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  Elevated LDL-cholesterol is an independent risk factor 
for coronary heart disease (CHD) ( 1 ). Nutritional and life-
style modifi cations are the cornerstone of both the National 
Cholesterol Education Program (NCEP) and the American 
Heart Association (AHA) recommendations for the treat-
ment of hyperlipidemia to prevent and reduce the risk of 
CHD ( 2, 3 ). Guidelines from both organizations have cen-
tered on reducing saturated fat and cholesterol intakes. 
These recommendations have evolved over time, based on 
epidemiological, clinical, and animal studies ( 4–8 ). The 
current dietary recommendations for hypercholesterol-
emic subjects are to consume a diet consisting of 25% 
to 35% of energy from fat, <7% of energy from saturated 
fat, and <200 mg cholesterol per day ( 2, 3 ). Of note, the 
consumption of diets consistent with the NCEP and 
AHA recommendations have been shown to lower plasma 
total cholesterol and LDL-cholesterol effectively, in the 
range of 14% to 20%, compared with diets commonly 
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 Study design and clinical protocols 
 The compositions of the diets are shown in    Table 1  . The nutri-

tional composition of the diets was determined by food analysis 
at the Hazelton Laboratories (Madison, WI), except for the indi-
vidual type of PUFAs, which were calculated using food com-
position tables (GRAND database, release 867; USDA Human 
Nutrition Research Center, Grand Forks, ND) ( 9–11 ). The 20 
subjects consumed a diet approximating that of a Western-type diet 
(35% of energy as total fat, 14% of energy as saturated fat, 35 mg 
cholesterol/MJ) as the baseline diet for 6 weeks. Ten subjects 
were then assigned to receive the TLC diet high in fi sh (TLC 
high-fi sh), while the remaining 10, the TLC diet low in fi sh and 
high in poultry (TLC low-fi sh) for 24 weeks. The two TLC diets 
were similar in composition (<30% of energy as total fat, <7% of 
energy as saturated fat,  � 15 mg cholesterol/MJ), differing 
primarily in the content of fi sh-derived n-3 FAs (TLC high-fi sh: 
0.70% calories or 1.23 g/day in EPA and DHA equivalent to fi sh 
served 8 times per week vs TLC low-fi sh: 0.13% calories or 0.27 g/
day in EPA and DHA equivalent to fi sh served twice per week). Of 
note, the types of fi sh provided were sole fi llet, salmon, and tuna. 
The difference in energy derived from total fat between the base-
line diet and the TLC diets was compensated for by an increase 
in energy derived primarily from complex carbohydrate ( 9–11 ). 
All meals (breakfast, lunch, dinner, after-lunch snack, and after-
dinner snack) were prepared by the Metabolic Research Unit 
Kitchen of the Jean Mayer U.S. Department of Agriculture 
Human Nutrition Research Center on Aging at Tufts University. 
Energy intake was adjusted to maintain body weight. Subjects 
were allowed to eat and drink only items provided by the Center, 
except for water and noncaloric beverages. Subjects were advised 
to maintain a constant level of physical activity. 

 At the end of each diet phase, a primed, constant infusion of 
deuterated-leucine (5,5,5- 2 H 3 - L -leucine; Cambridge Isotope Lab-
oratories, Andover, MA) was administered intravenously in the 
fed state to determine the kinetics of apolipoproteins, as previ-
ously described ( 9, 27, 28 ). In brief, following a 12 h overnight 
fast, subjects were provided with the experimental meal on an 
hourly basis for 20 h. The amount of food provided at each hour 
was 5% of the daily energy intake. The composition of the por-
tioned meal approximated that of the diet that was provided 
prior to the infusion period. Five hours after the fi rst meal, a bo-
lus dose of deuterated leucine (10 µmol/kg) was administered, 
followed by a 15 h infusion of deuterated leucine (10 µmol/kg/
hour). Blood samples were collected prior to the isotope infu-
sion (time = 0 minute) and at 1, 2, 3, 4, 6, 8, 10, 12, and 15 h 
during the infusion. 

