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Abstract

Motivation: The interactions between proteins and other molecules are essential to many biological and cellular
processes. Experimental identification of interface residues is a time-consuming, costly and challenging task, while
protein sequence data are ubiquitous. Consequently, many computational and machine learning approaches have
been developed over the years to predict such interface residues from sequence. However, the effectiveness of dif-
ferent Deep Learning (DL) architectures and learning strategies for protein—protein, protein-nucleotide and protein—
small molecule interface prediction has not yet been investigated in great detail. Therefore, we here explore the pre-
diction of protein interface residues using six DL architectures and various learning strategies with sequence-
derived input features.

Results: We constructed a large dataset dubbed BioDL, comprising protein—protein interactions from the PDB, and
DNA/RNA and small molecule interactions from the BioLip database. We also constructed six DL architectures, and
evaluated them on the BioDL benchmarks. This shows that no single architecture performs best on all instances. An
ensemble architecture, which combines all six architectures, does consistently achieve peak prediction accuracy.
We confirmed these results on the published benchmark set by Zhang and Kurgan (zK448), and on our own existing
curated homo- and heteromeric protein interaction dataset. Our PIPENN sequence-based ensemble predictor out-
performs current state-of-the-art sequence-based protein interface predictors on zK448 on all interaction types,
achieving an AUC-ROC of 0.718 for protein—protein, 0.823 for protein—nucleotide and 0.842 for protein-small
molecule.

Availability and implementation: Source code and datasets are available at https://github.com/ibivu/pipenn/.
Contact: r.haydarlou@vu.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein interactions are crucial in many biological and cellular proc-
esses (Jones and Thornton, 1996), such as transcription, signal
transduction or enzymatic activity. Proteins, through their binding
interfaces, interact with each other and a variety of other molecules,
giving rise to all manner of cell functions. Knowledge about these
interfaces provides essential clues about the mechanisms underlying
associated activities. This molecular level knowledge can be
obtained by experimental and computational methods, and is
applied in many scientific and therapeutic areas (Sperandio, 2012).
Protein interaction prediction refers to a set of computational
methods that aim to predict different protein interaction types: pro-
tein—protein (PPI), protein—small molecule, protein-nucleotide
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(DNA/RNA), as summarized in Supplementary Figure S1 (Cui et al.,
2019; Wang et al., 2019; Zhang and Kurgan, 2018). Such methods
may utilize various classic Machine Learning (ML) (Cheng ez al.,
2008; Hou et al., 2017, 2021) and Deep Learning (DL) architectures
(Hanson et al., 2018; Shi ez al., 2021). Input features may be based on
information from protein structure and/or sequence. Notwithstanding
the enormous progress that has been made in the area of structure pre-
diction, no reliable structural information is available (e.g. Su et al.,
2021; Tunyasuvunakool et al., 2021) for many organisms, types of
proteins and protein regions. Moreover, the usefulness of predicted
structures for interface prediction may be limited (e.g. Xie and Xu,
2021). Therefore, we aim to predict protein bindings of the mentioned
interaction types at residue level, using only information related to
protein sequence. We explore the following question: Which DL
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architecture and composition of architectural building blocks are able
to improve the performance of sequence-based interface predictors?

DL architectures are composed of multiple building blocks, such
as initialization, regularization, loss, activation, each containing
various parameters. The simplest neural architecture considered
here is the fully connected Artificial Neural Network (ANN): every
neuron in a layer is connected to all neurons in the next layer. This
configuration is general purpose and structure agnostic. The input
to this network is a single protein residue at a time, which means
their sequence context is not considered.

Convolutional Neural Network (CNN) architectures are already
extensively used in various flavors in computational biology (e.g.
Shi et al., 2021), including protein interaction site prediction (e.g.
Cui et al., 2019). A CNN consists of three types of hidden layers:
convolutional layers, pooling layers and fully connected layers. For
predictions in a protein sequence, neurons are organized sequential-
ly (1D spatial form) and every neuron is connected to the neurons of
a local region (receptive field) in the previous layer. Pooling layers
perform down-sampling to speed up computation, and fully con-
nected layers perform the actual classification task based on the ab-
stract representations of the original protein sequence input.

Dilated Convolutional Networks (DCN) achieve large receptive
fields by gradually increasing the dilation rate in subsequent layers
(Yu and Koltun, 2016). This allows DCNs to remain relatively shal-
low, require few parameters and converge quickly. DCNs typically
maintain high output resolutions without up-sampling, and have
been successfully applied in many areas (Ho and Lin, 2018), includ-
ing computational genomics (Gupta and Rush, 2017; Kelley et al.,
2018).

