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Background: Clinical tests for detecting central and peripheral shoulder fatigue are
limited. The discrimination of these two types of fatigue is necessary to better adapt
recovery intervention. The Kinematic Theory of Rapid Human Movements describes the
neuromotor impulse response using lognormal functions and has many applications
in pathology detection. The ideal motor control is modeled and a change in the
neuromuscular system is reflected in parameters extracted according to this theory.

Objective: The objective of this study was to assess whether a shoulder neuromuscular
fatigue could be detected through parameters describing the theory, if there is the
possibility to discriminate central from peripheral fatigue, and which handwriting test
gives the most relevant information on fatigue.

Methods: Twenty healthy participants performed two sessions of fast stroke
handwriting on a tablet, before and after a shoulder fatigue. The fatigue was in internal
rotation for one session and in external rotation during the other session. The drawings
consisted of simple strokes, triangles, horizontal, and vertical oscillations. Parameters of
these strokes were extracted according to the Sigma–Lognormal model of the Kinematic
Theory. The evolution of each participant was analyzed through a U-Mann–Whitney test
for individual comparisons. A Hotelling’s T2-test and a U-Mann–Whitney test were also
performed on all participants to assess the group evolution after fatigue. Moreover, a
correlation among parameters was calculated through Spearman coefficients to assess
intrinsic parameters properties of each handwriting test.

Results: Central and peripheral parameters were statistically different before and after
fatigue with a possibility to discriminate them. Participants had various responses to
fatigue. However, when considering the group, parameters related to the motor program
execution showed significant increase in the handwriting tests after shoulder fatigue. The
test of simple strokes permits to know more specifically where the fatigue comes from,
whereas the oscillations tests were the most sensitive to fatigue.
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Conclusion: The results of this study suggest that the Sigma–Lognormal model of the
Kinematic Theory is an innovative approach for fatigue detection with discrimination
between the central and peripheral systems. Overall, there is a possibility to implement
the setting for clinics and sports personalized follow-up.

Keywords: Sigma–Lognormal model, Kinematic Theory of rapid human movement, central fatigue, peripheral
fatigue, rotator cuff, handwriting, shoulder

INTRODUCTION

One hundred million workers in the European population suffer
from chronic musculoskeletal disorders and pain (Bevan, 2015).
Direct and indirect costs for treating them are expensive, as they
accounted, respectively, for up to $796.3 billion (which represents
5.2% of the national gross domestic product) and $130.7 billion
in the US population per year between 2009 and 2011 (U.S.
Bone and Joint Initiative, 2014). Shoulder is considered to
be one of the most affected joints, as it represents the third
cause of clinical consultation after the lumbar and cervical
regions. Disorders at the rotator cuff in the shoulder region
represents 50–85% of all shoulder musculoskeletal diseases in
Québec (Roy et al., 2015). Overhead and arm elevation repetition
movement is an important risk factor (Hagberg and Wegman,
1987; Svendsen et al., 2004; Ebaugh et al., 2006). In fact, while
performing these movements, neuromuscular fatigue generates
muscular and kinematic adaptations (Ebaugh et al., 2006; Gaudet
et al., 2018), which can lead to musculoskeletal disorders (Beach
et al., 1992). Sports requiring this kind of motion are then
more affecting its players, like in volleyball, baseball, tennis,
etc. (Wang and Cochrane, 2001; Mullaney et al., 2005; Wilk
et al., 2009; Joshi et al., 2011). Detecting shoulder fatigue
at an early stage could be a meaningful approach to avoid
shoulder injuries.

Neuromuscular fatigue corresponds to “any exercise-induced
loss of ability to produce force with a muscle or muscle
group” (Taylor et al., 2006). It can be decomposed into two
categories: central fatigue (Gandevia, 2001) and peripheral
fatigue (Enoka and Stuart, 1992). Central fatigue implies
the neural system: the voluntary activation and information
conduction for movement execution are dysfunctional (Sesboüé
and Guincestre, 2006; Boyas and Guével, 2011). Central fatigue
can come from the supraspinal and spinal areas. Peripheral
fatigue involves the muscles: in that case, the muscular
excitation is impaired. It can cause for example a deterioration
in the action potentials propagation or in the excitation–
contraction coupling responsible for contraction (Sesboüé and
Guincestre, 2006). A poor metabolite substrates supply can
also be a consequence of peripheral fatigue, implying also an
alteration of the excitation-contraction coupling (Boyas and
Guével, 2011). The output force is reduced and the contractile
mechanisms are dysfunctional (Bigland-Ritchie and Woods,
1984). In all cases, fatigue is different depending on the task
(duration and weight lifted) and on the type of contraction
(Chaffin et al., 2006a).

Several methods for detecting fatigue already exist. Numerous
scales have been developed which are fatigue and task specific

(Dittner et al., 2004). For example, the Visual Analog Scale is
a reliable scale used to analyze a global fatigue and has already
been used for muscular fatigue (Lee et al., 1991). However,
this method is not so accurate for low intensities contractions
(Leung et al., 2004). The Perceived Exertion Force is commonly
used in fatigue studies, with the Borg’s scale (Borg, 1998) and
in comparison to other scales, it seems to be one of the most
accurate (Neely et al., 1992). However, results from this scale
have to be analyzed carefully as it remains subjective (Chen
et al., 2002). Objective approaches for fatigue detection also
exist. One of the most frequently used is the electromyography
(EMG) which was first employed by Piper (1912), according to
Cifrek et al. (2009). Parameters such as the amplitude of the
root mean square of the EMG signal increase with fatigue, as
more motor units are recruited for the same amount of force
produced (Merletti et al., 2004). The mean or median frequency
of the power spectrum density decreases, as the velocity of
action potentials is slowed down (Edwards and Lippold, 1956;
Lindström et al., 1977; Al-Mulla et al., 2012). A complication
with EMG is the quality of the signal to be assessed. It is
essential to have good anatomical knowledge for electrodes
placement, in order to avoid crosstalk problems as much as
possible, which can lead to misinterpretations in the results
analysis (Hermens et al., 2000; Merletti et al., 2001; Farina et al.,
2004). EMG presents some difficulties for clinical evaluation as
the electrode placement and signal treatment is time-consuming.
There is also the possibility of using biomarkers as for example
lactate concentrations (Tesch et al., 1978; Finsterer, 2012). Its
intracellular concentration is supposed to diminish with the
apparition of fatigue. Nevertheless, even if they are accurate
methods, they remain invasive and hard to implement easily.
Other non-invasive methods are employed for peripheral fatigue
detection, such as sonomyography, near-infrared spectroscopy,
mechanomyography, or acoustic myography (Mancini et al.,
1994; Huang et al., 2007; Shi et al., 2007; Al-Mulla et al.,
2011; Ibitoye et al., 2014). However, most of these techniques
have to be synchronized with EMG to detect muscle fatigue
and they cannot assess central fatigue. On the other hand,
central fatigue can be evaluated either with percutaneous nerve
stimulation –with an electrical nerve stimulation- or transcranial
magnetic stimulation –with a nerve cells magnetic stimulation-
(Gandevia, 2001; Taylor and Gandevia, 2001; Rozand et al., 2015)
during maximal contractions. If the stimulation evokes an extra-
force, it suggests that central fatigue is present (Merton, 1954).
One more time, EMG can complement the methods to detect
central and peripheral fatigue. Moreover, transcranial magnetic
stimulation requires a magnetic coil to stimulate the motor
cortex, which can interfere with EMG recordings (Valero-Cabré
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et al., 2011). In complement, percutaneous nerve stimulation is to
our knowledge, so far not applicable to all muscles and requires
an experimental set up lengthy and difficult to implement
(Palmieri et al., 2004). This increases the risk of experimental
misinterpretations, thus the difficulty to transpose it to a clinic.
It is then necessary to find a method for detecting central and
peripheral shoulder fatigue, which would be usable in clinics
on a daily basis.

