecting

ovarian physiological functions. Recent studies have shown that

probiotics can improve intestinal flora disorders and normalize

the imbalanced intestinal flora ratio, which in turn improved

insulin sensitivity and regulated serum T levels (Zhang F. et al.,

2019). Furthermore, estrogen and gut microbiota may act

synergistically to influence various aspects of women’s health,

including fertility, obesity, diabetes, and cancer.

These results argue for the idea that there is a bidirectional

interaction between sex hormone levels and intestinal flora

composition and diversity, and provide a basis for further

understanding of the relationship between PCOS and

intestinal flora.

3.1.2 Disruption of the intestinal barrier triggers
endotoxemia promoting chronic inflammation
in PCOS

PCOS is a long-term chronic inflammatory disease. It has

been suggested that an “intestinal endotoxemia-inflammation

mechanism” may be involved in the pathogenesis of PCOS, and

that endotoxemia may be involved in the development of PCOS

by triggering an inflammatory response (Tremellen and Pearce,

2012). The cell wall fraction lipopolysaccharide (LPS) of Gram-

negative bacteria in the intestine, such as bacterioide and

Escherichia coli, is an important factor in the inflammatory

activity and early development of metabolic diseases, and has

endotoxic effects. Under normal conditions, the intestinal barrier

protects the organism from the entry of bacteria, endotoxins and

other harmful substances into the blood. However, a long-term

high sugar, high fat, low dietary fiber diet can cause dysbiosis and

increase the abundance of Gram-negative bacteria, resulting in

the destruction of the intestinal mucosal barrier, decreased the

expression of ZO-1 and Occludin, increased intestinal

permeability, and LPS entering the circulation, resulting in

“metabolic endotoxemia”. Compared to normal adult women,

PCOS patients have disrupted intestinal flora, impaired intestinal

mucosal barrier, increased intestinal permeability, and

significantly higher indicators of endotoxemia (Lindheim

et al., 2017). Large amounts of LPS into the blood not only

activate Toll-like receptor 4 (Toll-4) and recruit the expression of

downstream bridging molecules such as tumor necrosis factor α
(TNF-α) and inflammatory factors such as interleukin-6 (IL-6),

inducing a chronic subclinical inflammatory process. IL-6 and

TNF-α are higher in serum and follicular fluid than in healthy

women (Amato et al., 2003). In addition, LPS activates the serum

kinase c-Jun N-terminal kinase (JNK) and the inhibitor of

nuclear factor-κB kinase (IKK) to induce insulin receptor

substrate-1 (IRS-1) serine phosphorylation, leading to

impairment of the insulin metabolic pathway and triggering

IR (Saad et al., 2016; Guadagnini et al., 2019), and

Frontiers in Pharmacology frontiersin.org04

Liu et al. 10.3389/fphar.2022.1026141

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1026141


hyperinsulinemia may interfere with follicular development,

leading to excessive androgen production by follicular theca

cells of the ovary, which consequently leads to PCOS. In one

study, two groups of mice were fed with normal and high-fat

diets for 4 weeks, and compared to control mice, the high-fat

group showed signs of obesity and IR, with significantly higher

serum LPS concentrations; subsequently, LPS was injected

subcutaneously into control mice, which became obese and

developed IR after 4 weeks. In addition, our previous study

found that elevated fasting insulin and plasma TNF-α, IL-6
and HS-CPR inflammatory factors in PCOS rats were

associated with altered intestinal flora (Zhu et al., 2020),

which was also confirmed in another study (Lindheim et al.,

2017). Supplementation with probiotics can increase the relative

abundance of beneficial intestinal bacteria, repair intestinal

barrier function, upregulate tight junction protein and mucin

synthesis, improve chronic inflammation, and increase insulin

sensitivity (Roxas and Viswanathan, 2018; Shin J. et al., 2019).

Therefore, when the intestinal mucosal barrier function is

impaired, endotoxins produced by the intestinal flora enter

the circulation, causing chronic ovarian inflammation and IR

and promoting the development of PCOS.

3.1.3 The content of SCFAs affects the
occurrence of IR

SCFAs are metabolites of dietary fiber via intestinal flora

such as anaerobic bacteria and Bifidobacteria, and are

dominated by butyric, propionic and acetic acid, which

have important roles in regulating lipid metabolism, IR,

chronic inflammation and intestinal immune homeostasis

(Guo et al., 2022). SCFAs are important for maintaining

intestinal homeostasis and affect intestinal barrier function

through various pathways, such as activating the AMPK

pathway, increasing expression of tight junction proteins

and mucins, to maintain the integrity of the intestinal

barrier (Tong et al., 2016). Reduced biosynthesis of SCFAs

affects the barrier function of the intestine and increases the

translocation of endotoxins in the intestinal wall, thus

triggering chronic inflammation and IR, which may lead to

the development of PCOS. In addition to stimulating the

release of the key hormones Peptide YY (PYY) and Ghrelin

in the brain-gut axis, affecting sex hormone-related functions

in the hypothalamus and pituitary gland (Zhang J. et al., 2019),

SCFAs can also increase insulin levels by binding to G-protein

coupled receptor 43 (GPR43) and GPR41 in enteroendocrine

cells, intestinal epithelial cells and pancreatic islets, regulating

GLP-1 secretion and increasing insulin levels. Dysbiosis of the

intestinal flora leads to altered levels of SCFAs, which is more

pronounced in PCOS patients with IR. It was shown that the

levels of acetate, propionate and butyrate in the intestine of

PCOS patients were significantly lower compared to healthy

women, and after 10 weeks of probiotic treatment of PCOS

patients, the abundance of intestinal Lactobacillus was

significantly increased, as well as intestinal SCFA levels,

which promoted insulin secretion (Zhang J. et al., 2019).

Another study showed that increased dietary fiber intake

and butyrate supplementation prevented the development

of obesity and improved insulin sensitivity (McNabney

and Henagan, 2017). The metabolites of intestinal

flora, SCFAs, are one of the major signaling pathways

between intestinal and host metabolism, and when

intestinal flora dysbiosis leads to a decrease in circulating

SCFAs, it causes disruption of glucose and lipid metabolism

in vivo, which may be involved in the pathological process

of PCOS.

3.1.4 BAs are involved in improving chronic
inflammation and affecting insulin sensitivity

BAs consist of primary bile acids synthesized by the liver and

secondary bile acids metabolized by intestinal flora, most of the

BAs in the intestinal lumen are absorbed by the distal ileum, and

the rest are modified by a variety of intestinal flora and then

excreted or passively absorbed. BAs activate glucolipid

metabolism and inflammatory signaling pathways, inhibit

NLRP3 and immune cell activation by binding to the

corresponding receptors thereby ameliorating chronic

inflammation, IR and HA (Guo C. et al., 2016). In addition,

bile salts can inhibit the proliferation of intestinal pathogenic

bacteria, protect intestinal barrier function, and alleviate PCOS-

related phenotypes caused by endotoxemia (Das et al., 2019). In a

study of the correlation between BAs and HA, glycodeoxycholic

acid (GDCA) and taurodeoxy cholic acid (TUDCA) were found

to be positively correlated with serum total testosterone (TT) and

androstenedione in the PCOS group (Zhang B. et al., 2019).

Therefore, altering BAs metabolism may have therapeutic value

in PCOS.

Previous studies have shown that a significant increase in

the intestinal flora of PCOS patients with Bacteroides vulgatus

caused to a decrease in the levels of GDCA and TUDCA by

inhibiting the reabsorption of BAs, which in turn led to

decreased IL-22 secretion. In animal experiments, mice

treated with gavage of Bacteroides vulgatus or fecal

transplants from PCOS patients showed disruption of the

motility cycle and polycystic ovary-like changes,

accompanied by IR, altered BAs metabolism, reduced IL-22

secretion and infertility. Administration of BAs to different

PCOS model mice resulted in significant improvement of

ovarian abnormalities and metabolic abnormalities in all

mice (Qi et al., 2019). These findings indicate that intestinal

flora-mediated BAs metabolism is involved in IL-22 production

and regulates inflammatory and glucolipid metabolic processes,

which affect ovarian function and insulin sensitivity in PCOS.

Thus, dysbiosis of intestinal flora can imbalance BAs synthesis

and conversion, affecting lipid digestion and absorption, which

in turn affects glucose metabolism and is involved in the

development and progression of PCOS.
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3.1.5 Branched-chain amino acids affect insulin
sensitivity

BCAAs, including leucine, isoleucine and valine, are essential

amino acids required by the human body, and their metabolic

processes involve various physiological processes such as insulin

signaling, fatty acid oxidation, tricarboxylic acid cycle (TCA),

glycolysis and mitochondrial oxidation. There is growing

evidence that abnormal metabolism of BCAAs is closely

associated with IR or metabolic disorders (Karakas et al.,

2016; Cunningham et al., 2021), and Prevotella is the most

effective factor in the intestinal flora for inducing elevated

serum BCAAs levels and IR. Serum BCAAs levels were

significantly increased in mice on a high-fat diet compared

with mice on a normal diet, and a certain degree of IR was

also observed (Pedersen et al., 2016). The metabolism of BCAAs

in patients with PCOS is similar to that of obese individuals and

the level of Prevotella in the intestinal flora is elevated in patients

with PCOS compared to controls. Therefore, it is likely that the

BCAAs pathway of the intestinal flora plays a role in the

development of the IR phenotype in PCOS patients (Pedersen

et al., 2016). Significant changes in plasma BCAAs were detected

in each of the PCOS phenotypes, indicating the presence of

abnormal amino acid catabolism and biosynthesis in PCOS

patients (Zhao et al., 2012). Furthermore, elevated valine

levels and reduced glycine levels were observed in women

with PCOS without IR, and these changes were further

exacerbated when IR was present in PCOS patients,

suggesting that valine and glycine contribute to the

development of PCOS not only by influencing IR conditions,

but may also be associated with other metabolic disorders, which

need to be further explored. In addition, one study added that

leucine and valine levels were significantly elevated in

follicular fluid of PCOS patients with IR and confirmed

that higher levels of BCAA increased the rate of miscarriage

and adverse pregnancy outcomes (Zhang et al., 2014). The

underlying mechanism may be closely related to

BCAAs, which is a metabolic disorder that alters glucose

metabolism or induces chronic inflammation that affects

insulin sensitivity, exacerbates IR, contributes to the

development of PCOS, and affects pregnancy outcome. At

present, there are few studies on the relationship between the

gut microbiome and BCAA in PCOS patients, and further studies

are needed.