The U-Net is the most commonly used CNN architecture, espe-
cially when the amount of training data is limited (Ronneberger
et al., 2015). In a U-Net, high-dimensional information is first
reduced (contracted) to a smaller latent space, and subsequently
increased (expanded) to the original dimensionality. Visually, this
gives rise to a U-shape, from which this architecture derives its
name. Though more typically used in image recognition tasks, we
find U-Nets—like CNNs in general—equally applicable for 1D (se-
quence-based) predictions.

The ResNet residual learning framework is a variation on CNN,
which aims to solve the vanishing or exploding gradient problem,
while retaining the ability to learn complex features (He et al.,
2016a).

Recurrent Neural Networks (RNN) are particularly suitable for
learning nonlinear dependencies in sequential data, such as protein
sequences. No limit is imposed on the size of the input series of
amino acid symbols, but each symbol is represented by additional
layers. To mitigate the vanishing/exploding gradient in the resulting
many-layer models (Hochreiter and Schmidhuber, 1997) and retain
a computationally efficient training, Gated Recurrent Unit (GRU)
was proposed by Cho et al. (2014). Later, Chung et al. (2014)
showed that the performance of GRU is on par with the more com-
plex LSTM (Hochreiter and Schmidhuber, 1997) on sequence mod-
eling tasks, while taking much less time to train.

Recently, hybrid architectures of CNNs and RNNs are increas-
ingly employed in computational biology. The hybrid models aim to
get the best of both worlds: the spatial aspects of CNNs combined
with the temporal aspects of RNNs. For instance, Hanson et al.
(2018) combined residual convolutional network with LSTM to pre-
dict a protein’s residue-residue contacts (contact map prediction
task). They use ResNet to capture spatial relationships between local
residues, and LSTM to capture long-range relations between non-
local residues. In the field of genomics, Quang and Xie (2016) inte-
grated CNNs with bidirectional LSTMs for modeling of the proper-
ties and functions of non-coding DNA sequences. To learn a
regulatory grammar in the DNA motifs, they use convolution layers
to capture local patterns in the motif sequences, and recurrent layers
to capture long-term dependencies between the motifs.

Here, we explore the effectiveness of each of the above neural
net architectures: ann, dnet, unet, rnet, rnn and cnet. We expect they
will each capture overlapping but distinct patterns in protein se-
quence data, yielding different predictions for which residues are

part of an interface. We therefore also include an ensemble architec-
ture, which combines the outputs of these six neural nets into one.
All models, collectively referred to as PIPENN, are trained on five
different training sets. Their performance is benchmarked with 11
test sets, including the standardized benchmark dataset introduced
by Zhang and Kurgan (2018), referred to as zZK448. The latter is
also used to assess and compare the performance of the PIPENN en-
semble method with competing models. To our knowledge, we are
the first to apply DL architectures to different types of protein inter-
face prediction at this scale, and obtain the best prediction results to
date.

2 Materials and methods

2.1 Datasets

To perform experiments on different types of protein interaction
data, i.e. PPI, small molecule and nucleotide (DNA/RNA), we used
five datasets for training (see Supplementary Table S1) and 11 inde-
pendent datasets for testing (see Supplementary Table S3). The HHC
dataset, containing homo- and heteromeric proteins annotated with
PPI interface residues, was already available in our group from Hou
et al. (2015, 2017). Another part was obtained from Zhang and
Kurgan (2018): the benchmark test set ZK448, which contains pro-
teins annotated with residues for all types of protein interaction.
The final part was newly constructed: the BioDL dataset that con-
tains proteins annotated with residues for all types of protein inter-
action, as described below and illustrated in Figure 1.

For small molecule and nucleotide interactions, we retrieved
the whole BioLip (Yang et al., 2013) database and extracted the
interaction annotation data. For PPIs, we downloaded the coordi-
nates of 138729 protein structures of 2.5 A resolution or lower,
excluding fragments, from the PDB (Berman et al., 2000) on 3
April 2019. Following the annotation criterion in BioLip, we anno-
tated a residue as interacting if the distance between one of its
atoms and any atom of the ligand is less than the sum of their Van
der Waals radii plus 0.5 A.