It has been shown that the Kinematic Theory of rapid
human movements describes accurately the neuromotor control
(Plamondon, 1995a,b). This theory is based on the analysis
of the velocity profiles of the end effector of a movement,
like the finger, the wrist, the arm, the shoulder, the head,
the trunk, the eye movements, etc. These movements can
be modeled using lognormal functions, which depict the
impulse response of the neuromuscular system of a participant
(Plamondon et al., 2008). Thus, both central and peripheral
information can theoretically be extracted from the movement
reconstruction (Plamondon et al., 2003). In comparison, the
Minimum-Jerk model (Hogan, 1984; Flash and Hogan, 1985)
postulates that end effector trajectories are chosen by the
central nervous system (CNS) such that the time integral of
the squared magnitude of hand jerk is minimal, which is
equivalent to maximizing the smoothness of the trajectory.
Both approaches describe the same bell-shaped velocity using
different analytical equations. Working with the Minimum-Jerk
model does not give access to the command profile sent by
the CNS. It is assumed that the alpha motoneuron signals,
at the muscle level, correspond to a movement trajectory.
This representation does not take into account the instant
when the movement command is sent to the end-effector,
neither the time required by the CNS to build and send
the appropriate signals to the motor cortex neurons or the
moment when the muscle starts to contract. The Minimum-
Jerk does not give access to the central and peripheral
information that we are investigating in this paper (Djioua and
Plamondon, 2010). For these reasons, the Kinematic Theory
was preferred to the Minimum-Jerk model for movement
reconstruction. Moreover, the Kinematic Theory has been
used in several pathologies for motor control studies, such
as attention deficit hyperactivity disorder (Laniel et al., 2019),
Parkinson’s disease (Lebel et al., 2017, 2018a,b; Nadeau et al.,
2018), stroke risk factors (O’Reilly and Plamondon, 2011),
concussion (Faci et al., 2020b), and it requires a non-invasive,
low cost and plug-in-play experimental set-up made up of
a digitizing tablet connected to a laptop. Its most recent
implementation is ergonomic and very easy to use (Faci
et al., 2018). Since during a shoulder fatigue the kinematic
parameters and the fine motor control are modified (Qin
et al., 2014), we hypothesized that the Kinematic Theory
of rapid human movements may be relevant to monitor
and assess shoulder fatigue analysis through graphomotricity.
The objective of this work is to report a feasibility study
aiming at the objective detection of muscular fatigue and the
discrimination of central and peripheral fatigue, in an economical
and non-invasive way, with the Kinematic Theory of rapid
human movements.

MATERIALS AND METHODS

Participants
Eleven males and nine females took part in the experiment.
They were all healthy active adults (age: 23.2 ± 3.2 years, height:
173 ± 8.3 cm, mass: 71.7 ± 10.0 kg, 18 right-handed and
2 left-handed). All participants were free of any upper-limb
musculoskeletal disorder and had no history of shoulder surgery
or neurological disease in the past. The study was approved
by the Research Ethics Committee of Polytechnique Montréal
(CER-1819-23 v.3).

Experimental Part
Participants completed two sessions in which they performed
four series of fast strokes on a tablet before and after a task
of shoulder fatigue. The two sessions were similarly performed,
at the exception that the fatigue task targeted the shoulder
external or internal rotators (sessions 1 and 2 randomly). There
were at least 3 days of rest between the two sessions to avoid
the participants to be still fatigued at the beginning of the
second session. The process for each session was the following
(Figure 1C): participants first had to execute the four series of
fast strokes and then to alternate between a task of fatigue and
a series of fast strokes. The series consisted of drawing simple
strokes, triangles, horizontal oscillations and vertical oscillations
in a random sequence.

The trajectory of fast strokes was recorded on a Wacom Cintiq
13HD tablet (Faci et al., 2018, 2020a). The tablet was positioned
such that the participant’s fingertip touched the bottom of the
tablet when the shoulder was 90◦ flexed. Participants had to
position the stylus on the starting point of the tablet (Figure 1A).
They started their movement as fast as possible at an audible
stimulus (“bip” at 1 kHz for 500 ms) which was emitted after a
random and unpredictable delay between 1 and 10 s. Depending
on the task, a different guide-screen was displayed to help
participants get the right movement [see further details regarding
the protocol in O’Reilly et al. (2014)].

• (A) Simple strokes: participants were asked to draw 30
simple strokes from a starting point to a broad finish area.
At the end of each stroke, participants had to maintain the
stylus on the finish area for at least 1 s. A training period of
5–10 strokes was carried out before the recording.
• (B) Triangles: 30 triangles had to be drawn, passing

through 3 points in the same clockwise or anticlockwise
direction -chosen by the participant- and they had to wait
with their stylus on the tablet for at least 1s at the end.
A training period was also carried out before the recording.
• (C) Horizontal and (D) vertical oscillations: 10 s of

oscillations at maximal speed between two parts spaced
50 mm apart were performed between two audible stimuli.
After the second signal, stylus kinematics was still recorded
until the participant completely stopped and maintained
the stylus on the tablet for at least 1 s. Only one
trial was registered in these cases, without any training
period to avoid fatiguing participants with these two
maximal speed tests.
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FIGURE 1 | Experimental set-up. (A) Position of the participant while drawing strokes. (B) Setup of the participant on the dynamometer for the fatigue protocol.
(C) Chronology of a session. T corresponds to a series of fast strokes (simple strokes, triangles, horizontal, and vertical oscillations) and F to a task of fatigue.

The fatigue task consisted in repetitive submaximal dynamic
contractions (concentric – continuous passive mode) at
90◦/s (70◦ of amplitude) in internal or external rotation on
an isokinetic dynamometer (CON-TREX R© MJ; Schnaittach,
Germany). Participants were securely fastened using a belt so
as not to move their back. Their arm was positioned at 30◦
of elevation (Figure 1B). A training period was allocated to
familiarize the participant with the isokinetic effort and to
warmup. To determine a target zone of 50 ± 7.5% of their
maximum voluntary contraction, participants performed first a
maximum voluntary isokinetic contraction in external rotation
(or internal rotation during the other session). At each external
rotation (or internal rotation) the participant was instructed to
reach this target zone and to rest during the internal rotation
(or external rotation). The Borg CR10 Scale (Borg, 1998) which
varies from 0 (no effort at all) to 10 (the hardest exercise ever
made) was asked every minute, to monitor perceived exertion.
Stopping criteria of the fatigue trials were similar to those defined
in Yang et al. (2018): (i) Borg number reached 9/10, (ii) three
consecutive fails in reaching the target zone, (iii) after 30, 20,
15, and 10 min for the first, second, third, and fourth exercise
of fatigue, respectively. The participants were not aware of these
criteria. Verbal encouragements were provided as soon as the
performance was outside the target zone. The number of Borg
has been recorded for 19 participants in external rotation and 18
participants in internal rotation.

Sigma–Lognormal Model
Data captured using the tablet were modeled according to the
Kinematic Theory paradigm (Plamondon, 1995a,b). This theory
describes the velocity profile of an end effector as the synergetic
impulse response of neuromuscular systems. Each of these
systems is made of an infinite of subsystems, which are linked
with a proportionality relationship between their cumulative time

delays. From this postulate it is then predicted, according to
the Central Limit Theorem (Plamondon et al., 2003) that the
impulse response of a neuromuscular system tends toward a
lognormal shape.