3.1.6 Intestinal flora-gut-brain axis disorders
affect the development of PCOS

The intestinal flora-gut-brain axis is a bidirectional

information network between the intestinal flora and the

brain, which consists of the gastrointestinal tract, the enteric

nervous system, and the intestinal flora. It is known as the

“second brain” of the human body, and plays a role in

metabolic diseases such as obesity (Muscogiuri et al., 2019),

IR (De Vadder et al., 2014), T2DM (Perry et al., 2016) and

PCOS (Zhang J. et al., 2019). The intestinal flora and its

metabolites produce including SCFA, brain-gut peptides,

neurotransmitters and inflammatory factors (Yano et al.,

2015) as initiators of signaling pathways that initially enter

the circulation via enteroendocrine cells, intestinal

chromophores and the immune system or directly through

the intestinal mucosal barrier, and subsequently induce central

responses by signaling via the vagus nerve or the humoral

circulation (Perry et al., 2016), thereby controlling the body’s

feeding response and the metabolism of lipids, insulin and BAs.

Furthermore, sympathetic postganglionic nerves in the

gastrointestinal tract regulate the secretion of brain-gut

peptides, including Ghrelin, cholecystokinin, glucagon⁃like

peptides (GLP) and PYY, which control the absorption of

glucose and lipids and the role of human metabolism. SCFA,

a metabolite of intestinal flora, is involved in the secretion of

GLP-1, Ghrelin, YY peptide and other brain-gut peptides by

enteroendocrine cells, activates mammalian rapamycin target

protein/signal transduction and transcriptional activator

signaling pathways through GPR43 and regulates brain-gut

peptides expression (Zhao et al., 2018). Therefore, abnormal

metabolism of intestinal flora in turn causes abnormal secretion

of peptides, cytokines and inflammatory factors in the intestine.

Ghrelin is not only involved in regulating the hypothalamic

regulatory nucleus and regulating the secretion of LH; it also

affects female reproductive function by delaying the intensity of

LH pulse release from the pituitary gland and inhibiting its

excessive synthesis and release (Moffett and Naughton, 2020).

PYY can also control pituitary gonadotropin secretion via

neuropeptide two receptors (Pinilla et al., 2007). Therefore,

brain intestinal peptides can also affect the hypothalamic

⁃pituitary ⁃ ovarian axis (H-P-O axis) by acting on the central

receptors, and then participate in regulating the function of the

reproductive system in PCOS. It was found that Ghrelin and PYY

were significantly lower in PCOS patients compared with normal

women, while serum LH levels and LH/FSH ratio were

significantly reduced after successful probiotic transplantation,

and improved PCOS-related clinical indicators and increased

SCFA levels; while no significant changes were seen in serum LH

and SCFA levels in the unsuccessful probiotic transplantation

group (Zhang J. et al., 2019). Another PCOS study also showed

that Ghrelin and PYY levels were reduced in PCOS patients

compared to healthy women and were negatively correlated with

waist circumference and androgen levels (Liu et al., 2017b). The

mechanism of metformin treatment of PCOS may be related to

elevated levels of Ghrelin, tyrosine and GLP-1 (Saydam and

Yildiz, 2016). Ghrelin was negatively correlated with Bacteroides,

and the decrease of Ghrelin caused by PCOS may also be

associated with the increase of genus Bacteroides. Therefore,

as an important bidirectional signaling axis regulating host

energy homeostasis and behavior, intervention in the

intestinal flora-gut-brain axis may be a new target for the

future treatment of PCOS.
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In summary, intestinal flora damage the barrier function of

the intestinal mucosa through HA, endotoxemia, SCFA, BAs,

BCAAs, and the gut-brain axis, activating the body’s chronic

inflammatory system and promoting the development of IR, and

a vicious circle exists between IR and HA in PCOS patients,

further promoting the development of PCOS.

3.2 Intestinal flora in EMs

EMs is an estrogen-dependent disorder in which the

endometrial glands and mesenchyme grow outside the uterine

cavity, affecting 5–10% of women of reproductive age through

clinical symptoms such as cyclic bleeding, chronic pelvic pain,

difficulty with intercourse and infertility (Giudice and Kao, 2004;

Giudice, 2010). The pathogenesis of EMs is complex and has not

been fully elucidated. The classical “menstrual reflux theory”

suggests that endometrial fragments shed during menstruation

leave the uterine cavity via the fallopian tube with menstrual

blood and grow and develop into ectopic lesions. However, it has

been suggested that while menstrual reflux is present in about

90% of healthy women, EMs occur in only 10% (Laschke and

Menger, 2016). This suggests that the theory of menstrual reflux

cannot fully explain the pathogenesis of endometriosis. Recent

studies have revealed that although EMs are benign lesions, they

have biological properties similar to malignant tumors, such as

infiltration, migration and recurrence. Therefore, some scholars

have proposed the “Eutopic endocardium determinism” (Lang,

2020), which suggests that mutations in certain determinants of

endometrium cause the development of EMs, complementing

the theory of retrograde flow. EMs lesions are mainly located in

the pelvic cavity, which is also the site of the intestinal tract. The

intestine, which contains a large amount of intestinal flora, plays

an important role in the stability of the pelvic environment as an

important organ in the pelvic cavity (Rahman-Enyart et al.,

2021). It was investigated that EMs rats had altered intestinal

microorganisms, as shown by an increase in Firmicutes/

Bacteroidetes (F/B) ratio and a decrease in the abundance of

Ruminococcaceae, and the increase in F/B ratio was strongly

associated with inflammation (Cao et al., 2020). Therefore,

alterations in the pelvic environment may contribute to the

pathogenesis of EMs, and the idea that intestinal flora, as a

key regulator of many inflammatory, immune and proliferative

diseases, may be involved in the development of EMs has been

confirmed in several studies (Ata et al., 2019; Chadchan et al.,

2021; Shan et al., 2021; Svensson et al., 2021).

3.2.1 Dysbiosis of intestinal flora elevates
circulating estrogen levels

Estrogen plays an important role in maintaining female

reproductive development and can induce proliferative

diseases such as EMs, uterine fibroids and endometrial cancer

by stimulating the proliferation of epithelial cells in the female

reproductive tract (Xu et al., 2019; Somasundaram et al., 2020).

The intestinal flora is involved in the circulating regulation of

estrogen, and dysbiosis increases circulating estrogen levels,

stimulating ectopic endometrial invasion and growth with

periodic bleeding and pain. The intestinal flora regulates

estrogen by secreting ß-glucuronidase, which uncouples

estrogen into active free estrogen, which is reabsorbed back

into the body through the enterohepatic circulation and

participates in the regulation of circulating estrogen levels

(Dabek et al., 2008; Baker et al., 2017). ß-glucuronidase can

affect intestinal estrogen metabolism and the growth of

hormone-dependent tumors in vivo (Ervin et al., 2019). When

the intestinal flora is dysbiosis, the increase in ß-glucuronidase-

producing flora in the intestine causes an increase in circulating

estrogen levels, and the balance between circulating estrogen

levels and intestinal flora is disrupted, contributing to the

invasive growth of ectopic endothelium and leading to the

development of EMs or exacerbating their clinical symptoms.

3.2.2 Disturbed intestinal flora promotesmassive
production of LPS and enhances the adhesion
and invasion of ectopic endothelium

It was determined that the abundance of Bacteroidetes in the

feces of EMs mice was higher than that of normal mice, and after

administration of metronidazole treatment, Bacteroidetes were

not detected in the feces of EMs mice and the ectopic lesions

became smaller (Chadchan et al., 2019). Subsequent gavage with

fecal bacteria from EMs mice that had previously received

metronidazole and had a significant reduction in the size of

the ectopic endothelial lesions revealed a significant increase in

the size of the endothelial lesions. This suggests that the

development of EMs is closely associated with the increase of

Bacteroidetes. Disturbed intestinal flora can lead to an increase in

Gram-negative bacteria, causing a large number of LPS to enter

the circulatory system is an important cause of chronic

inflammation in humans, and chronic inflammation is

prevalent in patients with EMs. A study on rhesus monkeys

found that fecal bacteria were significantly altered in the EMs

group compared to controls, showing a decrease in Bifidobacteria

and an increase in Gram-negative bacteria, and that the incidence

of intestinal inflammation was higher in the EMs group

compared to controls (Bailey and Coe, 2002); this finding is

consistent with the results of a randomized controlled trial of

women with EMs versus healthy women. EMT also has an

important role in the adhesion and invasion of ectopic

endothelium in EMs, and is an important factor in the

successful implantation of ectopic endothelium as well as in

the migration of lesions (Xiong et al., 2015; Xiong et al., 2016).

LPS upregulates TLR4 expression, which induces the EMT

phenotype and plays an important role in the invasion of

ectopic endometrium (Ying et al., 2018). LPS can also induce

the expression of adhesion molecules between endometrial and

pelvic peritoneal cells, promoting ectopic endometrial adhesion
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and invasion. According to studies, dysbiosis of intestinal flora in

patients with EMs triggers an inflammatory response that leads

to an increase in the number of peritoneal macrophages that

secrete large amounts of cytokines with fibroblast-promoting

properties such as transforming growth factor-beta (TGF-β)
(Lindsey and Langhans, 2014). Under inflammatory

conditions, TGF-βl not only exhibits pro-adhesive molecular

expression effects, promoting adhesion between ectopic

endometrial cells and stromal cells; it also has chemotactic

effects on macrophages, fibroblasts and neutrophils,

promoting the secretion of extracellular matrix such as

fibronectin and collagen, leading to the formation of pelvic

adhesions (Young et al., 2017). It is hypothesized that

intestinal flora plays an important role in the formation of

ectopic endothelial adhesions, invasion and pelvic adhesions

in patients with EMs by mediating LPS.