 Laboratory analyses 
 The protocol for plasma lipid and lipoprotein characterization, 

quantifi cation, and isolation of the apolipoproteins, isotopic 
enrichment determinations, and kinetic analysis were performed 
as previously described ( 28, 29, 30 ). Plasma samples were stored 
at  � 80°C, and all laboratory analyses were completed within 1 year 
after each diet phase. In brief, fasting lipid and apolipoprotein 
values were averages of the blood samples collected at weeks 4, 5, 
and 6 for the baseline diet, and weeks 4, 8, 16, and 24 for the TLC 
diets. Nonfasting lipid and apolipoprotein values were averages 
of blood samples collected at 1, 4, 8, 12, and 15 h during the 
infusion study. ApoB within plasma, TRL, and IDL were mea-
sured using a noncompetitive ELISA ( 31 ). The proportion of 
apoB within the TRL fraction that was apoB-100 and apoB-48 was 
determined by densitometric scanning of Coomassie-stained gels 
( 31, 32 ). Plasma apoA-I concentration was measured using an 
immunoturbidimetric assay, reagents, and calibrators from Wako 
Diagnostics (Richmond, VA). 

consumed within the United States ( 8–11 ). An under-
standing of the mechanisms that confer these benefi ts is, 
therefore, of clinical relevance. 

 Beyond traditional macronutrients, dietary supplements 
may play a role in decreasing CHD risk. Fish oils are a rich 
source of the long-chain n-3 FAs eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA) ( 12–14 ). Epidemi-
ological and intervention studies suggest that fi sh oil con-
sumption protects against CHD ( 12–14 ). Recent clinical 
outcome trials with n-3 FAs reported mixed fi ndings, how-
ever ( 15–21 ). In particular, the Alpha Omega and the 
ORIGIN trials both failed to show a signifi cant cardiovascu-
lar disease (CVD) benefi t ( 16, 21 ). It is noteworthy that in 
these trials, n-3 FAs were taken against a background of opti-
mal medical therapy for secondary prevention and the pa-
tients were at high risk of CVD events. Whether similar 
results would have been observed at higher doses of n-3 FAs 
and/or patients on suboptimal medical therapy is not 
known. Furthermore, the exact signifi cance of these fi nd-
ings to dietary recommendations to consume more fi sh is 
unclear. Nonetheless, fi sh oils, provided as fi sh oil capsules, 
have been shown to decrease plasma triglyceride and ath-
erogenic triglyceride-rich lipoprotein (TRL) particle con-
centrations by decreasing hepatic TRL apoB-100 synthesis 
and increasing TRL-to-LDL apoB-100 conversion ( 22–26 ). 
The modifi cation of lipid and lipoprotein metabolism by 
fi sh oils appears to confer anti-atherogenic benefi ts 
( 12–14 ). 

 In the present study, we compared the effects of two 
diets adhering to the dietary recommendations of the 
NCEP, one high and the other low in dietary fi sh-derived 
n-3 FAs, on lipoprotein metabolism in middle-aged and 
elderly subjects under controlled isoenergetic metabolic 
conditions. Of note, in the course of this work, the termi-
nology changed from the NCEP Step-2 diet to the Therapeutic 
Lifestyle Change (TLC) diet. Therefore, the designation of 
TLC was applied. We hypothesized that the TLC diet high 
in dietary fi sh-derived n-3 FAs would have a more favor-
able effect on lipoprotein metabolism compared with the 
TLC diet low in dietary fi sh-derived n-3 FAs, chiefl y by 
decreasing the production rates (PRs)of TRL particles. 
Although we have previously reported the effects of these 
diets on plasma lipid concentrations ( 9–11 ), the effects of 
these diets on apoB and apoA-I kinetics, however, are 
novel. 

 METHODS 

 Subjects 
 Twenty subjects (7 men and 13 women) aged >40 years partic-

ipated in this study. All women were postmenopausal. Subjects 
had no evidence of any chronic illness including endocrine, 
hepatic, renal, thyroid, or cardiac dysfunction, and were not 
taking any medications known to affect lipid metabolism. All 
were nonsmokers and consumed no alcohol during the study. 
The study protocol was approved by the Tufts University Human 
Investigation Review Committee. All subjects provided written 
consent. The study was completed prior to the development of 
the clinicaltrials.gov registry. 
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apoB-100 plateau was used as the tracer plateau for HDL 
apoA-I kinetic analysis. 