Evi(t − t0) = EDi3i(t; t0i, µi, σ
2
i ) (1)

where i represents one lognormal, shifted with a time t0 with a
command amplitude D; µ and σ representing timing properties
of each lognormal such that:

3i
(
t; t0i, µi, σ

2
i
)
=

1
σi
√
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exp

{
−

1
2σ2
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[
ln (t − t0i)− µi

]2
}
(2)

In the case of a simple pointing task, the movement is seen
as a synergy of two neuromuscular systems: an agonist and an
antagonist. The agonist one is made up of muscles generating
the desired action, whereas the antagonist system is made up
of muscles working in the opposite direction of the desired
movement. To that extent, agonist and antagonist lognormals can
be distinguished based on the starting angle θsi (see Equations
4 and 5). If the starting angle of the lognormal points toward
the movement direction, the lognormal is agonist. If it points
toward the opposite direction, the lognormal is antagonist. In
that case, the resulting velocity can be expressed as the velocity
of the agonist minus the antagonist lognormals. For more
complex planar movements, the velocity can be described using
a vector summation of lognormals. In that case, trajectories to
reconstruct the movement are circle arcs which connect virtual
targets defining an action plan. This means that the number of
lognormals describing a movement corresponds to the number of
virtual targets representing its trajectory (Plamondon and Djioua,
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2006; O’Reilly and Plamondon, 2009).

Ev (t) =
N∑

i=1
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i ) (3)
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These lognormal profiles have been observed and confirmed
time and again in the last 15 years [see Plamondon (2020)
for an extended survey (O’Reilly et al., 2013; Plamondon
et al., 2013a)], which led to postulating and formalizing the
guiding principle subtending the present research program: the
Lognormality Principle (Plamondon et al., 2013b; Plamondon,
2020). According to this paradigm, the emergent lognormality
of the neuromuscular impulse response of a given human
motor system is a basic global feature reflecting the behavior
of individuals who are in perfect control of their movements.
The production of complex movements is accomplished by time
superimposing and, summing up lognormal vectors, with the
goal of minimizing their number in a given task, to produce
efficient and fluent gestures and optimize the energy required to
generate them. In this context, it is expected that neuromuscular
fatigue will affect the lognormal parameters extracted from
reconstructing a given set of gestures produced by a subject.

The main parameters describing a lognormal were extracted
using an in-house software referred to as Script Studio (O’Reilly
and Plamondon, 2009) and were splitted into four categories,
which are resumed in the Supplementary Table S1 (Plamondon,
1995b; Plamondon et al., 2003). Five parameters are regulated
from the input level and they describe the central system
command: (i) the time that takes the brain to perceive the
stimulus and emit the command to the musculoskeletal system:
t0 (s). It has to be differentiated to the stimulus onset, which is
T = 0 s (O’Reilly et al., 2013) and the reaction time (RT) measured
by the instant of movement onset. In other words, t0 refers
to the moment when a population of neurons sends a motor
command, it occurs after the audible stimulus is perceived and
the motor command is prepared; (ii) 1(t0) (s), which reflects the
rhythmicity of an input command. It represents the time elapsed
between two successive t0 and is used in the oscillations only;
(iii) the amplitude of the lognormal command: D (mm), which
corresponds to the distance covered by the resulting lognormal;
(iv) the starting and (v) ending angles of the lognormal: θs and θe
(rad). They describe the action plan made up of the lognormals.

Two parameters describe the timing properties of the
neuromuscular system, in other terms the peripheral system
of a participant: (vi) the long-time delay or the time taken to
reach half of the distance movement on a logarithmic scale:
µ [ln (s)]. It corresponds to the rapidity of a reaction to a
command by a system; (vii) the log response time or the time
taken from the neuromuscular system to respond to a command

on a logarithmic scale: σ [ln(s)]. It is also linked to the movement
duration and is a measure of the asymmetry of the lognormal.

The last two main parameters describe the global state
of the neuromotor system: (viii) the number of lognormals
required to reconstruct the velocity profile of the movement:
Nblog; and (ix) the measure of the quality of the movement
reconstruction, Signal-to-Noise Ratio: SNR (dB). They are
completed with one derived parameter, (x) the SNR/Nblog (dB),
that is used as a performance criterion and represents the
motor control fluency of a gesture. The lognormality principle
predicts that the ideal movement converges toward a lognormal
profile. When the SNR/Nblog increases, the movement is closer
to the ideal one, as postulated by the lognormal behavior
(Plamondon et al., 2013b).

For our study, five derived parameters were also calculated
for each type of strokes, representing the motor program
execution (see equations in Supplementary Table S1). They give
information about the velocity at which someone will react or
execute a command, and the quality of its response: (xi) the
mode (s), that is the time at which the maximum value of
the lognormal impulse response is reached; (xii) the median
(s), that is the time at which the half value of the integral
under the lognormal curve (50% of the covered distance) is
reached; (xiii) the time delay (s) which represents the rapidity
of a neuromuscular system to respond to a command; (xiv)
the response time (s) which is a measure of the spread of the
impulse response; (xv) the asymmetry which characterizes the
shape of the lognormal.

A last parameter, not from the theory, was also extracted:
(xvi) the reaction time (RT) (s) that is the time needed to start
the movement after a stimulus. In the present study, it was
computed as the time required to reach 10% of the maximal
velocity during the test. From this parameter, we calculated (xvii)
RT-t0 (s) which is the duration of the command propagation
(Woch and Plamondon, 2001).

Data Formatting
The lognormals extracted from each test were split into
components as follows. For the simple strokes, two lognormals
that defined the largest agonist and largest antagonist components
were analyzed (Figure 2A). Strokes composed by only one
lognormal were classified as agonists (Laurent et al., 2019).
For the triangles, strokes were decomposed into the three
largest lognormals explaining stroke 1, stroke 2, and stroke 3
(Figure 2B). It was manually checked that triangles were properly
reconstructed. Those whose lognormals did not describe their
correct trajectory where rejected. It is noticed when the starting
angle of the reconstruction did not point toward the stroke
direction. For oscillations, strokes were split into three phases
(Figure 2C): acceleration (0–2 s), stable (2–10 s), and deceleration
(10 s and more) phases. Lognormals whose amplitude was
lower than 50 mm were considered as artifacts and rejected.
The remaining lognormals were then classified according to
the gesture performed. For the horizontal oscillations (vertical
oscillations in the other case), if the cosine (sine in the other
case) of the starting angle was positive, the lognormals were
considered as an external rotation movement, otherwise they
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FIGURE 2 | Different categories of Lognormals for each test. (A) Original velocity profile (blue) of a simple stroke, with its decomposition into agonist and antagonist
components. (B) Original velocity profile (blue) of a triangle with an extraction of the Lognormal corresponding to the first, second, or third stroke. Dashed gray lines
correspond to other Lognormals used for reconstruction but not analyzed. (C) Original velocity profile (blue) of the oscillations, with the three-phase separation. The
reconstruction of the velocity profile for oscillations is similar to the one of triangles, except that there are only agonist Lognormals, as the movement is fluent and
stops only after the 10 s.

were considered as an internal rotation movement. For each
type of strokes, and each participant, lognormals having at
least one parameter outside the mean ± 3SD were rejected.
The proportion of lognormals retained by tests is reported in
Section “Results.”