3.2.3 Impaired immune clearance of ectopic
endothelium due to dysbiosis of the intestinal
flora

The observation of continued growth of endometriotic

lesions in ovariectomized animals suggests that in addition to

ovarian steroid hormones, the innate immune system in the

pelvic environment may also regulate the growth of ectopic

lesions (Novella-Maestre et al., 2012). The refluxed

endometrial tissue as a foreign body in healthy women

triggers immune cells in the peritoneal fluid to stimulate an

immune response, which results in the clearance of endometrial

tissue or cells that reflux with menstrual blood, whereas immune

tolerance exists in patients with EMs, and the refluxed

endometrial tissue or endometrial cells escape from immune

clearance and grow and develop ectopic lesions in the pelvic

abdomen (Giudice, 2010). In most EMs studies, immune

clearance is very poor despite increased expression of some

immune cells in ectopic endothelial tissue, such as CD4+ and

CD8+ (Scheerer et al., 2016), and in-depth studies have revealed

overexpression of programmed death receptor-1 (PD-1) and

programmed death ligand-1 (PD-L1) on the surface of these

immune cells (Wintterle et al., 2003; Zhang H. et al., 2010). On

the surface of normal immune cells, PD-1 and PD-L1 show

expression levels, but when inflammation is stimulated, the PD-

1/PD-L1 signaling pathway is over-activated, inhibiting the

activation and proliferation of T cells in the local

microenvironment of inflammation, while the killing effect on

abnormal cells is greatly reduced and immune tolerance occurs,

which in turn decreases the immunity of the body and leads to

the appearance of immune escape (Okazaki and Honjo, 2006;

Riella et al., 2012; Dai et al., 2014). Thus, the continuous

stimulation and activation of the PD-1 pathway by the large

number of bacterial endotoxins caused by intestinal flora

disorders leads to the overexpression of PD-1 and PD-L1,

which induces the depletion of immune T cells and

contributes to the development and progression of

endometriosis. TNF-α is an immunomodulatory factor

secreted by macrophages and T cells with functions of

regulating reproductive endocrinology, sperm activity and

maintenance of pregnancy, and high levels of TNF-α are

detrimental to fertility. Studies have found that dysbiosis of

the intestinal flora in patients with EMs combined with

infertility subsequently causes a significant increase in the

level of TNF-α in the peritoneal fluid, which affects

fertilization, implantation and the maintenance of pregnancy

(Wang et al., 2018).

Based on the above studies, we learned that intestinal flora

may be associated with the development and progression of EMs

by affecting the inflammatory, immune or hormonal level and

causing alterations in the pelvic environment.

3.3 Intestinal flora in POI

POI is defined as the onset of ovarian failure before the age of

40 years, with menstrual arrest (≥4 months), reduced estrogen

levels and FSH >25 U/L (2 tests >4 weeks apart) as the main

diagnostic criteria, often associated with perimenopausal

symptoms, low fertility or even infertility, and an increased

risk of osteoporosis and cardiovascular disease affecting 1–2%

of women’s reproductive health and quality of life (Fenton, 2015;

Luisi et al., 2015; Feng et al., 2022). POI has many causes,

including genetic defects, enzyme deficiencies, autoimmune

diseases, environmental factors and medical factors such as

surgery, chemotherapy or radiotherapy (Sullivan et al., 2016).

The microbiological profile of the intestinal microbiome of

patients with POI has been found to be altered. Compared to

healthy controls, a decrease in the abundance of the Phylum

Firmicutes, genera Bulleidia and Faecalibacterium and an

increase in the abundance of phylum Bacteroidetes, genera

Butyricimonas, Dorea, Lachnobacterium and Sutterella were

observed in the POI group (Wu et al., 2021). Thus, intestinal

flora may also be involved in the pathogenesis of POI.

3.3.1 Involvement of intestinal flora in estrogen
regulation

The intestinal flora-estrogen axis has a critical impact on the

health of menopausal women (Fenton, 2015; Domniz and

Meirow, 2019). The intestinal flora affects circulating estrogen

levels and the intestinal epithelial estrogen receptor ß affects the

diversity of the intestinal flora (Ibrahim et al., 2019). Studies

demonstrated that menopausal symptoms in ovariectomized rats

were associated with reduced estrogen levels after altering the

intestinal flora of the rats, while long-term supplementation with

a symbiotic preparation containing Lactobacillus fermentum and

ß-glucan prevented menopausal symptoms in rats due to

estrogen deficiency (Jeong et al., 2017). Intestinal flora, such

as Firmicutes, have immunomodulatory effects and influence

both estrogen production and metabolism
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(Fuhrman et al., 2014). Therefore, it is possible that changes in

the intestinal flora and its composition and structure are one of

the pathogenic mechanisms of POI.

3.3.2 Involvement of intestinal flora in the
ovarian immune inflammatory response

The intestinal flora is involved in the development of the

intestinal mucosal immune system, promotes the synthesis of

intestinal mucosal secretory immunoglobulins, and interacts

with intestinal mucosal immune cells to maintain intestinal

homeostasis. Autoimmunity accounts for up to 10%–30% of

the etiology of POI and is associated with the regulation of

various cytokines such as Treg, IFN-γ and Th17 (Jagarlamudi

et al., 2010). Intestinal flora can promote Treg cell expression and

differentiation, mediate the involvement of Treg cells in anti-

inflammatory responses and influence the immune and

metabolic homeostasis of the body. SCFAs can regulate Treg

development in the human colon. DAPH was found to promote

Treg cell development and reduce pro-inflammatory Th17 cell

differentiation, reduce colonic inflammation and re-establish

immune and metabolic homeostasis in the damaged intestine

by increasing the relative abundance of SCFAs-producing

bacteria (Ji et al., 2019). POF patients had changes in their

Treg numbers and improved immunomodulatory effects after

treatment (Song et al., 2018). IFN-γ, a hallmark Th1-type

cytokine with autoimmune response-inducing and pro-

inflammatory effects, plays an important role in the innate

and adaptive immune response of the body. Intestinal flora

can influence serum IFN-γ levels and regulate the immune

microenvironment, while IFN-γ or genetic stimulation can

promote the expression of MHC class II antigens, which may

stimulate the autoimmune response and lead to follicular atresia

and the development of POF (Coulam and Stern, 1991). A study

using hpMSCs transplanted into POF mice found that the

decrease in serum TGF-β and the increase in IFN-γ could be

reversed, suggesting that the restoration of ovarian function is

associated with the production of the relevant cytokines TGF-β
and IFN-γ in POF mice Th17 is a subpopulation generated by

initial CD4+ T cell differentiation that promotes tissue

inflammation through the production of IL-17 (Yin et al.,

2018b). P.UF1 bacteria from the intestinal flora of breastfed

preterm infants can specifically control Th17-Th1 cells via IL-10+

Treg cells to limit pathogenic bacteria-induced inflammation

(Colliou et al., 2018). Accumulating evidence suggests that Th17/

Treg homeostasis underlies the pathogenic mechanisms driving

autoimmune diseases (Noack and Miossec, 2014; Fasching et al.,

2017). The intestinal flora influences the body’s immune function

by regulating Th17 cells and thus the ratio of Th17/Tc17 and

Th17/Treg cells in vivo is altered after POF treatment, and

ovarian function is significantly improved (Yin et al., 2018a).

3.3.3 Intestinal flora induced metabolic
disturbances leading to POI

Lachnospiraceae, a key flora for intestinal health, is

involved in a variety of biological processes such as

digestion and metabolism of dietary fibre and carbohydrates

and glucose transport (Wu et al., 2019). In a study of

tripterygium glycosides -induced DOR rats, reduced

intestinal flora diversity and lower abundance of

Lachnospiraceae were found (Zhu et al., 2022). Moreover,

the abundance of several metabolites, particularly lipids,

glycerophospholipids, steroids and amino acids, were

significantly altered in the ovarian tissue of POI mice

compared to normal mice and were reversed by injection of

human umbilical cord mesenchymal stem cells. A meta-

analysis showed a correlation between POI and increased

risk of T2DM (Anagnostis et al., 2019). Hormone

replacement therapy (HRT) significantly reduces

atherosclerotic lipid levels in postmenopausal women

(Gregersen et al., 2019). The intestinal flora is involved in

the development of IR, T2DM by influencing the levels of

metabolites (Canfora et al., 2019). The composition of the

intestinal flora and the abundance of SCFAs that can be

observed in ovariectomized constructs of menopausal rats

significantly alter the overall health of the menopausal rats

(Zeibich et al., 2021). Multiple lines of evidence suggest that

the intestinal flora plays an important role in the

development of POI and may influence autoimmune

dysfunction (De Luca and Shoenfeld, 2019), bone health

(Ibanez et al., 2019), and cognitive and neurological health

(Martin et al., 2018). Combined with the ability of the

intestinal flora and its metabolites in regulating

inflammatory pathway activation, brain-gut peptides

secretion and pancreatic ß cell destruction (Zheng et al.,

2018). Therefore, we hypothesize that changes in the

intestinal flora of POI patients lead to metabolic imbalances

and subsequently induce menopausal symptoms and other

health risks, but further experiments are yet to be conducted to

verify this.