The newly derived annotations and the existing annotations
from BioLip are associated with PDB sequences. In order to test our
models on the benchmark test set ZK448, where annotations are
associated with Uniprot sequences, we mapped PDB sequences to
Uniprot as follows. We used SIFTS (Velankar et al., 2013) to re-
trieve all Uniprot sequences corresponding to the PDB entries.
Entries with missing or conflicting Uniprot IDs were discarded. We
mapped residues between PDB and Uniprot sequences by alignment
with harsh penalties (mismatches—S5, gap opening—20 and exten-
sion—>50). Alignments where <80% of interaction site residues
were mapped, or with more than two inserts, five deletions, three
mismatches in the interaction sites, or five mismatches were
discarded.

Subsequently, BLASTClust was used to cluster the obtained
Uniprot sequences at 25% sequence similarity. All clusters contain-
ing a Uniprot ID used in ZK448 were removed and thereafter
randomly one sequence from each cluster was chosen. From this
non-redundant dataset, based on the criterion used by Wang et al.

coordinates of protein-protein

annotated

protein-small-molecule/
protein-DNA/RNA annotated
PDB seqgs

annotated (all binding types)
Uniprot-seqs

non-redundant
annotated
Uniprot-segs

annotated
Uniprot-seq:

Fig. 1. Generation of the BioDL dataset from the PDB and BioLip databases
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(2017), proteins having sequences longer than 700 and shorter than
26 amino acids were removed. The final dataset was split into a
training set BioDL A TR (95%) and a testing set BioDL_A TE
(5%), containing annotations for all three types of interactions. We
further split these into proteins annotated with PPI (BioDL_ P TR
& _TE), small molecule (BioDL_S_TR & _TE) and nucleotide
(BioDL N TR & _TE) interactions. See Supplementary Tables S1
and S3 for dataset statistics of the training (TR) and test (TE) sets,
respectively.

2.2 Data features

For each residue in our BioDL dataset, we record the amino acid
type (AA); its conservation, represented by a Position Specific
Scoring Matrix (PSSM) score; if it is part of a domain; and the length
of the sequence it belongs to. Furthermore, we predict its accessible
surface area (SA) and secondary structure (SS) from sequence. We
include four training/testing labels for each residue, tracking
whether the residue is part of a known interface with (i) other pro-
teins, (ii) DNA or RNA, (iii) small molecule ligands or (iv) any of
the above.

PSSM profiles were generated for each sequence using PSI-
BLAST (Altschul et al., 1997), retrieving max. 500 sequence homologs
from the NR70 database, using three iterations and an E-value thresh-
old of 0.001. As a result, we obtained 20 PSSM values (one per amino
acid type) for each residue. The PSSM scores were normalized using
the sigmoid function. We used NetSurfP to predict from sequence
the Absolute/Relative Surface Accessibility (ASA/RSA) and the pro-
pensities for a-helix (PA), f-sheet (PB) and coil (PC) (Petersen et al.,
2009). To indicate whether or not a residue belongs to a conserved
protein domain, we employed the protein domain information from
the Pfam (Mistry et al., 2021) database for the Uniprot sequences.

Finally, we included four windowed aggregates for each of the fea-
tures. Each aggregated feature is the unweighted average of the feature
value over a specific number of the neighboring residues: 3, 5, 7 or 9.
They are abbreviated as <window size> wm_ <feature name>,
e.g. 9_wm_PB refers to the window mean of the predicted f8 sheet prob-
abilities (PB) across a window of nine adjacent residues, annotating the
one in the center. This leads to a total of 128 features, as detailed in
Supplementary Table S13.

2.3 Learning architectures

The input layer of our ANN-based architecture ann consists of a
number of neurons, each representing a feature of one amino acid
(see Supplementary Fig. S4). The network has eight hidden layers
and its output is a binary classification predicting whether or not an
amino acid is part of an interface. In order to capture as much as
possible information about a residue, the number of neurons in the
first hidden layer is the highest, decreasing gradually in the subse-
quent layers to achieve more general representations. However, it
has a large number of parameters (weights) and relatively long con-
vergence time.

We designed three different CNN architectures dnet, unet and
rnet. The input layers for these consist of one neuron per feature per
amino acid in the protein sequence. dnet is based on dilated CNN,
has five convolutional layers, zero pooling layer and one fully con-
nected layer (Supplementary Fig. S5). The dilation rate increases
from 1 to 16. unet is based on the U-Net architecture and the con-
traction block starts with 1024 (length of padded protein sequence)
and is gradually down-sampled by max-pooling to 32 at the bottle-
neck (Supplementary Fig. S6). For up-sampling transposed convolu-
tions are used (Dumoulin and Visin, 2016). rnet is a residual CNN
that allows us to experiment with deeper CNNs (Supplementary
Fig. S7). We use a slightly modified version of the full pre-activation
configuration (He et al., 2016b). In rnet, a residual block consists of
two sequential full pre-activation configurations, each containing a
Dropout, BatchNormalization and Parametric Rectified Linear Unit
(PReLU) followed by a 1D convolution. We use eight such residual
blocks.