Statistical Analyses
To assess the evolution of each participant after fatigue,
individual comparisons using a paired U-Mann–Whitney
test (non-parametric paired t-test) were completed. This
test was performed using all the Lognormals of the 30
strokes and depending on the type of fatigue (ER or IR).
For the simple strokes and the triangles, 16 parameters
were compared, the statistical significance level was
thus set at p < 0.00031 (i.e., 0.05/16) after Bonferroni
correction. For the oscillations, SNR, SNR/Nblog, and Nblog
were not analyzed as there was only one value with the
oscillations, the significance level was set at p < 0.0042
(i.e., 0.05/12).

For group comparisons (n = 20) t0, D, µ, σ, |cos(θs)|,
|cos(θe)|, mode, median, time delay, response time, Nblog,
SNR, and SNR/Nblog were chosen for the simple strokes and
triangles. For the oscillations, 1(t0), D, µ, σ, mode, median,
time delay, response time, Nblog, SNR, and SNR(dB)/Nblog
were selected. Parameters of the oscillations were extracted
from the stable phase. Only the SNR and SNR/Nblog were
calculated from the whole signal. Due to signals recording
problems, the data of four participants were rejected for the
analysis of the Nblog, SNR, and SNR/Nblog for the vertical

oscillations during an internal rotation fatigue and of one
participant, for the horizontal oscillations during an internal
rotation fatigue.

A non-parametric paired Hotelling’s T2-test on each
series of fast strokes was first performed including all the
parameters. This multivariate test assessed whether there are
statistical differences between the two conditions (without
and with fatigue) considering all the parameters. When
the test was statistically significant (p < 0.05), the non-
parametric paired U-Mann–Whitney test was performed on
each parameter separately. The statistical significance was
set at p < 0.00385 (0.05/13) for the simple strokes and the
triangles and at p < 0.0042 (0.05/12) for the oscillations.
Comparisons were performed on all lognormals, considering
separately agonist and antagonist components for the simple
strokes, except for the Nblog, SNR, and SNR/Nblog, as the
whole signal was considered. No such distinctions between
lognormals were made for the triangles and the oscillations
since no supplementary information could be assessed. The
Cohen’s d effect size was also calculated to estimate the
importance of the parameters evolution after fatigue. As
referred in Sawilowsky (2009) the description for magnitude
is the following: d(0.01) = very small, d(0.20) = small,
d(0.50) = medium, d(0.80) = large, d(1.20) = very large,
and d(2.0) = huge.

Correlation matrices were finally calculated to assess the
relationships between parameters. The correlation between
the reaction time and t0 was assessed to determine the
importance of using t0 for central system analyses and the
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correlation of t0 with µ to evaluate the independence of
parameters related to the central and peripheral systems. To
do so, Spearman coefficients were evaluated on the mean
of each parameter by test. Statistical significance was set
at p < 0.05.

RESULTS

The filtering of data led to retain lognormals with properties
verifying the conditions mentioned in Section “Data
Formatting.” The proportion of the lognormals retained
out of the entire set of strokes drawn by test, is illustrated
in Figure 3. The proportions are similar pre- and post-
fatigue. It is observed that horizontal and vertical oscillations
have the highest amount of lognormals retained (between
88.7 ± 0.04% and 91.4 ± 0.04%), whereas triangles count
the lowest numbers of them (73.7 ± 0.08% pre-fatigue versus
73.1 ± 0.11% post-fatigue). Simple strokes have around 84% of
lognormals retained.

Effects of Fatigue by Participant
Torques and Borg Number
As depicted in Figure 4, the participants experienced internal
rotation (IR) or external rotation (ER) fatigue differently. The
ER fatigue trials lasted longer than the IR ones (15 ± 9.4 min
versus 3.9 ± 1.6 min). We observed also that the time necessary
to fatigue after each series of strokes decreased for the ER
fatigue (respectively, 15, 8.9, 6.2, and 5.1 min) whereas it
stayed quite stable for the IR fatigue (3.9, 3.2, 3, and 2.7 min).
However, for both fatigues, the number on the Borg Scale was
similar (7.7 ± 1.4 for the ER fatigue and 7.9 ± 1.1 for the
IR fatigue). Despite the shorter time to fatigue, participants
perceived intense effort in IR.

FIGURE 3 | Proportion of Lognormals retained by test.

Kinematic Parameters
The proportion of participants affected in their parameters by
fatigue is presented in Table 1. Both central and peripheral
systems were affected by fatigue in each stroke of each test,
as preliminary reported in Laurent et al. (2019), for both
ER or IR fatigue. Parameters affected by fatigue were not
necessarily the same among all participants and neither was
their evolution. This inter-subject variability is illustrated in
Figure 5, where four velocity profiles are drawn pre- and
post-fatigue, characterizing different participant’s behavior. For
example, after fatigue, the velocity profile was either displaced
to the right (Figure 5A), to the left (Figure 5C), or not evolving
(Figures 5B,D).

For the simple strokes, 90% of the participants had
almost one parameter describing their central system
significantly different post ER fatigue, either in the agonist
or antagonist component (Table 1). It was changed in 95%
of the population after an IR fatigue. For the parameters
reflecting the peripheral system, more differences were
noticed in the agonist parameters (40%) than in the antagonist
parameters (15%) after an ER fatigue. After an IR fatigue, no
such distinction between agonist and antagonist parameters
was found for the peripheral system (20% of statistical
changes in both cases). The conduction time was affected
in only 5% of the population after an ER fatigue and 10%
after an IR fatigue.

For the triangles, the global state of the neuromotor system
was impacted in 10% of the population after an ER fatigue and
in no participant at all after IR fatigue. The motor program
execution showed numerous differences pre- and post-fatigue for
the triangles, as in average more than 85% of the population
presented statistical differences (85% after an IR fatigue and 95%
after an ER fatigue). The conduction time |t0-RT| was affected in
15% of the population after an ER fatigue, and in no participants
after an IR fatigue.

The oscillations were the tests in which the most significant
differences were observed pre- and post-fatigue. All participants
had statistical changes in the parameters related to the central
system and the motor program execution, both after ER or IR
fatigue. Moreover, after an ER fatigue, peripheral parameters
changed in 75% of the population in horizontal oscillations versus
65% in the vertical oscillations. After an IR fatigue, they changed
in 85% both in horizontal and vertical oscillations.

Group Effect of Fatigue
Parameters Evolution
Hotelling’s T2-tests were all statistically significant (p < 0.05),
except for the triangles after an IR fatigue. As a matter of fact,
they validated in those cases the use of the U-Mann–Whitney test
to assess each parameter evolution. For the agonist component of
simple strokes, σ and the time delay were significantly higher after
fatigue (p = 0.0001), with a medium and large effect size (d = 0.66
and 0.93) (Table 2). In the antagonist components t0 and the
response time were significantly higher after fatigue (p = 0.0001),
with a medium effect size (d = 0.51 and 0.56, respectively). The
SNR/Nblog significantly decreased after fatigue (p = 0.0002). After
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FIGURE 4 | Means and standard deviations of the duration of fatigue (Left) and the perceived exertion on the Borg scale (Right) of the participants during each of
the four fatigue sessions.

TABLE 1 | Percentage of participants (N = 20) with significant differences for each component of their tests.