Current studies suggest that the relationship between

intestinal flora and POI is mainly in terms of autoimmunity

and involvement in sex hormone regulation, with some

studies suggesting a possible association with metabolic

disorders. Intestinal flora can be involved in the

regulation of sex hormones either directly or indirectly

(Jeong et al., 2017), or by influencing the expression of

immune-related cytokines such as Treg, IFN-γ and Th17,

or possibly by regulating the body’s metabolic processes to

improve POI (Adlercreutz et al., 1984). The relationship

between POI and the intestinal flora remains to be

investigated.
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4 Chinese herbal medicine to
regulate intestinal flora for female
reproductive disorders

Current treatments for female reproductive disorders

include lifestyle interventions, pharmacological ovulation

treatment and assisted reproductive treatment. Studies have

shown that modulation of intestinal flora, glucolipid

metabolism, inflammation and immune-related targets can

influence the onset and progression of reproductive disorders

(Hu et al., 2019; Zhao T. T. et al., 2021; Qi et al., 2021). In

particular, therapies that target the regulation of intestinal

flora may be one of the effective options for improving

reproductive disorders. It has been shown that intestinal

flora metabolites, such as SCFAs, can significantly modulate

glycolipid metabolism and inhibit the development of

inflammation, maintaining female reproductive endocrine

homeostasis (Chadchan et al., 2021; Lagowska and

Drzymala-Czyz, 2022). Probiotics are intestinal microbial

modulators that have been widely used in the treatment of

female reproductive endocrine disorders, such as PCOS

(Giampaolino et al., 2021), and can effectively improve IR

and inflammatory status and reduce ovarian damage in

patients with PCOS (Heshmati et al., 2019; Shamasbi et al.,

2020).

Probiotic supplementation in women with PCOS is

beneficial in reducing body weight, improving hormone

levels and IR, lowering triglyceride (TG) and low density

lipoprotein cholesterol (LDL-C) concentrations, increasing

sex hormone-binding globulin (SHBG) and improving

inflammation and oxidative stress, suggesting that

probiotics can modulate inflammation in patients with

PCOS (Shoaei et al., 2015; Jamilian et al., 2018). There are

some connections between the intestinal flora and the female

vaginal flora. Therefore, some scholars have tried to use oral

food probiotics to alter the female vaginal flora pattern in a

way that inhibits the expression of pro-inflammatory

cytokines in the vagina. This action also affects the

inflammatory state in the intestine, acting on intestinal

flora and immune cells such as macrophages, dendritic cells

and intestinal epithelial intrinsic lymphocytes to treat diseases

such as EMs and bacterial gynecological inflammation (Ata

et al., 2019; Quaranta et al., 2019). Besides, studies have found

that probiotics affect FSH levels and reduce body mass in

perimenopausal women (Szydlowska et al., 2021). Therefore,

targeted regulation of intestinal flora seems to be an effective

strategy for the treatment of female reproductive disorders (Qi

et al., 2021). Due to its low toxicity and side effects, TCM has

become a complementary option for the prevention and

treatment of female reproductive disorders (Yang et al.,

2022). Over the years, many active ingredients of herbal

medicines have been extracted and revealed their important

pharmacological effects in anti-inflammatory, antioxidant and

reproductive health protection (Yan et al., 2018; Yang et al.,

2020; Zhang et al., 2021). Therefore, botanical drugs, Chinese

herbal formulas and active ingredients of Chinese herbal

medicines have promising applications in the treatment of

reproductive disorders associated with disorders of intestinal

flora structure (Figure 2).

4.1 Botanical drugs

Most Chinese herbal medicines have the function of

regulating the disordered intestinal flora while relieving female

reproductive endocrine symptoms. It was discovered that

Atractylodes Macrocephala Koidz [Asteraceae; Atractylodis

macrocephalae rhizoma] could promote the proliferation of

Bifidobacteria and Lactobacillus in the intestine of mice,

reduce the number of harmful bacteria enterobacteria,

improve the overall intestinal flora status, and maintain the

intestinal microecological balance (Yan et al., 2011). It is

speculated that Atractylodes Macrocephala Koidz. Might

increase the absorption and utilization of glucose by

peripheral tissues, especially muscle and adipose tissues, by

improving the imbalance of intestinal flora caused by spleen

deficiency in patients, protecting the intestinal mucosal barrier,

alleviating chronic inflammation, and improving the immunity

of the body, and thus improving the IR and inflammatory

response.

Puerarin, the main extract of Pueraria lobata (Willd.) Ohwi

[Leguminosae; Pueraria Lobata Radix], could decrease glucose

and improve IR by regulating intracellular insulin signaling,

increasing cellular Ca-Mg-ATPase activity, and improving the

transport of substances such as glucose and insulin in the body

(Zhang W. et al., 2010). Puerarin has estrogen-like effects, could

regulate glucolipid metabolism, reduce insulin and cholesterol

levels, and increase the number of intestinal Bifidobacteria and

Lactobacillus, and decrease the relative abundance of Escherichia

coli and Bacteroidetes, thus exerting a role in reducing androgen

synthesis (Xu et al., 2010; Wang, 2016).

The infusion of Panax ginseng C.A.Mey (Araliaceae; Ginsen

Radix Et Rhizoma Rubra) and the extract of Panax ginseng

C.A.Mey. were able to inhibit the number of ovarian cysts,

elevated serum testosterone and E2 levels, inhibit the

expression levels of macrophage infiltration, pro-inflammatory

cytokines IL-1β, IL-6 and inducible nitric oxide synthase (NOS),

inhibit NF-κB pathway, and improve PCOS through anti-

inflammatory and antioxidant effects (Choi et al., 2020). In

addition, treatment of patients with metabolic syndrome with

Panax ginseng C.A.Mey. revealed significant improvements in

serum levels of the biomarkers of lipid metabolism, cholesterol

and LDL-C, which might be associated with an increase in

Firmicutes, Proteobacteria, Bacteroidetes (Seong et al., 2021).

The main active ingredient of Salvia miltiorrhiza Bunge

(Lamiaceae; Salviae miltiorrhizae radix et rhizoma) is
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tanshinone, which has estrogen-like biological activity,

increases serum LH and FSH levels, and inhibits the

overexpression of T and P receptors. It was noted that the

diversity index and species abundance of intestinal flora in the

salvia miltiorrhiza cell-broken pieces group were significantly

higher than those in the control group, and the number of

Bifidobacteria and Lactobacillus also significantly increased

(Zeng, 2015). This indicated that Dan Shen wall-breaking

tablets had positive regulating power on intestinal

microbiota and increased the beneficial bacteria in the

intestinal tract. Further studies revealed that the intestinal

flora of mice intervened by cryptotanshinone resulted in

increased relative abundance of Ruminococcus and

negatively correlated with inflammatory factors, thus the

mechanism of anti-androgenic action of cryptotanshinone

and the modulatory effect of intestinal flora were closely

related (Wang, 2015; Wang L. et al., 2020). It is

hypothesized that Salvia miltiorrhiza Bunge can

promote the release of intestinal hormones through the

regulation of intestinal flora (GLP-1, PYY, etc.), which in

turn activates the brain nervous system and induces the

pituitary gland to be sensitive to GnRH and increases

LH secretion, and inhibits the release of inflammatory

factors and improves ovarian function by anti-androgen

synthesis but its mechanism of action needs to be verified

by more studies.

4.2 Chinese herbal formulas

Many modern studies have shown that Chinese herbal

formulas can improve the microecological environment of the

intestinal tract and thus play a therapeutic role in a variety of

female reproductive disorders (Table1).

Disturbances in intestinal flora and fecal metabolites are

closely associated with HA and IR, and treatment with a

combination of Chinese herbal medicines that tonify kidney

and strengthen spleen can achieve better benefits. Buzhong

Yiqi prescription (BYP) improved HA in PCOS patients by

modulating the abundance of Bacteroides,

(Eubacterium)_ventriosum_group and its differential fecal

metabolites. (Ni et al., 2021). Wang’s YiJing decoction

(WYD), with tonifying kidney and strengthening spleen as the

main treatment, could significantly improve endocrine metabolic

disorders and sex hormone levels in PCOS-IR patients, possibly

related to the regulation of the gut-brain axis (Chang et al., 2022).

The improvement of PCOS-IR by modified Banxia Xiexin

decoction (MBXD) could be achieved by regulating the

disorder of intestinal microbiota and thus improving the

metabolic disorder of the body, while Akkermansia might play

an important role in the treatment (Zhao et al., 2022).

Studies have shown that formulas are essential for reshaping

the structure of intestinal flora and maintaining intestinal

immune balance. After the intervention with Cangfu Daotan

FIGURE 2
Mechanisms of Chinese herbal medicines in improving female reproductive disorders by regulating the intestinal flora. ZHF, Zhishen Huatan
Formula; SZD, Shaofu Zhuyu Decoction; MHWD, Modified Huanglian Wendan Decoction; CDD, Cangfu Daotan Decoction; SWT, Siwu Tang; GFW,
Guizhi Fuling Wan; MBXD, Modified Banxia Xiexin Decoction; HJP, Huayu Jiedu Prescription; SGD, Shaoyao-Gancao Decoction; BYP, Buzhong Yiqi
Prescription; WYD, Wang’s YiJing Decoction; HBHF, Hashi Bushen Huatan Formula.
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TABLE 1 Changes in the intestinal flora and potential mechanisms.