Our recurrent NN architecture rnn consists of two GRU layers,
each containing 1024 cells with each cell having an output

dimension of 128 that goes to the next cell (Supplementary Fig. S8).
Finally, our cnet (Supplementary Fig. S8) is a hybrid architecture
that simply combines our rnet residual and rnn recurrent
architectures.

2.4 Architecture building blocks and parameters

DL architectures are composed of multiple building blocks, each
containing various parameters. Different compositions enable learn-
ing architectures to provide great flexibility and a broad application
area. The choice for building blocks and parameter values strongly
influences the performance that may be achieved; however, this
depends both on the architecture and on the dataset, making this
one of the main challenges in DL. Below, we briefly motivate each
of our choices.

Initialization method (IM)

We experimented with uniform and normal variants of the Glorot
(Glorot and Bengio, 2010) and He (He et al., 2015) IMs. He-
Uniform initialization proved most suitable for our architectures.

Regularization method (RM)

To overcome overfitting, we explored combinations of RMs: Lasso
(L1), Ridge (L2), BatchNormalization, Dropout and Early-Stopping.
A combination of BatchNormalization, Dropout (20%) and Early-
Stopping (based on the AUC metric) yielded best results.

Loss function (LF)

We explored a number of LFs: Mean Squared Error (MSE), Jaccard,
Tversky and CrossEntropy. After running several experiments and
due to having significant class imbalance in our data, we decided to
use the CrossEntropy loss with an additional term that compensates
for class imbalance.

Activation function (AF)

Our choice of AF is based on a neuron’s position in the network, the
computational speed of calculating its gradient, and its differenti-
ability. We used Sigmoid at the last layer of all our architectures.
For the hidden layers, using Tanh for the rnn architecture and
PReLU for all other architectures provided best performance.

Encoding scheme (ES)

We performed experiments with One-Hot and ProtVec to encode
amino acid sequences. One-Hot represents each amino acid simply
as a 20D sparse vector. ProtVec constructs 3-gram words of amino
acids for each protein sequence from Swiss-Prot, and trains a skip-
gram Neural Network on these data (Asgari and Mofrad, 2015).
The output of the network is an embedding space of 100D dense
vectors, which we used for as input features for our models. We
achieved better performance with the One-Hot representation.

2.5 Training and testing procedures

We split each of the training datasets into two parts: train-set and val-
set (Supplementary Table S1). The train-set part (80%) is used exclu-
sively for training, and the val-set part (20%) is used for three pur-
poses: (i) for gaining insight into the performance of an architecture,
(ii) for terminating the training when the performance does not show
any improvement and (iii) for training of the ensnet architecture. The
training procedure is as follows. After all six architectures are trained
on a train-set, their trained models are applied on the corresponding
val-set. The obtained predictions of each model become the training
data for the ensnet architecture, see overview in Figure 2.

For all our architectures and datasets, we used the same hyper-
parameters, software platform and infrastructure. The hyperpara-
meters that influence the performance and convergence time of the
architectures are: batch size (8), optimization algorithm (Adam),
learning rate (le—4), maximum number of epochs (300), padding
constants, bias vector usage and the float size (64). We used the
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Fig. 2. Training and testing procedure of our predictors (Section 2.5 for the explan-
ation of the procedure)

Keras API of Tensorflow-2.1.0 to build our architectures and
trained them on a Linux machine having 32 CPUs, 2 GPUs and 256
GB memory (see Supplementary Table S2 for the run-time
statistics).

We evaluated the performance of our trained models on the com-
pletely independent test sets shown in Supplementary Table S3,
using Accuracy (ACC), Specificity (SPEC), Precision (PREC),
Sensitivity/Recall (SENS), Balanced F-score (F1), Matthews
Correlation Coefficient (MCC), average precision on the PR-curve
(AP) and area under the ROC curve (AUC). We calculate P-values
for differences in AUC-ROC using the approach by Hanley and
McNeil (1982). Except for AP and AUCs, all metrics use the confu-
sion matrix. MCC and AP are insensitive to class imbalance (on
average about 11% of residues are interface, see Supplementary
Table S1). All results shown are based on the Equal method
(Zhang and Kurgan, 2018), by which a cutoff point is selected where
FP and FN are equal. Hence, the values of PREC, SENS and F1 are
always the same. Output (predictions) of the models is unpadded be-
fore applying the metrics. Performance plots were created using the
Plotly package.