Test Stroke Central
system

Peripheral
system

Both systems Motor
program

execution

Global state
of the

neuromotor
system

RT |t0-RT| or
|1(t0)-RT|

Fatigue in external rotation (ER)

Simple strokes Agonist 70 40 30 40 50 45 5

Antagonist 60 15 10 15 45

Total 90 40 35 45 55

Triangles Stroke 1 45 25 10 55 10 20 15

Stroke 2 45 20 5 65

Stroke 3 25 5 5 55

Total 75 30 20 95

Horizontal oscillations External rotation 95 80 75 80 x x 70

Internal rotation 100 70 70 85

Total 100 75 85 95

Vertical oscillations External rotation 90 55 55 65 x x 95

Internal rotation 90 35 35 75

Total 95 65 60 80

Fatigue in internal rotation (IR)

Simple strokes Agonist 95 20 20 25 50 30 10

Antagonist 30 20 15 25 45

Total 95 35 30 45 55

Triangles Stroke 1 30 15 5 50 0 10 0

Stroke 2 20 25 10 65

Stroke 3 45 20 20 70

Total 75 40 25 85

Horizontal oscillations External rotation 95 80 80 90 x x 85

Internal rotation 100 75 75 90

Total 100 85 85 95

Vertical oscillations External rotation 90 75 65 80 x x 85

Internal rotation 100 65 65 90

Total 100 85 85 90

We could not perform t-test for the parameters reflecting the global state of the neuromotor system and the reaction time (RT) for the oscillations tests as we have only
one value per subject. For the oscillations |1(t0)-RT| was reported instead of |t0-RT|.

an IR fatigue, t0 was significantly higher after fatigue only for
the agonist components (agonist, p = 0.0002; antagonist, p = 0.7).
The mode, median and time delay increased for both components
(p ≤ 0.0002), with medium effect size, ranging from 0.53 to

0.79. In the triangles, D, the mode, the median and the time
delay were significantly higher after an ER fatigue (p = 0.0001)
(Table 3). For the horizontal oscillations (Table 4), 1(t0) was
significantly higher after an ER fatigue with a large effect size
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FIGURE 5 | Velocity profiles of four participants with the mean ± SD of the simple strokes, before (blue) and after (red) fatigue for the agonist (positive) and
antagonist (negative) components. Panel (A) had a significant increase after fatigue in µ, mode, median, time delay, RT for the agonist parameters; and t0, σ,
response time, asymmetry, and RT for the antagonist parameters. Panel (B) had no statistical changes. Panel (C) had a significant increase in D for the agonist
parameters. It had a significant decrease in |cos(θs)|, µ, mode, median, time delay, Nblog in the agonist parameters and SNR and TR in both components. Panel (D)
had a significant increase after fatigue of t0, σ and |t0-RT| and a significant decrease in µ and RT in the agonist parameters.

(d = 0.80). Regarding the peripheral system, µ increased after
both an ER and IR fatigue (p = 0.0001), with a large effect size
(d = 0.82 and 1.21, respectively). The mode, median, time delay
and response time were significantly higher (p = 0.0001) with a
large effect size after ER and IR fatigues (d = 0.80–1.18). The
SNR/Nblog was significantly higher after an IR fatigue, with a
medium effect size (d = 0.61). In the vertical oscillations, D
was significantly higher (p = 0.0001), after an ER fatigue. After
an IR fatigue the mode, median, time delay, and response time
were significantly higher (p = 0.0001), with a medium effect size
(d = 0.58-0.61).

Correlation Between Parameters
The reaction time (RT) was correlated with t0 of the agonist
and antagonist component of the simple strokes (Table 5). The
correlation with the triangles existed only with the t0 of the first
stroke. These correlations were present pre- and post-fatigue (ρ
from 0.78 to 0.89 for the triangles and from 0.72 to 0.93 for the
simple strokes). Parameters were more correlated for the agonist
component than the antagonist. For example, before ER fatigue,
the correlation was set at ρ = 0.88 for the agonist component and
at ρ = 0.76 for the antagonist component. Regarding t0 and µ,
there is no evidence of high correlation for the simple strokes (ρ
between −0.51 and −0.08 depending on the test) but it appears
for the triangles (ρ from−0.86 to−0.47).

DISCUSSION

This study aimed to settle an innovative, economical
and non-invasive method to detect shoulder muscular
fatigue and discriminate between central and
peripheral fatigue.

Distinction of the Type of Fatigue
In the Kinematic Theory of rapid human movements, the
distinction between central and peripheral fatigue is possible
through the intrinsic properties of the parameters extracted from
each stroke (O’Reilly and Plamondon, 2013). In addition to
these parameters, we proposed a series of derived parameters,
which translate a more global approach of motor control
analysis. For the oscillations, using 1(t0) instead of t0 seems

relevant for the central system analysis. As t0 represents the
timing emission for a command (Plamondon, 1995b), 1(t0)
describes the frequency at which the emission command is sent.
A statistical change means that the brain rapidity for generating
command signals is impaired due to fatigue. On the other hand,
the peripheral system is reflected through µ and σ, which are the
temporal properties of the neuromuscular system. A significant
difference in one of these parameters theoretically means that
the peripheral system of the participant was impaired by fatigue.
As exposed in Table 1, all the tests performed could reflect
those changes. In practice, the correlation between the reaction
time and t0 (Table 5) consolidated our position of using t0 for
the central nervous system analysis. In fact, the reaction time
is a commonly used parameter for cognitive studies (Tanaka
et al., 2009; Sant’Ana et al., 2017). This correlation was higher
for the first stroke of the simple strokes and the triangles. As
the antagonist component appears after the agonist one, there
is a delay, so a lower correlation. The same remark can be
made for the triangles: strokes 2 and 3 appear later implying
an absence of correlation between RT and their t0. In addition,
the calculation of the conduction time |t0-RT| enables to locate
more precisely the origin of the central fatigue. In our study, it
changed for a small population (≤15%), whether simple strokes
or triangles. This means that the time taken from the brain to
propagate the information to the end effector does not change
for most of the participants. Moreover, for clinical purposes,
it would be of interest to differentiate the fatigued muscle,
whether the infraspinatus (ER fatigue) or the subscapularis (IR
fatigue), through the evolution of the Kinematic parameters.
Machine learning algorithms, such as support vector machines,
have already shown interesting results in discriminating the
kinematic parameters in attention deficit hyperactivity disorder
and control group children (Faci et al., 2020c). The use of these
algorithms could be of interest for a differentiation of the type of
neuromuscular fatigue (ER or IR fatigue).

Intra-Participant Follow-Up
Our study showed that an individual monitoring of fatigue is
possible using a tablet. It is clinically relevant as pre- and post-
fatigue variations are different regarding the type of fatigue, the
participant and the test performed. This can be explained by the
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TABLE 2 | Parameters evolution in the simple strokes after a shoulder fatigue in external or internal rotation.