Intervention Common
composition/Type

Subjects Changes in
intestinal flora

Potential mechanism Outcome References

Formulas Common composition

Cangfu Daotan
Decoction (CDD)

Atractylodes lan (Thunb.) DC. [Asteraceae; Atractylodis rhizoma], Cyperus
rotundus L. [Cyperaceae; Cyperi rhizoma], Citrus × aurantium L. [Rutaceae;
Aurantii fructus immaturus], Arisaema erubescens (Wall.) Schott [Araceae;
Arisaematis rhizoma], Citrus × aurantium L. [Rutaceae; Aurantii fructus],
Pinellia ternata (Thunb.) Makino [Araceae; Pinelliae rhizoma], Conioselinum
anthriscoides ‘Chuanxiong’ [Apiaceae; Chuanxiong rhizoma], Poria cocos
(Schw.) Wolf [Polyporaceae; Poria], Shenqu Purchased by Zhang et al. (2020)
from Guangdong Biotechnology Co., Ltd

PCOS-IR
patients

Lactobacillus and Bifidobacterium↑,
Enterobacteriaceae↓

- The cycle ovulation rate and cycle
pregnancy rate↑

Zhang and Jiang,
(2020)

Cangfu Daotan
Decoction (CDD)

Atractylodes lancea (Thunb.) DC. [Asteraceae; Atractylodis rhizoma], Citrus ×
aurantium L. [Rutaceae; Aurantii fructus immaturus], Cyperus rotundus L.
[Cyperaceae; Cyperi rhizoma], Arisaema erubescens (Wall.) Schott [Araceae;
Arisaematis rhizoma], Prunus persica (L.) Batsch [Rosaceae; Persicae semen],
Angelica sinensis (Oliv.) Diels [Apiaceae; Angelicae sinensis radix], Pinellia
ternata (Thunb.) Makino [Araceae; Pinelliae rhizoma], Poria cocos (Schw.)
Wolf [Polyporaceae; Poria], Zingiber officinale Roscoe [Zingiberaceae;
zingiberis rhizoma recens], Citrus × aurantium L. [Rutaceae;Aurantii fructus],
Shenqu, Glycyrrhiza glabra L. [Fabaceae; Glycyrrhizae radix et rhizoma] (12:8:
10:12:8:15:10:15:5:10:12:8) Prepared by Jiang et al. (2020) according to China
Pharmacopoeia

PCOS-IR
patients

Lactobacillus and Bifidobacterium↑,
Enterobacteriaceae↓

1. Inflammation: IL-17↓, TGF-β, IL-
10↑; 2. Insulin
resistance indicators: FBG, 2hPBG,
FINS, HOMA-IR↓

- Jiang et al. (2020a)

Buzhong Yiqi
Prescription (BYP)

Astragalus mongholicus Bunge [Fabaceae; Astragali radix], Poria cocos (Schw.)
Wolf [Polyporaceae; Poria], Codonopsis pilosula (Franch.) Nannf.
[Campanulaceae; Codonopsis radix], Atractylodes macrocephala Koidz.
[Asteraceae; Atractylodis macrocephalae rhizoma], Actaea cimicifuga L.
[Ranunculaceae; Cimicifugae rhizoma], Bupleurum chinense DC. [Apiaceae;
Bupleuri radix], Citrus × aurantium L. [Rutaceae; Aurantii fructus
immaturus], Angelica sinensis (Oliv.) Diels [Apiaceae; Angelicae sinensis
radix], Acorus tatarinowii Schott [Araceae; Acorus tatarinowii rhizoma],
Salvia miltiorrhiza Bunge [Lamiaceae; Salviae miltiorrhizae radix et rhizoma],
Epimedium sagittatum (Siebold and Zucc.) Maxim. [Berberidaceae; Epimedii
folium], Rehmannia glutinosa (Gaertn.) DC. [Orobanchaceae; Rehmanniae
radix] (30:15:15:12:9:6:9:15:15:15:18:18) Prepared by Ni et al. (2021)
according to China Pharmacopoeia

PCOS-IR
patients

the phylum Spirochaetae and the genera
[Eubacterium]_rectale_group, Escherichia-Shigella,
and Fusicatenibacter↑, Megamonas↓

1. Insulin resistance indicators: HOMA-
IR↓; 2. Fecal
metabolites: palmitic, palmitoleic,
eicosenoic,
erucic, behenic, tetracosanoic, stearic
acid
and sphingosine 1-phosphate↑,
taurocholic acid and xanthine↓

DHEAS, T↓; the cycle ovula Ni et al. (2021)

Guizhi Fuling Wan (GFW) Neolitsea cassia (L.) Kosterm. [Lauraceae; Cinnamomi cortex], Poria cocos
(Schw.) Wolf [Polyporaceae; Poria], Paeonia × suffruticosa Andrews
[Paeoniaceae;Moutan cortex], Paeonia lactiflora Pall. [Paeoniaceae; Paeoniae
radix rubra], Prunus persica (L.) Batsch [Rosaceae; Persicae semen]
Purchased by Zhu et al. (2020) from Chengdu Jiuzhitang Jinding
Pharmaceutical Co., Ltd

PCOS SD rats Alloprevotella, Firmicutes, Ruminococcaceae UCG-
003,
and Lachnospiraceae UCG-008↑, Bacteroidetes,
Proteobacteria↓

1. Inflammation: TNF-α↓; 2. Insulin
resistance
indicators: FPG, FINS and HOMA-IR↓

- Zhu et al. (2020)

Modified Banxia Xiexin
Decoction (MBXD)

Pinellia ternata (Thunb.) Makino [Araceae; Pinelliae rhizoma], Scutellaria
baicalensis Georgi [Lamiaceae; Scutellariae radix], Coptis chinensis Franch.
[Ranunculaceae; Coptidis Rhizoma], Zingiber officinale Roscoe [Zingiberaceae;
Zingiberis rhizoma recens], Codonopsis pilosula (Franch.) Nannf.
[Campanulaceae; Codonopsis radix], Glycyrrhiza glabra L. [Fabaceae;
Glycyrrhizae radix et rhizoma], Ziziphus jujuba Mill. [Rhamnaceae; Jujubae
fructus], Epimedium sagittatum (Siebold and Zucc.) Maxim. [Berberidaceae;
Epimedii folium], Lycium barbarum L. [Solanaceae; Lycii fructus] (9:20:10:9:
12:12:9:15:30) Prepared by Zhao et al. (2022) according to China
Pharmacopoeia

PCOS SD rats phyla Verrucomicrobiota Proteobacteria and
genera Akkermansia and Blautia↑, genus
Clostridium_sensu_stricto_1, Firmicutes and
Actinobacteriota↓

1. Inflammation: HS-CPR, IL-6 and
TNF-α↓;
2. Insulin resistance indicators:
HOMA-IR↓

body weight↓ Zhao et al. (2022)

Hashi Bushen Huatan Formula
(HBHF)

Cuscuta chinensis Lam. [Convolvulaceae; Cuscutae semen], Ziheche, Poria
cocos (Schw.) Wolf [Polyporaceae; Poria], Pueraria lobata (Willd.) Ohwi
[Leguminosae; Pueraria Lobata Radix], Shinanye, Salvia miltiorrhiza Bunge
[Lamiaceae; Salviae miltiorrhizae radix et rhizoma], Atractylodes lancea

PCOS SD rats - 1. Inflammation: IL-1β↓; 2. Insulin
resistance
indicators: FINS, HOMA-IR↓,
Adiponectin

- Wu et al. (2022b)

(Continued on following page)
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TABLE 1 (Continued) Changes in the intestinal flora and potential mechanisms.

Intervention Common
composition/Type

Subjects Changes in
intestinal flora

Potential mechanism Outcome References

(Thunb.) DC. [Asteraceae; Atractylodis rhizoma], Gynochthodes officinalis
(F.C.How) Razafim. and B.Bremer [Rubiaceae; Morindae officinalis radix],
Rehmannia glutinosa (Gaertn.) DC. [Orobanchaceae; Rehmanniae radix],
Epimedium sagittatum (Siebold and Zucc.) Maxim. [Berberidaceae; Epimedii
folium], Gleditsia sinensis Lam. [Fabaceae; Gleditsiae spina], Lujiao, Gentiana
scabra Bunge [Gentianaceae; Gentianae radix et rhizoma], Senna tora (L.)
Roxb. [Fabaceae; Cassiae semen], Crataegus pinnatifida Bunge [Rosaceae;
Crataegi fructus], Alisma plantago-aquatica subsp. orientale (Sam.) Sam.
[Alismataceae; Alismatis rhizoma], Nelumbo nucifera Gaertn.
[Nelumbonaceae; Nelumbinis folium], Plantago asiatica L. [Plantaginaceae;
Plantaginis semen] (20:6:15:15:15:30:10:15:15:15:15:15:10:10:15:15:10:15)
Prepared by Wu et al. (2022) according to China Pharmacopoeia

receptors in ovarian and adipose tissues
↑;
3. SCFAs: butyric acid↓, acetic acid and
propionic acid↑

Wang’s YiJing
Decoction (WYD)

Dipsacus asper Wall. ex DC. [Caprifoliaceae; Dipsaci radix], Eucommia
ulmoides Oliv. [Eucommiaceae; Eucommiae cortex],Viscum coloratum (Kom.)
Nakai [Santalaceae; visci herba], Gynochthodes officinalis (F.C.How) Razafim.
and B.Bremer [Rubiaceae;Morindae officinalis radix], Cuscuta chinensis Lam.
[Convolvulaceae; Cuscutae semen], Pinellia ternata (Thunb.) Makino
[Araceae; Pinelliae rhizoma], Citrus × aurantium L. [Rutaceae; Aurantii
fructus immaturus], Poria cocos (Schw.) Wolf [Polyporaceae; Poria],
Atractylodes macrocephala Koidz. [Asteraceae; Atractylodis macrocephalae
rhizoma], Citrus × aurantium L. [Rutaceae; Aurantii fructus], Artemisia
capillaris Thunb. [Asteraceae; Artemisiae scopariae herba], Bupleurum
chinense DC. [Apiaceae; Bupleuri radix], Angelica sinensis (Oliv.) Diels
[Apiaceae; Angelicae sinensis radix], Cyathula officinalis K.C.Kuan
[Amaranthaceae; Cyathulae radix] (15:15:15:15:15:10:10:15:30:10:10:6:10:10)
Prepared by Chang et al. (2022) according to China Pharmacopoeia