2.6 Feature importance

For scoring and ranking the importance of features, we used the
KernelExplainer from the SHAP package (Lundberg and Lee, 2017).
For each sample in the test set the contribution of each feature to the pre-
dicted outcome of a model is estimated, which is called an SHAP value.

3 Results
3.1 BioDL is sufficiently large for DL

DL architectures learn best when trained on a large dataset. We con-
structed the BioDL dataset based on BioLip and PDB, for training and
testing of our various architectures. In total, over 6800 proteins are
included, containing over 2 million residues of which 10.7% are inter-
face residues; see Supplementary Table S1 for details. Runtimes for pre-
diction are dominated by the feature generation, notably running PSI -
Blast to generate the PSSMs, which takes up to Smin per input
protein.

Within BioDL we have collected annotations of three specific
types of protein interaction: PPI in BioDL_P, small molecule ligands
in BioDL_S and nucleic acid interaction in BioDL_N. A fourth set
annotates any of these three interactions: BioDL_A. For better com-
parison with our previous work using Random Forest models, we
also include the HHC dataset from Hou et al. (2017, 2019). Each of
these datasets are further split into training (_TR) and test (_TE) sets
as shown in Figure 2; see Supplementary Table S3 for an overview
and statistics of training sets. For HHC TE, we also report separately
for homomeric (Homo TE) and heteromeric (Hetero TE) PPL
Training duration can be found in Supplementary Table S2. As a
further independent test set, we also used ZK448 TE from Zhang
and Kurgan (2018), which also allows comparison with their bench-
mark results. The ZK448 TE, like BioDL, contains protein
(zxk448 P _TE), small molecule (zZK448 S TE) and nucleotide

Table 1. Impact of different architectural building blocks on the per-
formance of the dnet_hhc PPl predictor trained on HHC TR and
tested on HHC_TE

Model ACC SPEC F1 MCC AP AUC

dnet_bhc 0.784 0.868 0.403 0272 0.381 0.733 0

hu—gn 0.783 0.868 0.401 0.269 0.398 0.730 -0.003
ce—mse 0.785 0.868 0.404 0.273 0.391 0.728 -0.005
1d—2d 0.781 0.866 0.394 0.261 0.379 0.723 -0.010"
pre—rel 0.780 0.866 0.392 0.258 0.390 0.720 -0.013"
+ mp 0.784 0.868 0.403 0.272 0.387 0.718 -0.015"
oh—pv 0.774 0.862 0.373 0235 0.358 0.714 -0.019""
—bn 0.770 0.860 0.364 0.224 0.327 0.696 -0.037""
—pa 0.750 0.848 0.309 0.157 0.267 0.661 -0.072""
—do 0.752 0.849 0.314 0.163 0.291 0.646 -0.087""

Note: ‘hu — gn’: kernel initialization GlorotNormal instead of HeUniform
used; ‘ce — mse’: loss function MeanSquaredError instead of CrossEntropy
used; ‘1d — 2d’: spatial form 2D instead of 1D used; ‘pre — rel’: activation
function RELU instead of PRELU used; ‘+ mp’: MaxPooling layer used;
‘ov—pv’: ProtVec encoding instead of One-Hot used; ‘— bn’: no
BatchNormalization layer used; ‘— pa’: no padding used; ‘— do’: no Dropout
layer used. Highest score per metric indicated in bold.

*P <0.0S.

**P <0.0005.

interaction annotations (ZK448 N TE), as well as all combined
(ZK448_A_TE). See Supplementary Table S3 for an overview and
statistics of test sets.

The overlap between the BioDL training sets is shown in a Venn
diagram in Supplementary Figure S2; out of 6832 proteins in the
training set there are only 85 with annotations for all three inter-
action types. This pattern is similar in the BioDL and ZK448 test
sets (Supplementary Fig. S3). We make distinctions between the
models that were trained on the BioDL,_A TR dataset containing all
interaction types, i.e. generic, and those trained on a type-specific
interaction data, i.e. BioDL_P_TR for PP, BioDL,_S_TR for small
molecules and BioDL, N_TR for nucleic acids. We suffix those mod-
els correspondingly: _a, _p, _s and _n. Models trained on the PPI-
specific HHC dataset are suffixed with _hhc.