Agonist Antagonist

Pre-fatigue Post-fatigue P-value Effect size Pre-fatigue Post-fatigue P-value Effect size

External rotation fatigue (N = 20)

Central system

t0 0.23 ± 0.08 0.25 ± 0.07 0.0246 0.32 0.40 ± 0.12 0.44 ± 0.12 0.0002* 0.51a

D 214 ± 19.8 217 ± 21.6 0.005 0.20 30.6 ± 6.94 33.0 ± 8.33 0.0001* 0.33

|cos(θs)| 0.81 ± 0.08 0.81 ± 0.10 0.0001* 0.15 0.95 ± 0.03 0.94 ± 0.03 0.0001* 0.31

|cos(θe)| 0.96 ± 0.03 0.96 ± 0.03 0.0342 0.33 0.91 ± 0.11 0.94 ± 0.05 0.0001* 0.36

Peripheral system

µ −1.42 ± 0.18 −1.41 ± 0.15 0.4648 0.02 −1.78 ± 0.18 −1.82 ± 0.20 0.3042 0.23

σ 0.27 ± 0.06 0.30 ± 0.06 0.0001* 0.66a 0.36 ± 0.11 0.39 ± 0.12 0.0004* 0.47

Motor program execution

Mode 0.47 ± 0.08 0.48 ± 0.08 0.0002* 0.28 0.59 ± 0.10 0.62 ± 0.10 0.0001* 0.41

Median 0.49 ± 0.08 0.51 ± 0.08 0.0001* 0.33 0.61 ± 0.11 0.64 ± 0.11 0.0001* 0.45

Time delay 0.50 ± 0.09 0.51 ± 0.09 0.0001* 0.36 0.62 ± 0.11 0.65 ± 0.11 0.0001* 0.47

Response time 0.07 ± 0.02 0.08 ± 0.02 0.0001* 0.93b 0.06 ± 0.03 0.07 ± 0.03 0.0001* 0.56a

Global state of the neuromotor system – whole stroke

Nblog 2.18 ± 0.26 2.29 ± 0.30 0.0002* 0.48

SNR 30.3 ± 1.14 29.7 ± 1.29 0.0001* 0.44

SNR/Nblog 14.7 ± 1.53 13.8 ± 1.90 0.0002* 0.52a

Internal rotation fatigue (N = 20)

Central system

t0 0.21 ± 0.08 0.24 ± 0.08 0.0002* 0.52a 0.40 ± 0.11 0.41 ± 0.11 0.7018 0.20

D 208 ± 25.0 208 ± 23.7 0.713 0.00 29.0 ± 6.66 30.4 ± 7.53 0.2932 0.23

|cos(θs)| 0.81 ± 0.09 0.79 ± 0.09 0.0001* 0.65a 0.93 ± 0.06 0.94 ± 0.04 0.7014 0.25

|cos(θe)| 0.95 ± 0.03 0.96 ± 0.02 0.0001* 0.44 0.91 ± 0.09 0.93 ± 0.03 0.0004* 0.47

Peripheral system

µ −1.43 ± 0.18 −1.46 ± 0.18 0.0154 0.27 −1.86 ± 0.22 −1.80 ± 0.16 0.0454 0.24

σ 0.27 ± 0.05 0.29 ± 0.05 0.0001* 0.40 0.36 ± 0.08 0.36 ± 0.10 0.2972 0.06

Motor program execution

Mode 0.45 ± 0.08 0.47 ± 0.09 0.0002* 0.53a 0.57 ± 0.10 0.59 ± 0.10 0.0002* 0.79a

Median 0.47 ± 0.09 0.49 ± 0.09 0.0001* 0.58a 0.59 ± 0.10 0.61 ± 0.11 0.0001* 0.73a

Time delay 0.48 ± 0.09 0.50 ± 0.10 0.0001* 0.58a 0.60 ± 0.11 0.63 ± 0.12 0.0001* 0.67a

Response time 0.07 ± 0.02 0.07 ± 0.02 0.0001* 0.40 0.06 ± 0.02 0.06 ± 0.03 0.0492 0.17

Global state of the neuromotor system – whole stroke

Nblog 2.20 ± 0.24 2.20 ± 0.25 0.9086 0.02

SNR 30.1 ± 1.12 30.0 ± 1.37 0.7352 0.09

SNR/Nblog 14.5 ± 1.52 14.5 ± 1.77 0.9802 0.00

The simple strokes are separated into their agonist or antagonist components.
Values are expressed as mean ± standard deviation.
*Represents statistical significance (p < 0.05/13 = 0.0038).
a,bRepresent medium and large effect sizes, respectively.

task dependency of fatigue (Enoka and Stuart, 1992) and the
uniqueness of each participant (Chaffin et al., 2006b). In fact,
during submaximal muscle contraction, fatigue development
depends on the type of fibers activated and on the duration
of the contraction (Enoka and Stuart, 1992; Chaffin et al.,
2006a). Large variability in duration may come from the inter-
subject difference, but also from their ability to generate a
maximal force (Edwards, 1981). Different strategies were taken
by the participants to counteract the effects of fatigue, which is
reflected in the kinematic parameters. This can be observed as

well in Figure 5, where behavior differences are illustrated for
four velocity profiles. Some participants have a slower general
response (Figure 5A), faster (Figure 5C), or not evolving due
to fatigue (Figures 5B,D). The participant in Figure 5B was
a former high-level swimming athlete, and therefore could be
accustomed to shoulder fatigue. The participant in Figure 5D
presents many statistical differences in parameters shown by the
U-Mann–Whitney test. As µ− the longtime delay− significantly
decreased and σ− the log response time− significantly increased
for this participant, the resulting velocity profile showed little
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TABLE 3 | Parameters evolution in the triangles, after a shoulder fatigue in external rotation.

Triangles – whole stroke (N = 20)

Pre-fatigue Post-fatigue P-value Effect size

Central system

t0 0.23 ± 0.08 0.23 ± 0.06 0.488 0.12

D 154.9 ± 9.29 158.0 ± 10.2 0.0001* 0.53a

Peripheral system

µ −0.80 ± 0.21 −0.77 ± 0.18 0.0028* 0.31

σ 0.19 ± 0.03 0.19 ± 0.03 0.0226 0.25

Motor program execution

Mode 0.74 ± 0.08 0.75 ± 0.08 0.0001* 0.40

Median 0.75 ± 0.09 0.77 ± 0.08 0.0001* 0.38

Time delay 0.76 ± 0.09 0.77 ± 0.08 0.0001* 0.36

Response time 0.08 ± 0.01 0.08 ± 0.01 0.6214 0.01

Global state of the neuromotor system

Nblog 5.18 ± 0.61 5.21 ± 0.38 0.6678 0.06

SNR 27.0 ± 0.30 26.8 ± 0.47 0.0034* 0.46

SNR/Nblog 5.37 ± 0.69 5.37 ± 0.45 0.7124 0.01

Parameters come from combined strokes.
Values are expressed as mean ± standard deviation.
*Represents statistical significance (p < 0.05/11 = 0.0045).
aRepresents medium effect size.

visual differences after fatigue as compared to before. The
counterbalanced parameter changes masked the fatigue effect
on the velocity profile, pointing out the interest of analyzing
the lognormal parameters. Moreover, some participants have
a higher µ (Figures 5A,C), meaning a diminution of the
neuromuscular system to respond rapidly to a command,
whereas some others have a lower value (Figure 5D). To
compensate for a lower µ, participants can use a higher σ

or t0. This, respectively, means that the participant will take
more time to make the entire movement and that the brain
will send the response command later. However, sometimes
t0 significantly decreased after fatigue. The participant reacted
faster to the stimulus, as physical exercise can improve someone’s
cognitive function (Hillman et al., 2008). Different action plans
for drawing strokes were also made: some participants made
for example shorter strokes (smaller D, Figure 5A) because
they had difficulties in executing them, whereas some others
made larger strokes (higher D, Figure 5C) because they had,
for instance, difficulties in stopping them. This is probably due
to motor variability as movement is reorganized to prevent the
apparition of disorders. In that sense, spatiotemporal muscular
recruitment is variable after fatigue, which is assessed here
(Falla and Farina, 2007; Srinivasan and Mathiassen, 2012; Yang
et al., 2018). This method enables to study the evolution of
each parameters and compensations made by participants for a
case-by-case study, which is essential for example in personalized
top-level athletes training.

Group Effect of Fatigue
A group effect was noticed from the analyses, signifying that a
general pattern is highlighted after a neuromuscular fatigue. This
analysis is a first step in the process of using the method in clinics.