 The fractional catabolic rates (FCRs) of TRL, IDL, and LDL 
apoB-100, TRL apoB-48, and HDL apoA-I were derived from the 
model parameters giving the best fi t. The corresponding PRs 
were calculated as the product of FCR and pool size, which equals 
the plasma concentration multiplied by plasma volume estimated 
as 4.5% of body weight in kilograms. 

 Statistical analyses 
 Statistical analyses were performed using STATA (Version 

11.1; StataCorp, College Station, TX). Data are presented as 
medians and inter-quartile ranges to account for the skewed nature 
of the parameters. Baseline values were different between the 
diet groups. As such, the change from baseline (change score) 
was used in all analyses to account for these differences. The 
change from baseline value of each variable was defi ned as the 
value of the variable on the TLC diet (high-fi sh or low-fi sh diets) 
minus the value of that same variable on the corresponding base-
line diet. Wilcoxon signed-rank tests were performed to test for 
difference between each TLC diet group and their correspond-
ing baseline diet. Mann-Whitney tests were performed to test for 
difference in the change from baseline in variables between the 
TLC high-fi sh diet and the TLC low-fi sh diet. Spearman correla-
tion coeffi cients were determined to examine the statistical asso-
ciations between changes from baseline in variables. The  P  values 
are reported, with statistical signifi cance set at the 5% level. 

 RESULTS 

 The two groups of subjects (TLC high-fi sh vs. TLC low-
fi sh) were similar with respect to age [67 (60–70) vs .  66 
(44–71) years] and body mass index [26.0 (22.7–28.0) 
vs .  24.7 (23.5–28.8) kg/m 2 ], and had, on average, mild 
to moderate hypercholesterolemia [fasting lipids and 
lipoprotein: total cholesterol, 5.16 (4.78–6.26) vs .  5.47 
(4.81–6.81) mmol/l and LDL cholesterol: 3.37 (3.03–4.51) 
vs .  3.46 (3.25–4.70) mmol/l]. The TLC high-fi sh diet group 
consisted of four men and six women, whereas the TLC 
low-fi sh group, three men and seven women. No signifi -
cant changes in body weight were observed in either TLC 
diet group compared with the baseline diet. 

 Fasting plasma FA composition during different diets was 
measured as previously described ( 33, 34 ). In brief, FAs from 
lipid extracts of plasma were methyl-esterifi ed and analyzed on a 
5890 gas-liquid chromatograph (Hewlett-Packard; Palo Alto, CA) 
fi tted with a 105 m fused silica capillary column, liquid-phase 
RTX 2330 (Restek Corp.; Port Matilda, PA) and a fl ame-ionization 
detector. Peak identifi cation was obtained by chromatography of 
known FA methyl esters. Data were normalized by comparing the 
area of the FA peak with the area of the internal standard peak, 
heptadecanoic acid. The FA composition is expressed as a per-
centage of the total area of the identifi ed FA peaks. 

 Kinetic analyses 
 A multi-compartmental model  (  Fig. 1A  ) was used to describe 

TRL-, IDL- and LDL apoB-100 kinetics. The SAAM II program 
(University of Washington, Seattle, WA) was used for modeling 
the data. The details and assumptions of the model have been 
described previously ( 29, 30 ). The model consists of seven com-
partments. Compartment 1 represents the precursor compart-
ment, the plasma leucine pool. Compartment 2 is an intracellular 
delay compartment that accounts for the synthesis and secretion 
of apoB-100 into the TRL pool (compartment 3). Compartments 
3 and 4 account for the kinetics of apoB-100 in the TRL fraction. 
Compartment 5 accounts for the kinetics of IDL apoB-100. The 
kinetics of LDL apoB-100 are described by a plasma compart-
ment (compartment 7). In order to fi t the LDL apoB-100 tra-
cer data, a delay compartment (compartment 6) between the TRL 
(compartment 3) and LDL compartments was required. The 
presence of a delay between TRL- and LDL apoB-100 has been 
previously reported, with studies suggesting that VLDL may leave 
plasma and reappear later in LDL ( 35, 36 ). The delay time for 
compartment 6 was (mean ± SEM) 0.40 ± 0.08 h for the TLC 
high-fi sh diet group and 0.46 ± 0.10 h for the TLC low-fi sh group. 
There was no signifi cant difference in the delay time between the 
diet groups at baseline. No signifi cant effect of diet on this delay 
time was observed. 