3.2 Building block composition matters

We tested our predictors with different compositions of the architec-
tural building blocks introduced in Section 2.4. These were trained
on the smaller HHC PPI dataset for efficiency. Table 1 shows the met-
rics for different choices of building blocks for the dnet_bhc predict-
or. Other architectures and datasets show very similar trends (data
not shown). dnet_hbc (the first row) corresponds to the composition
with the highest performance in AUC: HeUniform kernel initializa-
tion, CrossEntropy loss function, 1D spatial form, PReLU activa-
tion function, Padding for unifying the input shape, One-Hot amino
acid encoding and Dropout and BatchNormalization for regulariza-
tion. Subsequent rows show the effect of substituting (—), adding
(+) or removing (-) blocks. GlorotNormal kernel initialization
yields highest AP; MeanSquaredError loss function highest accuracy
(ACC), F1 and MCC. It is worth mentioning that for the best com-
position in dnet_hcc we did not use the MaxPooling. All other varia-
tions yield lower performances, and the impact of omitting
Dropout, Padding and BatchNormalization is the strongest.

3.3 Ensembling improves performance

We compared the performance of our ensemble predictor with those
of our other DL predictors. Table 2 shows that ensnet_p improves
the AUC by 0.016 (P <0.0006) wrt the best scoring other DL pre-
dictor (dnet_p) on the PPI data, and it achieves the highest sensitivity
(TPR) for any error (FPR) in the ROC plot (Fig. 3A). Moreover, the
P/R plot in Figure 3B shows that rnzet_p obtains the highest precision
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Table 2. Performance of the ensemble PPI predictor ensnet_p com-
pared with all other predictors trained on BioDL_P TR and tested
onBioDL P TE

Model ACC SPEC F1 MCC AP AUC
ensnet_p 0.840 0.909 0.339 0.249 0.302 0.755
dnet_p 0.834 0.905 0.312 0.218 0.276 0.739
mn_p 0.833 0.905 0.310 0.215 0.276 0.736
rnet_p 0.833 0.905 0.309 0.215 0.279 0.735
cnet_p 0.832 0.904 0.303 0.208 0.273 0.733
ann_p 0.833 0.905 0.309 0.214 0.270 0.729
unet_p 0.829 0.903 0.292 0.196 0.253 0.717

Note: Highest score per metric indicated in bold; AUC differences >0.10
are P <0.0S5.
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Fig. 3. (A) ROC and (B) P/R plots of all six architecture models and the ensemble
models, trained on BioDL_P_TR and tested on BioDL_P_TE PPI data. The
ensnet_p clearly outperforms the six architecture models in the ROC plot, and in
the P/R plot only rnet_p and rnn_p yield somewhat higher precision (~0.6) at very
low recall (0.01-0.02)

at low recall values but ensnet_p achieves the highest precision at
high recall values. To further investigate the reason behind this im-
provement, we explored the relation between accuracy of the
ensnet_p and the other predictors in scatter plots of MCC scores of
ensnet_p versus the average and standard deviation of MCC scores
of our six other predictors. Our analyses suggest that ensnet espe-
cially improves predictions for individual proteins where the average
performance of the other models was already relatively high
(Supplementary Fig. S12).

3.4 Type-specific predictions are more accurate
In Table 3, we compare the generic ensnet_a with type-specific
ensnet_p, ensnet_s and ensnet_n models, each trained on their

Table 3. Performance of ensnet a, trained on the generic
BioDL_A_ TR dataset, compared with the ensnet p, s and n models
trained on type-specific datasets containing protein, small mol-
ecule or nucleotide interaction interfaces and scored performance
on the interaction-specific test sets as indicated

Model Test set ACC SPEC F1 MCC AP AUC

ensnet_a BioDL P TE 0.828 0.902 0.289 0.192 0.248 0.733
ensnet_p 0.840 0.909 0.339 0.249 0.302 0.755
ensnet_a BioDL_S_TE 0.937 0.967 0.339 0.306 0.289 0.826
ensnet_s 0.944 0.970 0.413 0.384 0.388 0.864
ensnet_a BioDL N _TE 0.901 0.947 0.272 0.219 0.238 0.835
ensnet_n 0.921 0.957 0.418 0.376 0.399 0.894

Note: Highest AUC per metric per test set indicated in bold (P < 1e—6).

corresponding BioDL training sets. When tested on the corre-
sponding interaction-specific datasets BioDL_P TE, BioDL_S_TE
and BioDL_N_TE, the specific models consistently obtain perform-
ances higher than the interaction-generic ensnet_a, as one may
expect.