More studies would be needed to ensure that the parameters
evolution highlighted in this study are specific to shoulder fatigue.
In the simple strokes, the peripheral system was more impacted
after an ER than an IR fatigue. As the time to fatigue was
longer in ER, additional mechanisms of fatigue may have been
present, such as at the level of the excitation-contraction coupling
(Baker et al., 1993), which is then observed in the Kinematic
parameters related to the peripheral system. On the contrary, the
IR fatigue was perceived harder and may have impacted more the
parameters related to the central system. In fact, the action plan
of the agonist components of simple strokes is changed, with for
example an increase of the time to send the motor command.
Moreover, it was noticed that the motor program execution was
the most impaired system for most of the tests (Tables 2–4).
In fact, the mode, median, time delay were significantly higher
after fatigue, meaning a decline in the command velocity (Laniel
et al., 2019). However, parameters describing the global state
of the neuromotor system, such as the Nblog and SNR/Nblog
have a general trend to increase and decrease, respectively, for
the simple strokes and horizontal oscillations after an external
rotation fatigue. The evolution of these two parameters reflects a
worsening of the motor control quality. In fact, as in Cortes et al.
(2014), fatigue impacts the smoothness and motor control of a
person. On the other hand, the SNR does not seem to change in
many cases, only in the simple strokes and triangles after an ER
fatigue. As explained in Laniel et al. (2019), the reconstruction
of the velocity profiles stops when a 25 dB SNR is reached, and
adds lognormals until that condition is met. Studying the SNR of
simple strokes after a Delta-Lognormal extraction might be more
appropriate (Plamondon, 1995a, 1998; Woch et al., 2011), as it is
expected to reconstruct the kinematics with only two lognormals,
the agonist and antagonist. The evolution of the parameters, and
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TABLE 4 | Parameters evolution in the horizontal and vertical oscillations, after a shoulder fatigue in external or internal rotation.

Horizontal oscillations (N = 20)

External rotation fatigue Internal rotation fatigue

Pre-fatigue Post-fatigue P-value Effect size Pre-fatigue Post-fatigue P-value Effect size

Central system

1(t0) 0.08 ± 0.01 0.09 ± 0.01 0.0012* 0.80b 0.09 ± 0.01 0.09 ± 0.01 0.0150 0.96

D 124.8 ± 23.7 126.2 ± 26.2 0.0008* 0.10 124.2 ± 24.5 125.2 ± 28.8 0.2290 0.04

Peripheral system

µ −0.81 ± 0.07 −0.75 ± 0.10 0.0001* 0.82b
−0.81 ± 0.11 −0.75 ± 0.10 0.0001* 1.21c

σ 0.06 ± 0.00 0.06 ± 0.00 0.8870 0.09 0.06 ± 0.00 0.06 ± 0.00 0.0568 0.32

Motor program execution

Mode 0.53 ± 0.04 0.56 ± 0.06 0.0001* 0.80b 0.53 ± 0.06 0.57 ± 0.06 0.0001* 1.18b

Median 0.53 ± 0.04 0.57 ± 0.06 0.0001* 0.80b 0.53 ± 0.06 0.57 ± 0.06 0.0001* 1.18b

Time delay 0.53 ± 0.04 0.57 ± 0.06 0.0001* 0.80b 0.53 ± 0.06 0.57 ± 0.06 0.0001* 1.18b

Response time 0.03 ± 0.02 0.03 ± 0.00 0.0001* 0.81b 0.03 ± 0.00 0.03 ± 0.00 0.0001* 1.17b

Global state of the neuromotor system

Nblog 94.7 ± 6.78 89.1 ± 8.79 0.0002* 0.76a 94.7 ± 10.4 89.4 ± 9.21 0.0002* 0.66a

SNR 28.4 ± 1.40 27.6 ± 1.26 0.0868 0.38 28.4 ± 1.12 28.2 ± 0.99 0.3824 0.10

SNR/Nblog 0.21 ± 0.02 0.23 ± 0.03 0.0068 0.56a 0.21 ± 0.03 0.23 ± 0.02 0.0002* 0.61a

Vertical oscillations (N = 20)

Central system

1(t0) 0.09 ± 0.01 0.09 ± 0.01 0.7646 0.09 0.09 ± 0.02 0.10 ± 0.01 0.0256 0.56

D 118.4 ± 19.2 123.9 ± 19.4 0.0001* 0.57a 119.4 ± 26.0 119.8 ± 21.6 0.4200 0.03

Peripheral system

µ −0.73 ± 0.11 −0.73 ± 0.14 0.9816 0.05 −0.74 ± 0.17 −0.69 ± 0.16 0.0001* 0.64a

σ 0.06 ± 0.00 0.06 ± 0.00 0.6778 0.04 0.06 ± 0.00 0.06 ± 0.00 0.1486 0.23

Motor program execution

Mode 0.57 ± 0.07 0.58 ± 0.09 0.4820 0.11 0.58 ± 0.10 0.61 ± 0.09 0.0001* 0.61a

Median 0.58 ± 0.07 0.58 ± 0.09 0.4854 0.11 0.59 ± 0.10 0.61 ± 0.09 0.0001* 0.61a

Time delay 0.58 ± 0.07 0.58 ± 0.09 0.4906 0.11 0.59 ± 0.10 0.61 ± 0.09 0.0001* 0.61a

Response time 0.03 ± 0.00 0.028 ± 0.004 0.1838 0.11 0.03 ± 0.01 0.03 ± 0.004 0.0001* 0.58a

Global state of the neuromotor system

Nblog 88.0 ± 9.51 88.1 ± 12.1 0.9334 0.03 88.4 ± 14.9 84.8 ± 12.1 0.0314 0.40

SNR 27.6 ± 1.81 27.9 ± 1.46 0.5268 0.15 28.0 ± 1.64 27.4 ± 1.39 0.3432 0.27

SNR/Nblog 0.22 ± 0.02 0.23 ± 0.04 0.3886 0.20 0.23 ± 0.04 0.24 ± 0.04 0.6482 0.18

Parameters come from combined strokes.
Values are expressed as mean ± standard deviation.
For the global state of the neuromotor system, N = 19 after an ER fatigue and N = 16 after an IR fatigue.
*Represents statistical significance (p < 0.05/11 = 0.0045).
a,b,cRepresent medium, large and very large effect sizes, respectively.

especially the ones reflecting the motor program execution, is
similar between participants, which is interesting for using the
tablet as a clinical tool for fatigue detection.

Performance of the Tests
As a general overview, simple strokes reveal information about
agonist/antagonist systems. According to Turpin et al. (2011),
muscular activity changes after fatigue but the coordination
between muscles does not. The same muscles will create the
agonist/antagonist synergy. For this purpose, analyzing and
discriminating the two categories of muscles is appropriate.
In case of complex tasks (i.e., triangles or oscillations),
the distinction between those two systems is meaningless

since there is no stop at the intermediate points, only
at the end. The use of the speed/accuracy tradeoff tests
could provide more information, as it can express further
relationships between agonist and antagonist components
and their evolution with fatigue (O’Reilly and Plamondon,
2013). Moreover, central and peripheral system parameters
do not show a correlation in simple strokes (t0 and µ,
Table 5), whereas this correlation exits when movements get
longer. Participants anticipate them by targeting virtual points
(Plamondon et al., 2003; Plamondon and Djioua, 2006). With
the independency of parameters in the simple strokes, this
test can be specifically used to differentiate a central from a
peripheral fatigue.

Frontiers in Human Neuroscience | www.frontiersin.org 12 May 2020 | Volume 14 | Article 171

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00171 May 16, 2020 Time: 16:41 # 13

Laurent et al. Fatigue Detection Through Kinematic Theory

TABLE 5 | Spearman correlation coefficients between parameters, with rho-values of correlation pre- and post-fatigue.