 The kinetics of TRL apoB-48 and HDL apoA-I were described 
by a three-compartment model ( Fig. 1B ). Compartment 1 rep-
resents the precursor compartment, the plasma leucine pool. 
Compartment 2 is an intracellular delay compartment that ac-
counts for the synthesis and secretion of apoB-48 or apoA-I 
into the TRL or the HDL pool, respectively (compartment 3). 
Compartment 3 accounts for the kinetics of apoB-48 or apoA-I 
in the TRL or HDL fraction, respectively. Of note, the TRL 

 TABLE 1. Composition of the baseline and TLC diets, as assessed by chemical analysis of food  a   

Baseline High-Fish Diet Low-Fish Diet

(% of energy)
Carbohydrate 49.4 ± 2.2 56.1 ± 2.9 58.2 ± 1.8
Protein 15.0 ± 1.2 17.2 ± 0.9 16.3 ± 0.7
Fat 35.4 ± 2.3 26.4 ± 2.0 25.5 ± 1.8
Saturated FAs 14.1 ± 2.2 4.5 ± 0.7 4.0 ± 0.4
14:0 1.6 ± 0.3 0.2 ± 0.1 0.1 ± 0.0
16:0 7.1 ± 0.5 2.9 ± 0.6 2.2 ± 0.3
18:0 2.9 ± 0.2 1.3 ± 0.4 1.0 ± 0.1
Monounsaturated FAs 14.5 ± 1.0 11.6 ± 1.4 10.8 ± 0.9
18:1n-9 12.6 ± 1.1 10.5 ± 2.2 10.7 ± 2.7
Polyunsaturated FAs 6.9 ± 1.2 10.3 ± 0.2 10.5 ± 0.2
18:2n-6  b  4.1 ± 0.2 7.0 ± 0.4 7.1 ± 0.8
18:3n-3  b  0.7 ± 0.2 1.9 ± 0.6 2.0 ± 0.2
20:4n-6  b  <0.01 0.1 ± 0.1 <0.02
20:5n-3  b  <0.01 0.2 ± 0.1 <0.02
22:6n-3  b  <0.01 0.5 ± 0.1 0.1 ± 0.1
Cholesterol (mg/MJ) 35 ± 6 15 ± 4 11 ± 4

  a   Data are presented as mean ± SD of triplicate samples.
  b   Values are derived from food composition table.
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with the TLC low-fi sh diet ( P  = 0.02). Although both diets 
decreased HDL cholesterol concentration, the decrease 
was signifi cantly less in the TLC high-fi sh compared with 
the TLC low-fi sh diet ( P  = 0.04). Both TLC diets had com-
parable effects on total cholesterol, LDL cholesterol and 
plasma apoB and apoA-I concentrations. 

 Effects on TRL, IDL, and LDL apoB-100 metabolism 
 The effects of the TLC diets on TRL, IDL, and LDL 