3.5 Network architecture matters

We compared the performance of all seven of our models (six separ-
ate architectures and an ensemble) trained on HHC TR and the four
BioDL_ * TR, yielding 35 trained predictors. Each was applied to
their corresponding test sets: three for HHC TR-trained models
(Homo_TE, Hetero TE and combined HHC TE), and two each for
the BioDL_* TR (BioDL_* TE and ZK448_*_ TE). See
Supplementary Tables S4, S5, S6, S7 and S8, for HHC, BioDL_A, P,
_Sand N, respectively, for details. The ensemble ensnet predictors
perform best on all test sets, as we already saw for the BioDL._ P TR
models on BioDL_P_TE in Table 2.

We further compared our ensnet_hhc, ensnet_a, ensnet_s and
ensnet_n predictors with other published and available state-of-
the-art sequence-based predictors on the same datasets. The pub-
lished predictors use various methods and architectures including
Random Forest, Logistic Regression, Support Vector Machine
and Neural Networks. Table 4 shows comparisons with
SeRenDIP and other PPI predictors benchmarked by Zhang and
Kurgan (2019) on the PPI datasets, and SCRIBER and DRNApred
on the ZK448 small molecule and nucleotide (DNA/RNA) data-
sets, respectively. All predictors mentioned here in Table 4 use
similar input features, such as protein length, ASA, RSA, PSSM
and secondary structure predicted from sequence.

For comparing ensnet_bhhc with SeRenDIP, we used exactly the
same test sets as used by SeRenDIP. For comparing ensnet_a with
the predictors as published in Zhang and Kurgan (2019), we exact-
ly followed their testing approach: we calculated average of met-
rics over 10 subsets of randomly selected 50% of ZK448 A TE,
and we only considered PPIs as to be predicted interactions and all
other types as non-interacting. For comparing ensnet_s with
SCRIBER, we randomly selected 10 proteins (UniProt IDs in
Supplementary Table S12) from ZK448 S TE and calculated the
comparison metrics based on the protein-small molecule binding
propensities returned by their webserver. For comparing ensnet_n
with DRNApred, we used all proteins in ZK448 N_TE (38 pro-
teins) and calculated the comparison metrics based on the nucleo-
tide interaction propensities returned by their webserver. The
cutoff points were selected such that the number of false positives
(FPs) and false negatives (FNs) are equal; this affects ACC, SPEC,
F1 and MCC. As can be seen from Table 4, our ensnet_hhc,
ensnet_a, ensnet_s and ensnet_n predictors perform better than the
corresponding state-of-the-art methods, on virtually all considered
metrics.

3.6 Feature importance
Figure 4 shows the top 15 ranking of the importance of the features,
as measured by SHAP, for one of our models (ann_p), estimated
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Table 4. Performance comparison of our ensnet models and other state-of-the-art sequence-based interaction prediction methods on ap-

plicable test sets

Model Test set ACC SPEC F1 MCC AP AUC
Protein—protein interaction (PPI)

ensnet_bhc Homo_TE 0.767 0.849 0.485 0.335 0.491 0.769""
SeRenDIP 0.277 0.724
ensnet_hhc Hetero TE 0.849 0.916 0.197 0.114 0.155 0.661"
SeRenDIP 0.122 0.636
ensnet_a 7K448 A TE 0.785 0.870 0.385 0.254 0.357 0.729""
SCRIBER® n.a. 0.896 0.333 0.230 0.287 0.715
SSWRF? n.a. 0.891 0.287 0.178 0.256 0.687
CRFPPI* n.a. 0.887 0.266 0.154 0.238 0.681
LORIS® n.a. 0.887 0.263 0.151 0.228 0.656
SPRINGS? n.a. 0.882 0.229 0.111 0.201 0.625
PSIVER? n.a. 0.874 0.191 0.066 0.170 0.581
SPRINT® n.a. 0.873 0.183 0.057 0.167 0.570
SPPIDER? n.a. 0.870 0.198 0.071 0.159 0.517
Protein—small molecule interaction

ensnet_s 7K448_S_TE 0.899 0.945 0.419 0.364 0.409 0.849™"
SCRIBER 0.874 0.931 0.278 0.209 0.259 0.706
Protein-DNA/RNA interaction

ensnet_n 7K448 N_TE 0.871 0.927 0.469 0.396 0.460 0.823"
DRNApred (DNA) 0.830 0.903 0.294 0.198 0.240 0.609
DRNApred (RNA) 0.814 0.894 0.230 0.124 0.248 0.547

Note: Highest scores per metric per test set indicated in bold; confidence for difference in AUC-ROC with runner-up.

#Metrics according to Zhang and Kurgan (2019) on their ZK448 test set.
*P <0.0S.