Parameters Test Type of fatigue Type of stroke Rho pre-fatigue Rho post-fatigue

t0 and RT Simple strokes ER Agonist 0.88* 0.93*

Antagonist 0.76* 0.72*

IR Agonist 0.91* 0.92*

Antagonist 0.86* 0.74*

Triangles ER Stroke 1 0.89* 0.78*

Stroke 2 0.07 0.20

Stroke 3 −0.02 0.15

IR Stroke 1 0.78* 0.81*

Stroke 2 0.23 −0.10

Stroke 3 0.10 0.24

t0 and µ Simple strokes ER Agonist −0.37 −0.19

Antagonist −0.42 −0.51*

IR Agonist −0.08 −0.21

Antagonist −0.14 −0.18

Triangles ER Stroke 1 −0.74* −0.61*

Stroke 2 −0.86* −0.83*

Stroke 3 −0.74* −0.85*

IR Stroke 1 −0.58* −0.47*

Stroke 2 −0.83* −0.82*

Stroke 3 −0.76* −0.52*

*Represents significant correlations (p < 0.05).

On the other hand, triangles seem to be more difficult
to perform than simple strokes and oscillations. The inter-
participant variability may be higher and therefore significant
differences can be harder to notice in group studies. However,
as depicted in Table 1, individual changes are detectable on
triangles, and can therefore be used for extensive studies. A more
specific method for extracting triangles may be more adapted, as
they have the lowest number of lognormals retained compared
to other tests (Figure 3). As a matter of fact, it also depicts the
importance of performing more repetitions.

In addition, studying larger movements, such as the
oscillations seems more efficient to detect fatigue, as they depict
a more biomechanical movement. Nevertheless, a compensatory
effect between participants is noticed for the vertical oscillations.
As participants adopted different postures to execute the
movements, the individual kinematic might have been affected
(Fuller et al., 2009). It would have been interesting to record
the overall kinematic of the upper-body. In fact, a test
performance is often the same pre- and post-fatigue, but
strategies to perform the tests are different (Côté et al., 2002;
Emery and Côté, 2012).

Opening
In a wider context, the Sigma–Lognormal model seems
appropriate to study fatigue at different levels of the body,
whether it is the upper limb or lower limb. In fact, fatigue
results in deficiency in motor control and motion changes due
to a modification at different biological levels of the human
body physiology (Enoka and Stuart, 1992; Gandevia, 2001;

Cortes et al., 2014). That is why, it is expected that any other
impairment in the body, due to fatigue, could be detectable
by a similar method. Also in Cowley and Gates (2017), it has
been noticed that finger or shoulder fatigue affect movement
coordination in different manners. In this way, we think that it
would be possible to discriminate fatigue from different parts
of the body and parameters from the theory could reflect those
changes. By performing wider movements with the use of a
white board (Fischer et al., 2014), or by registering them in
3D (Schindler et al., 2018), it would then probably be easier
to discriminate them. The use of a board seems interesting,
as the system would remain easy to use. As the Kinematic
Theory describes fine motor control and is suitable for many
end effectors [such as fingertips, head (Lebel et al., 2018b),
eye movements (Plamondon, 1995a) etc.], the use of markers
directly on the studied articulation would be interesting to
complete analyses.

CONCLUSION

This study highlights that shoulder neuromuscular fatigue is
detectable in healthy active adults with the use of a digitizing
tablet and the Kinematic Theory. The type of fatigue (central
or peripheral) and the location of central fatigue (preparation
or conduction time) are distinguishable through the parameters
extracted from handwriting. An individual monitoring is
relevant to determine the compensatory reactions made by each
participant to counteract the effects of fatigue. Overall, common
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patterns in the parameters evolution are noticeable and are
significant for clinical studies. Parameters having a more global
approach, such as the mode, median, time delay tend to increase
after fatigue, whereas the SNR/Nblog tends to decrease. We also
observed that all handwriting tests were sensitive to fatigue.
Nevertheless, the simple strokes test could discriminate between
the central and peripheral systems independently and between
the agonist/antagonist systems, and the oscillations test is the
most effective to detect shoulder fatigue.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will
be made available by the authors, to any qualified researcher
interested in collaborating with our team.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Research Ethics Committee of Polytechnique
Montréal (CER-1819-23 v.3). The patients/participants provided
their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

AL, RP, and MB contributed conception and design of the study.
AL recruited the participants and performed data collection,
data formatting, and statistical analyses. AL, RP, and MB
interpreted the results. AL wrote the first draft of the manuscript.
RP and MB critically reviewed it. The final version was
approved by all authors.

FUNDING

This research was conducted as part of the TransMedTech
Institute’s activities and AL was funded in part by the Canada First
Research Excellence Fund. This work was also partly supported
by NSERC CANADA Discovery Grants RGPIN-2015-06409 to
RP and RGPIN-2019-04978 to MB.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2020.00171/full#supplementary-material

REFERENCES
Al-Mulla, M. R., Sepulveda, F., and Colley, M. (2011). A review of non-invasive

techniques to detect and predict localised muscle fatigue. Sensors 11, 3545–3594.
doi: 10.3390/s110403545

Al-Mulla, M. R., Sepulveda, F., and Colley, M. (2012). “sEMG techniques to
detect and predict localised muscle fatigue,” in EMG Methods for Evaluating
Muscle and Nerve Function, ed. M. Mr. Schwartz (Rijeka: InTech), doi: 10.5772/
25678

Baker, A. J., Kostov, K. G., Miller, R. G., and Weiner, M. W. (1993). Slow
force recovery after long-duration exercise: metabolic and activation factors
in muscle fatigue. J. Appl. Physiol. 74, 2294–2300. doi: 10.1152/jappl.1993.74.
5.2294

Beach, M. L., Whitney, S. L., and Dickoff-Hoffman, S. (1992). Relationship of
shoulder flexibility, strength, and endurance to shoulder pain in competitive
swimmers. J. Orthop. Sports Phys. Ther. 16, 262–268. doi: 10.2519/jospt.1992.
16.6.262

Bevan, S. (2015). Economic impact of musculoskeletal disorders (MSDs) on work
in Europe. Best Pract. Res. Clin. Rheumatol. 29, 356–373. doi: 10.1016/j.berh.
2015.08.002

Bigland-Ritchie, B., and Woods, J. J. (1984). Changes in muscle contractile
properties and neural control during human muscular fatigue. Muscle Nerve
7, 691–699. doi: 10.1002/mus.880070902

Borg, G. (1998). Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human
kinetics.

Boyas, S., and Guével, A. (2011). Neuromuscular fatigue in healthy muscle:
underlying factors and adaptation mechanisms. Ann. Phys. Rehabil. Med. 54,
88–108. doi: 10.1016/j.rehab.2011.01.001

Chaffin, D. B., Andersson, G., and Martin, B. J. (2006a). Occupational Biomechanics.
New York, NY: Wiley.

Chaffin, D. B., Andersson, G. B. J., and Martin, B. J. (2006b). The Structure
and Function of the Musculoskeletal System and (Chapter 2) Occupational
Biomechanics, 4th Edn, Hoboken, NJ: Wiley-Interscience, 11–36.

Chen, M. J., Fan, X., and Moe, S. T. (2002). Criterion-related validity of the
Borg ratings of perceived exertion scale in healthy individuals: a meta-analysis.
J. Sports Sci. 20, 873–899. doi: 10.1080/026404102320761787
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