PCOS-IR
patients

- 1. Insulin resistance indicators: HOMA-
IR↓;
2. Gut-brain axis: ghrelin, PYY, GLP-1↑;
3. SCFAs: SCFAs in fresh stool↑

T, DHT, FAI, AMH, E2, LH, FSH and
the bilateral ovarian volume↓, SHBG↑

Chang et al. (2022)

Modified Huanglian Wendan
Decoction (MHWD)

Coptis chinensis Franch. [Ranunculaceae; Coptidis Rhizoma], Scutellaria
baicalensis Georgi [Lamiaceae; Scutellariae radix], Bambusa tuldoides Munro
[Poaceae; Bambusae caulis in taenias], Citrus × aurantium L. [Rutaceae;
Aurantii fructus immaturus], Poria cocos (Schw.) Wolf [Polyporaceae; Poria],
Citrus × aurantium L. [Rutaceae; Aurantii fructus immaturus], Cyperus
rotundus L. [Cyperaceae; Cyperi rhizoma], Pinellia ternata (Thunb.) Makino
[Araceae; Pinelliae rhizoma], Salvia miltiorrhiza Bunge [Lamiaceae; Salviae
miltiorrhizae radix et rhizoma], Angelica sinensis (Oliv.) Diels [Apiaceae;
Angelicae sinensis radix], Cuscuta chinensis Lam. [Convolvulaceae; Cuscutae
semen], Atractylodes macrocephala Koidz. [Asteraceae; Atractylodis
macrocephalae rhizoma] (6:10:15:12:15:12:12:10:12:12:24:15) Prepared by
Zhou et al. (2021) according to China Pharmaco poeia

PCOS-IR
patients

Prevotella and Bifidobacterium↑, Bacteroides
and Escherichia coli↓

1. Inflammation: IL-1, IL-6, TNF-α↓; 2.
Insulin
resistance indicators: FBG, FINS,
HOMA-IR↓

BMI, WHR↓; the recovery rate of
menstrual and ovulation↑

Zhou et al. (2021)

Shaoyao-Gancao
Decoction (SGD)

Paeonia lactiflora Pall. [Paeoniaceae; Paeoniae radix alba], Glycyrrhiza glabra
L. [Fabaceae; Glycyrrhizae radix et rhizoma] (1:1) Prepared by Chang et al.
(2021) according to China Pharmacopoeia

PCOS SD rats Firmicutes/Bacteroidetes ratio and Turicibacter↓,
Akkermansia, Blautia, Bacteroides, Coprococcus
and Butyricicoccus↑

1. Inflammation: LPS, IL-18, IL-1β, IL-6
and TNF-α↓;
2. Insulin resistance indicators: HOMA-
IR↓; 3. Intestinal
barrier: occluding and claudin-1↓;
4. Signaling pathway: TLR4/NF-κB↓

T, LH↓, E2, FSH↑; cystic follicles↓,
corpus luteum↑

Chang et al. (2021)

Shaoyao-Gancao
Decoction (SGD)

Paeonia lactiflora Pall. [Paeoniaceae; Paeoniae radix alba], Glycyrrhiza glabra
L. [Fabaceae; Glycyrrhizae radix et rhizoma] (1:1) Prepared by Deng et al.
(2021) according to China Pharmacopoeia

PCOS SD rats Firmicutes, Firmicutes/Bacteroidetes ratio,
Lactobacillus and Odoribacter↓, Bacteroidetes↑

1. Plasma metabolites: Leucine,
glutamine, tryptophan,
proline, uric acid, and adenosine↑,
lauric, palmitic,
linoleic acid and acetylcarnitine↓; 2.
Signaling pathway:
Linoleic acid metabolism, alanine,
aspartate
and glutamate metabolic pathways

T↓; Body weight and ovarian weight↓ Deng et al. (2021)

(Continued on following page)
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TABLE 1 (Continued) Changes in the intestinal flora and potential mechanisms.

Intervention Common
composition/Type

Subjects Changes in
intestinal flora

Potential mechanism Outcome References

Zhishen Huatan
Formula (ZHF)

Bupleurum chinense DC. [Apiaceae; Bupleuri radix], Paeonia lactiflora Pall.
[Paeoniaceae; Paeoniae radix alba], Angelica sinensis (Oliv.) Diels [Apiaceae;
Angelicae sinensis radix], Cyperus rotundus L. [Cyperaceae; Cyperi rhizoma],
Citrus × aurantium L. [Rutaceae; Aurantii fructus], Conioselinum
anthriscoides ‘Chuanxiong’ [Apiaceae; Chuanxiong rhizoma], Glycyrrhiza
glabra L. [Fabaceae; Glycyrrhizae radix et rhizoma], Atractylodes lancea
(Thunb.) DC. [Asteraceae; Atractylodis rhizoma], Citrus × aurantium L.
[Rutaceae; Aurantii fructus immaturus], Poria cocos (Schw.) Wolf
[Polyporaceae; Poria], Pinellia ternata (Thunb.) Makino [Araceae; Pinelliae
rhizoma], Coix lacryma-jobi var. Ma-yuen (Rom.Caill.) Stapf [Poaceae; Coicis
semen], Scutellaria baicalensis Georgi [Lamiaceae; Scutellariae radix], Cullen
corylifolium (L.) Medik. [Fabaceae; Psoraleae fructus], Zishiying (10:15:15:12:
15:10:6:15:10:15:12:15:10:10:10) Prepared by Li et al. (2021) according to
China Pharmacopoeia

PCOS-IR
patients

Lactobacillus and Bifidobacteria↑,
Enterobacteriaceae and Enterococci↓

1. Inflammation: CRP, IL-6 and TNF-
α↓;
2. Insulin resistance indicators: FINS,
FPG,
HOMA-IR↓; 3. Intestinal barrier: DAO,
D-lactic acid↓;
4. Lipid metabolism indicators: TC,
TG↓, HDL-C↑

- Li et al. (2021)

Siwu Tang (SWT) Angelica sinensis (Oliv.) Diels [Apiaceae; Angelicae sinensis radix],
Conioselinum anthriscoides ‘Chuanxiong’ [Apiaceae; Chuanxiong rhizoma],
Paeonia lactiflora Pall. [Paeoniaceae; Paeoniae radix alba], Rehmannia
glutinosa (Gaertn.) DC. [Orobanchaceae; Pehmanniae radix praeparata] (1:1:
1:1) Prepared by Zhu et al. (2022) according to China Pharmacopoeia

DOR SD rats Firmicutes and Bacteroidetes↓ 1. Signaling pathway: Carbohydrate
transport
and metabolism, Amino acid transport
and metabolism

FSH, LH↓, E2, P↑ Zhu et al. (2022)

Huayu Jiedu Prescription (HJP) Sargentodoxa cuneata (Oliv.) Rehder and E.H.Wilson [Lardizabalaceae;
Sargentodoxae caulis], Curcuma aromatica Salisb. [Zingiberaceae; Curcumae
rhizoma], Typha angustifolia L. [Typhaceae; Typhae pollen], Boswellia sacra
Flück. [Burseraceae; Olibanum], Commiphora myrrha (T.Nees) Engl.
[Burseraceae; Myrrha, gummi-resina], Epimedium sagittatum (Siebold and
Zucc.) Maxim. [Berberidaceae; Epimedii folium] (30:9:9:9:9:18)

EMs C57BL/6J
mice

Proteobacteria, Verrucomicrobia, Parasutterella,
Akkermansia and Allobaculum↓, Cyanobacteria,
Lactobacillus, Lachnospiraceae_NK4A136_group↑

1. Inflammation: LPS↓; 2. Fecal
metabolites: homoveratric acid,
melilotoside C, physapubescin↑; 3.
Signaling pathway:
linoleic acid metabolism, Toll-like
receptor

Vimentin, E-cadherin↓ Zhao et al. (2021)

Shaofu Zhuyu Decoction (SZD) Foeniculum vulgare Mill. [Apiaceae; Foeniculi amari fructus], Zingiber
officinale Roscoe [Zingiberaceae; Zingiberis rhizoma recens], Corydalis
yanhusuo (Y.H.Chou and Chun C.Hsu) W.T.Wang ex Z.Y.Su and C.Y.Wu
[Papaveraceae; Corydalis rhizoma], Commiphora myrrha (T.Nees) Engl.
[Burseraceae; Myrrha, gummi-resina], Angelica sinensis (Oliv.) Diels
[Apiaceae; Angelicae sinensis radix], Conioselinum anthriscoides ‘Chuanxiong’
[Apiaceae; Chuanxiong rhizoma], Neolitsea cassia (L.) Kosterm. [Lauraceae;
Cinnamomi cortex], Paeonia lactiflora Pall. [Paeoniaceae; Paeoniae radix
rubra], Typha angustifolia L. [Typhaceae; Typhae pollen],Wulingzhi Prepared
by Cao et al. (2020) according to China Pharmacopoeia

EMs SD rats Firmicutes/Bacteroidetes ratio↓, Ruminococcaceae↑ 1. Inflammation: COX-2↓; 2. Gut
barrier

- Cao et al. (2020)

Active ingredients Type

Berberine Alkaloid PCOS SD rats Bacteroidetes, Proteobacteria, Actinobacteria,
Verrucomicrobia, Bacteroides, Lactobacillus,
Bifidobacterium and Sutterella↑, Firmicutes,
Prevotella, Oscillospira, Oscillospira and
Anaeroplasma↓; Gram-Negative and
Potentially Pathogenic↓

1. Inflammation: LPS, IL-1β, INF-γ,
TNF-α↓;
2. Insulin resistance indicators: HOMA-
IR↓;
3. Signaling pathway: LPS/NF-κB↓

LH, T, LH/FSH ratio and body weight↓ Zhao et al. (2022)

Berberine Alkaloid PCOS SD rats Firmicutes↓, Bacteroidetes↑ 1. Insulin resistance indicators: HOMA-
IR↓;
2. Metabolites: glutamine↑, unsaturated
acids [CH = CH], and glucose↓