**P <0.005.
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Fig. 4. The top 15 ranking of the importance of the features based on the SHAP val-
ues for 5000 randomly selected amino acids in ZK448_P, indicating the contribu-
tion of a feature to a residue’s interface prediction. Colors represent the input values
of a feature: blue for low and red for high values. The width of the distribution of a
feature’s SHAP values shows its relative importance across the sampled residues.
For aggregated features only the sum is shown, e.g. WM_PC is the sum of 3_wm_PC,
5 wm PC,7 wm PCand 9 wm PC

from 5000 randomly selected amino acids from ZK448 P. As seen
previously (Hou et al., 2017, 2021), protein sequence length is by
far the most important feature. High values of length (red dots;
residues of longer proteins), in general, have lower SHAP values, i.e.
lower likelihood of a residue being predicted to be part of an inter-
face. Also, the high importance of secondary structure, particularly
coil (Wp_PC) and o-helix (WP_PA) is consistent with our previous
work. High probability of coil across the windows (red WwM_PC) also
has notable impact on the predictions, as can also be seen from the
correlations in Supplementary Figure S14.

4 Discussion and conclusion

This work presents an in-depth and systematic comparison of mul-
tiple DL architectures for sequence-based prediction of protein inter-
face residues. We include a series of neural nets, PIPENN, whose
ensemble method performs well on generic and type-specific inter-
face prediction tasks, including PPI, small molecule and nucleotide
(DNA/RNA) interface prediction from sequence.

We explored multiple combinations of DL architecture building
blocks, such as spatial forms, encoding schemes, network initializa-
tions, loss and activation functions and regularization mechanisms.
Selected combinations resulted in six models and an ensemble,
which we trained on existing and newly constructed training data-
sets. Performance was benchmarked on several independent test
sets, facilitating fair comparison. Comparing the performance of our
models to that of other published and available state-of-the-art se-
quence-based predictors on the same test sets, shows that our ensem-
ble predictors obtain most accurate predictions on all interface
types.

It is worth noting that the different prediction tasks are not
equally difficult. We reproduce an earlier observation that homo-
meric PPI interface residues can be better predicted than heteromeric
interfaces, as noted in Hou et al. (2017, 2019). Moreover, all archi-
tectures predict protein—small molecule and protein-nucleotide
interface residues more accurately than protein—protein interface
residues. This might be explained by differences in the size, specifi-
city and structural heterogeneity of interfaces involved with these re-
spective types of interaction: nucleotide interfaces are generally
much smaller than PPI interfaces, affecting their variety and relative
sequence locality; small molecule interactions typically require very
specific chemical properties, leading to equally specific interface
compositions; and the structural similarity between two random
strands of DNA is much larger than that between two random pro-
teins, so it stands to reason the similarity between (and consequent-
ly, predictability of) two protein-DNA interfaces is also greater than
the similarity between two protein—protein interfaces.

One issue that likely affects our observations, and those of
related studies as well, is that we necessarily operate under a ‘closed
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world’ assumption: not all interfaces are known, yet we assume that
residues which were never observed to be part of an interface, truly
are not part of one. Consequently, future experimental data are like-
ly to reveal some of the residues that we label as negatives (not inter-
acting) should in fact have been labeled positive.

Recent advances in protein structure prediction mean that struc-
tures are now available for increasing amounts of proteins (e.g. Su
et al., 2021; Tunyasuvunakool et al., 2021), which opens up new
types of features to be included in DL methods for interface predic-
tion (e.g. Dai and Bailey-Kellogg, 2021; Xie and Xu, 2021). These
are really exciting developments, and e.g. Dai and Bailey-Kellogg
(2021) report for their ‘Unbound Plnet (Aug 50)> AUC-ROC and F1
of around 0.6 for PPI interface prediction on the DBD3 and DBDS
test sets. Some of the underlying methodology for structure predic-
tion may also be directly applied to interface contact prediction, as
recently reviewed by Cui et al. (2021).

In summary, we contribute the following: (i) BioDL, a dataset of
protein sequences annotated with residue-level and type-specific
interface annotation of sufficient size to perform DL; (ii) systematic
characterization of different combinations of architectural building
blocks, and their impact on the predictive performance of resulting
neural nets; (iii) the PIPENN suite of neural net models, whose en-
semble method outperforms state-of-the-art sequence-based models
when it comes to predicting various types of protein interface. This
conclusively demonstrates DL can contribute much to current
efforts in computational protein interface prediction from sequence.
We provide a public repository containing source code, datasets and
pretrained models: https:/github.com/ibivu/pipenn/.
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