T↓ Shen et al. (2021)

Inulin polysaccharide PCOS C57BL/
6J mice

Bifidobacterium↑, Parasutterella,
Helicobacter and Proteobacteria↓

1. Inflammation: TNF-α, IL-6 and
IL-17A↓

T and body weight↓, E2↑ Xue et al. (2019)

Inulin polysaccharide PCOS C57BL/
6J mice

Lactobacillus, Bifidobacterium, Prevotellaceae
and Akkermansia↑, Anaerotruncus↓

1. Inflammation: IL-6, TNF-α↓, IL-22↑;
2. Signaling pathway: bile acid
biosynthesis

LH, T↓, FSH, E2, P, PRL↑ Li et al. (2022)

(Continued on following page)
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decoction (CDD), the proportion of Bifidobacterium and

Lactobacillus increased and the relative abundance of

Enterobacteriaceae decreased in PCOS patients, while the

ovulation and cycle pregnancy rate increased and hormonal

abnormalities significantly improved, suggesting that the

control of PCOS phenotypes by CDD may be achieved by

regulating the structure of the intestinal flora, promoting the

growth of dominant bacteria such as Bifidobacterium and

Lactobacillus in the intestinal flora, and inhibiting

conditionally pathogenic bacteria such as Enterobacteriaceae

(Zhang and Jiang, 2020). This conclusion was verified in

another study, which also showed that the combination of

CDD with other therapies in obese PCOS patients could

reduce IR, correct Treg/Th17 imbalance, modulate T-cell

immune response, and improve imbalance of gut microbial

homeostasis with fewer adverse effects (Jiang X. L. et al.,

2020). In addition, the Chinese herbal formula modified

Huanglian Wendan decoction (MHWD), which combined

resolving phlegm and tonifying kidney, effectively regulated

intestinal flora, increased Prevotella and Bifidobacterium,

decreased Bacteroides and Escherichia coli, reduced IL-1, IL-6

and TNF-α inflammatory factor levels, improved glucose

metabolism and IR, and promoted menstruation and

ovulation recovery (Zhou et al., 2021). Another study also

showed that Lactobacillus and Bifidobacteria were negatively

correlated with intestinal barrier function, glucose metabolism,

inflammatory factors and TC and TG, and positively correlated

with HDL-C. Zhishen Huatan Formula (ZHF) effectively

increased the abundance of Lactobacillus and Bifidobacteria,

improved intestinal barrier function, alleviated inflammatory

response, and corrected disorders of glucose and lipid

metabolism, and had therapeutic effects on obese PCOS

patients (Li et al., 2021). Hashi Bushen Huatan Formula

(HBHF) may improve PCOS-IR by promoting intestinal

SCFAs production, decreasing pro-inflammatory factor

secretion, and increasing lipocalin receptor expression (Wu L.

L. et al., 2022).

A classical formula based on harmonizing the liver and

spleen, Shaoyao-Gancao decoction (SGD) reconstructed the

structure of intestinal flora in PCOS rats, increased the

abundance of Akkermansia Blautia, Bacteroides, Butyricoccus

and Coprococcus, decreased the F/B ratio and LPS-producing

pathogens Proteobateria abundance, reduced pro-inflammatory

factors, increased the expression of ocludin and claudin1,

protected the intestinal barrier to reduce LPS transport, and

inhibited TLR4/NF-κB signaling pathway to improve the

inflammatory response in PCOS rats (Chang et al., 2021), and

the mechanism of action might be related to the regulation of

endogenous metabolites and the improvement of intestinal flora

disorders in PCOS (Deng et al., 2021). The decrease in intestinal

function caused by altered intestinal flora is closely related to the

drug process in vivo. It was found that intestinal flora affected the

metabolic and kinetic changes of SGD in PCOS rats, playing aT
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role in reducing adverse effects and enhancing pharmacological

activity (Cheng, 2019). Treatment with the herbal formula Siwu

Tang (SWT), which nourishes Blood and invigorates Blood,

resulted in a downregulation of FSH levels, an increase in E2,

and an increase in intestinal flora diversity in DOR rats, with

Firmicutes and Bacteroidetes being the dominant flora (Zhu et al.,

2022), and it is hypothesized that the improvement of

reproductive function with the herbal formula may be related

to the regulation of the abundance of Firmicutes and

Bacteroidetes.

The use of herbal formulas based on activating blood

circulation and resolving blood stasis in reproductive

disorders is also widespread, and their mechanism of action

may also involve changes in intestinal flora. A previous study

found that Guizhi Fuling Wan (GFW) induced an increase in the

alpha diversity of the intestinal flora of PCOS-IR rats, as

evidenced by an increase in the relative abundance of

Lachnospiraceae UCG-008, Ruminococcaceae UCG-003 and

Alloprevotella, to improve inflammation and correct IR (Zhu

et al., 2020). In another study, after 4 weeks of Shaofu Zhuyu

decoction (SZD) treatment of EMs rats, a normalization of the

intestinal microbiota, a decrease in the ratio of F/B and an

increase in the abundance of Ruminococcaceae were observed,

restoring the damaged intestinal barrier function and alleviating

the inflammatory response in the ectopic endometrial tissue and

pelvis (Cao et al., 2020). In addition, Huayu Jiedu Prescription

(HJP) significantly reduced the level of inflammatory factors in

the peritoneal fluid of EMs, remodeled or even reversed some of

the altered intestinal flora and intestinal metabolites, reduced the

level of LPS in vivo and attenuated ectopic focal fibrosis to

improve the reproductive disorders caused by EMs (Zhao Q.

Q. et al., 2021).

4.3 Active ingredients of Chinese herbal
medicines

Experimental studies have shown that many active

ingredients in Chinese herbal medicines including alkaloids,

flavonoids, triterpenoids, polyphenols and polysaccharides

have the ability to improve the disorders of intestinal flora

during reproductive disorders (Table 1).

Berberine is a quaternary alkaloid isolated from Coptis

chinensis Franch [Ranunculaceae; Coptidis Rhizoma]. Modern

research has shown that berberine improves menstrual cycles,

ovulation rates, endocrine abnormalities and metabolic

dysregulation in PCOS. Berberine indirectly improved IR,

regulated hormone secretion and increased ovulation and

conception rates in PCOS patients mainly by reducing the

relative abundance of polysaccharide flora, increasing the

relative abundance of SCFAs producing flora and reducing

endotoxemia (Wang T. et al., 2017). Additionally, berberine

inhibited the relapse of EMs by affecting the concentration of

metabolites involved in energy homeostasis such as glucose,

glutamine and lactate (Warowicka et al., 2021). Several studies

have suggested that the mechanism of action of berberine in

reducing HA and hyperinsulinemia in PCOS model rats may be

related to the promotion of SCFAs production by inhibiting the

LPS/NF-κB signaling pathway, increasing the relative abundance

of beneficial intestinal bacteria and decreasing the relative

abundance of pathogenic bacteria (Zhao et al.; Shen et al.,

2021). Thus, berberine modulation of intestinal flora may

improve the metabolic and inflammatory state of the

organism and be beneficial for reproductive function.

Glycyrrhizin and total saponins of glycyrrhizin are

triterpenoids extracted from Glycyrrhiza glabra L [Fabaceae;

Glycyrrhizae radix et rhizoma] with anti-inflammatory effects

that could improve ovarian morphology, reduce androgen

secretion levels and enhance insulin sensitivity in a letrozole-

induced PCOS rat models (Jiang L. et al., 2020). In addition,

glycyrrhizin significantly inhibited LPS-induced levels of

inflammatory mediators such as TNF-α, IL-1β, NO and PGE2
and attenuated the endometrial inflammatory response, making

it a potential herb for the treatment of EMs (Wang X. R. et al.,

2017). The total saponins of glycyrrhizin was able to significantly

restore intestinal flora diversity, promote the growth of beneficial

bacteria and maintain intestinal environmental homeostasis,

suggesting that its ability to reduce serum testosterone,

inflammation levels and improve ovarian function was

associated with intestinal flora (Wang J. et al., 2020).

Studies have found that inulin, a polysaccharide extracted

from plants, could increase Bifidobacterium and reduce

Parasutterella, Helicobacter and Proteobacteria, alleviating

PCOS by regulating intestinal microbiology and alleviating

inflammation, suggesting that inulin has potential clinical

application for the treatment of PCOS (Xue et al., 2019).

Similar results were obtained in a study of supplementation

with yogurt enriched with Inulin for the treatment of PCOS,

and it was also suggested that yogurt enriched with Inulin

alleviated reproductive dysfunction in PCOS mice by

modulating the gut microbiota and BAs profile (Li et al., 2022).

Fisetin, a natural bioflavonoid found in abundance in many

fruits and vegetables, has antioxidant and anticancer properties

and has recently been found to significantly reverse ovarian

damage in POF mice. It was revealed that fisetin

supplementation significantly increased the abundance of

genera uncultured_bacterium_f_Lachnospiraceae and

significantly decreased the abundance of Akkermansia in POI

mice, and significantly reduced the number of CCR9/CXCR3/

CD4 T lymphocytes and CD4/IL-12 cells in peripheral blood

significantly decreased (Lin et al., 2020). It was shown that fisetin

has a therapeutic effect on POF by modulating the structure and

distribution of intestinal flora in POF mice and reducing

peripheral blood CCR9/CXCR3/CD4 T lymphocyte counts

and IL-12 secretion to alleviate the ovarian inflammatory

microenvironment. Naringenin, a citrus flavonoid, was
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recently found to have beneficial effects in the treatment of PCOS

by upregulating the expression of PGC-1α, SIRT1, occludin and

claudin-1 in the colon and downregulating the abundance of

Prevotella and Gemera to improve the intestinal mucosal barrier

and glucose metabolic pathways in PCOS rats (Wu Y. X. et al.,

2022). Furthermore, quercetin is also a class of flavonoid natural

compounds with anti-inflammatory, antioxidant, anti-obesity

and anti-cancer properties. Studies have shown that quercetin

can intervene in the development of PCOS, EMs and POI in a

multi-targeted and multi-pathway manner (Park et al., 2019;

Chen et al., 2022; Zheng et al., 2022), while quercetin

supplementation significantly increased the relative abundance

of Akkermansia and reduced the ratio of F/B in obese mice (Tan

et al., 2021), improved LPS-induced inflammatory damage (Bian

et al., 2018), maintained glucolipid metabolic homeostasis and

promoting the production of SCFAs to enhance insulin

sensitivity and improve the inflammatory response. Therefore,

we hypothesize that quercetin may ameliorate reproductive

endocrine disorders by reshaping the structure of the

intestinal flora and increasing the content of SCFAs.

Curcumin is a major polyphenolic compound isolated from

Curcuma longa L [Zingiberaceae; Curcumae longae rhizoma]

with anti-inflammatory, antioxidant, anti-cancer and anti-

microbial properties. It has been found that curcumin

significantly reduces blood glucose, lipids and androgen levels,

and promotes follicular development, maturation and

luteinization in PCOS patients (Bachmeier et al., 2010;

Jamilian et al., 2020). Moreover, curcumin reversed ovarian

oxidative stress damage, improved ovarian reserve function,

increased the number of primordial follicles, decreased the

number of atretic follicles and increased AMH levels

(Kevenaar et al., 2006; Wang X. N. et al., 2017; Yan et al.,

2018). Curcumin has also been used in recent years in studies

of EMs due to its anti-inflammatory, anti-angiogenic and anti-

proliferative properties and its positive effects (Chowdhury et al.,

2019). It was discovered that curcumin modulated the diversity

and distribution of intestinal flora, partially reversed

ovariectomy-induced estrogen deficiency in rats, improved

intestinal barrier function and regulated gut-brain axis

homeostasis, inhibited chronic inflammatory responses and

improved insulin sensitivity, and prevented metabolic and

reproduction-related diseases (Wang J. et al., 2017; Zhang

et al., 2017; Di Meo et al., 2019). Resveratrol is a low

molecular weight polyphenolic compound widely found in

various botanical drugs, e.g. Reynoutria japonica Houtt

(Polygonaceae; Polygonum cuspidatum Sieb. et Zucc.), fruits

(including grapes and peanuts) and red wine that maintains

homeostasis of glucolipid metabolism, improves low-level

inflammation and oxidative stress, and is beneficial in the

treatment of metabolic, reproductive and inflammatory

proliferative diseases (Chaplin et al., 2018; Jiang et al., 2019).

After resveratrol treatment, serum TNF-α and T levels were

significantly reduced in PCOS rats, the degree of IR was

alleviated, and follicular development was maintained (Furat

Rencber et al., 2018). Resveratrol is also known as a natural

anti-inflammatory agent, and it was found that resveratrol might

act as an anti-inflammatory and anti-proliferative agent via

multiple pathways such as arachidonic acid, NF-κB, Ah

receptor or AP-1 to prevent EMs (Dull et al., 2019). Besides,

resveratrol also upregulated PPAR-γ and SIRT1 expression,

inhibited NF-κB-mediated inflammatory response, increased

serum AMH levels and reduced ovarian inflammation, and

restored ovarian reserve function (Said et al., 2016). Intestinal

flora dysbiosis is an important pathological link in PCOS, EMs

and POIs, and resveratrol has the effect of regulating the

structure of intestinal flora, such as increasing the abundance

of Bacillus mimicus, Lactobacillus and Bifidobacterium, and

decreasing the abundance of Firmicutes and Enterococcus

faecium. Therefore, we speculate that resveratrol may exert

anti-inflammatory and anti-glycolipid disorder effects to

prevent and treat female reproductive disorders by modulating

the structure of intestinal flora, but further experimental studies

are needed to verify this.

5 Discussion

Dysbiosis of intestinal flora is closely related to the

development and progression of female reproductive disorders

(Qi et al., 2021). The absence of beneficial bacteria and

overgrowth of certain pathogens may be one of the important

pathogenesis of female reproductive disorders. F/B ratio is

considered as a marker of dysbiosis and is positively

correlated with the levels of pro-inflammatory factors such as

TNF-α, IL-1β, IL-18 and IL-6. A lower F/B ratio is thought to be

beneficial in improving inflammation and maintaining pelvic

microenvironment homeostasis (Chu et al., 2019). However, it is

of concern that Lactobacillus is considered to be the most

commonly used probiotic and a large number of studies have

shown that Chinese herbal medicines can improve the symptoms

of reproductive endocrine disorders by increasing such

probiotics, but there are also individual studies that have

shown a decrease in this genus during treatment with Chinese

herbal medicines (Jiang X. L. et al., 2020; Deng et al., 2021).

Therefore, attention should be paid in subsequent studies to

correlate the possible functions of the genus with the

pharmacodynamic indexes and to validate them in order to

illustrate the significance of the changes in their abundance.

Botanical drugs, Chinese herbal formulas and active

ingredients of Chinese herbal medicines (alkaloids, flavonoids,

triterpenoids, polyphenols and polysaccharides) can effectively

improve reproductive endocrine symptoms by regulating the

diversity and composition of intestinal flora and its metabolites,

SCFAs, indicating that the regulation of intestinal flora is one of

the important channels for the treatment of reproductive

endocrine diseases by Chinese herbal medicines. However,
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most current studies have only discussed the modulation of

intestinal flora structure and composition, effects on intestinal

immune inflammatory response and intestinal barrier function

and on brain-gut axis by Chinese herbal medicines that improve

reproductive function, while most studies on the mechanism of

intestinal flora regulation by Chinese herbal medicines that

alleviate reproductive dysfunction have only conducted

association analysis studies, and further cause-effect studies

are rare. Follow-up studies can be based on macro-genome

sequencing technology to analyze the changes of intestinal

flora structure under the intervention of Chinese herbal

medicines in reproductive endocrine state, perform species

function annotation, screen differential strains, and perform

experimental validation by fecal transplantation or culture of

specific flora based on specific flora regulated by Chinese herbal

medicines that have been clearly identified in clinical and animal

experiments to improve reproductive function. Then, correlation

analysis was performed in combination with intestinal contents

or fecal metabolomics, and validated by relevant pathway

indicators, and the biological mechanisms of Chinese herbal

medicines to improve reproductive endocrine function were

explored in depth, with a view to elucidating the mechanism

of action of Chinese herbal medicines in treating reproductive

disorders.

There are a wide variety of components in Chinese herbal

medicines and formulas, and the material basis of the effect of

correcting reproductive disorders is not clear. Based on the study

of crude extracts, active ingredients and compounds of Chinese

herbal medicines, the reproductive protection mechanism of

their active parts or groups of active ingredients can be

further investigated. Numerous studies have confirmed that

Chinese herbal medicines can affect the growth and

composition of microbiota, and can also be metabolically

inactivated or transformed by microbiota, thus directly or

indirectly affecting the therapeutic effects of drugs. Chinese

herbal medicines regulate the structure of intestinal flora,

increasing the abundance of phylum Bacteroidetes and genus

Akkermansia, Bacteroides, Bifidobacterium, Prevotella, and

Lactobacillus, while decreasing the abundance of phylum

Firmicutes and F/B ratio, and prevent or treat female

reproductive disorders through SCFAs, BAs, and LPS

signaling. However, the role of intestinal flora on the active

ingredients of Chinese herbal medicines to improve reproductive

disorders has yet to be explored in depth. Therefore, the

interaction between the active ingredients of Chinese herbal

medicines as well as compounded active ingredients and

intestinal flora deserves attention, and in vitro co-incubation

of the identified active ingredients with the corresponding

metabolic flora can be considered to further investigate the

material basis of the effect of Chinese herbal medicines on

improving reproductive disorders, in order to elaborate the

material basis research of Chinese herbal medicines for

treating reproductive disorders diseases and provide a basis

for the research of new Chinese herbal medicines for

improving reproductive functions.

6 Conclusion

In this review, we explore the potential mechanisms by which

Chinese herbal medicines are involved in improving female

reproductive disorders and regulating the intestinal flora. Our

review shows that Chinese herbal medicines increase the

abundance of probiotic bacteria, such as Akkermansia to regulate

intestinal integrity and barrier function, and SCFA-producing

bacteria to improve host metabolism and inflammation.

Meanwhile, Chinese herbal medicines can reduce the abundance

of pathogenic bacteria and inhibit LPS-induced metabolic

endotoxemia and inflammation. Moreover, some Chinese herbal

formulas can increase the levels of GLP-1 and PYY by stimulating

enteroendocrine cells, thereby regulating the gut-brain axis and

affecting glucolipid metabolism, for example, Wang’s YiJing

Decoction. The above still needs to be verified by further studies

in the future. Furthermore, there are still some shortcomings in the

treatment of female reproductive disorders in Chinese herbal

medicines. For example, there are different treatment strategies

due to the different classification criteria of TCM for female

reproductive system diseases, a single and small number of

clinical study samples, and a lack of high-quality multicenter

large sample studies. It is not clear which herbal components

play key pharmacological roles in regulating intestinal flora, and

there are significant limitations in the promotion and use of Chinese

herbal medicines. Therefore, more high-quality clinical studies on

Chinese herbal medicines for female reproductive disorders are

needed in the future, so as to establish a quantitative system of TCM

efficacy and promote safer and more effective use of Chinese herbal

medicines. More importantly, the correlation between intestinal

flora and disease-specific metabolites should be studied in depth,

while finding the active ingredients of Chinese herbal medicines and

screening out the specific ingredients that act on the relevant

intestinal flora or metabolites, so as to finally achieve precise

treatment for patients with female reproductive disorders.
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