apoB-100 concentrations and kinetics are shown in    Table 4  . 
There was a 23% decrease in TRL apoB-100 concentration 
with the TLC high-fi sh diet compared with a 1% increase 
with the TLC low-fi sh diet ( P  < 0.01). TRL apoB-100 PR 
was signifi cantly decreased by 9% with the TLC high-fi sh 
diet as compared with a 1% increase with the TLC low-fi sh 
diet ( P  = 0.03). The direct catabolism of TRL apoB-100 was 
signifi cantly decreased by 53% with the TLC high-fi sh diet 
compared with the 3% increase with the TLC low-fi sh diet 
( P  < 0.01). Although both diets decreased LDL apoB-100 
concentration, the decrease was signifi cantly less with the 
TLC high-fi sh diet compared with the TLC low-fi sh diet 
( P  = 0.01). There was a 39% increase in TRL-to-LDL apoB-
100 conversion with the TLC high-fi sh diet compared with 
a 7% increase with the TLC low-fi sh diet, but this failed to 
reach statistical signifi cance ( P  = 0.08). Both diets had 
comparable effects on IDL and LDL apoB-100 FCR and 
PR, and the conversion of TRL-to-IDL apoB-100 and IDL-
to-LDL apoB-100. 

 Effects on TRL apoB-48 metabolism 
 The effects of the TLC diets on TRL apoB-48 concentra-

tion and kinetics are shown in  Table 4 . There were 27%, 
32%, and 51% decreases in TRL apoB-48 concentration, 
FCR, and PR, respectively, with the TLC high-fi sh diet as 
compared with 6% and 8% increases in TRL apoB-48 con-
centration and FCR, and an 11% decrease in PR with the 
TLC low-fi sh diet ( P  = 0.04 for all). 

 Effects on HDL apoA-I metabolism 
 The TLC diets decreased HDL apoA-I concentration 

and PR by a comparable magnitude, and neither diet 
altered HDL apoA-I FCR signifi cantly ( Table 4 ). 

 Associations between absolute changes in TRL apoB-
100 concentrations and kinetics with fasting plasma FA 
concentrations 

 The associations between the changes in TRL apoB-100 
concentration and kinetics with the changes in fasting 
plasma FA concentrations were explored  (  Fig. 2  ). With 
the TLC high-fi sh diet, the changes in TRL apoB-100 con-
centration were signifi cantly correlated with the changes 
in plasma oleic acid ( Fig. 2A ). The changes in TRL apoB-100 
PR were signifi cantly correlated with the changes in plasma 
oleic acid ( Fig. 2B ), EPA ( Fig. 2C ), and DHA ( Fig. 2D ). 
The changes in TRL-to-LDL apoB-100 conversion were 
signifi cantly correlated with the changes in plasma EPA 
( Fig. 2E ). The changes in TRL apoB-100 FCR and TRL-
toLDL apoB-100 conversion rate were correlated with the 
changes in plasma DHA, but these failed to reach statistical 

 Effects on fasting plasma FA profi le 
 The effects of the TLC diets on fasting plasma FA profi le 

in the subjects are shown  in   Table 2  . The decreases in 
oleic (18:1n-9) and arachidonic (20:4n-6) acids were 
signifi cantly greater with the TLC high-fi sh compared 
with the low-fi sh diet ( P  < 0.02 and  P  = 0.02, respectively). 
The increases in EPA (20:5n-3) and DHA (22:6n-3) were, 
on average, 1.6- and 1.3-fold higher with the TLC high-fi sh 
diet compared with the TLC low-fi sh diet, respectively 
( P  < 0.01 for both). Both TLC diets reduced saturated FAs 
(14:0, 16:0, and 18:0) and increased  � -linolenic acid 
(18:3n-3) by a similar magnitude. 

 Effects on plasma lipids and apolipoproteins 
 The effects of the two TLC diets on nonfasting plasma 

lipoprotein and apolipoprotein concentrations are shown in  
  Table 3  . There was a 24% decrease in plasma triglycerides 
with the TLC high-fi sh diet compared with a 1% decrease 

  Fig.   1.  A: Compartment model describing TRL, IDL and LDL 
apoB-100 kinetics The apoB-100 model consisted of seven compart-
ments. Compartment 1 represents the precursor compartment, 
the plasma leucine pool. Compartment 2 is an intracellular delay 
compartment that accounts for the synthesis and secretion of apoB-
100 into the TRL pool (compartment 3). Compartments 3 and 4 
account for the kinetics of apoB-100 in the TRL fraction. Compart-
ment 5 accounts for the kinetics of IDL apoB-100. The kinetics of 
LDL apoB-100 are described by a plasma compartment (compart-
ment 7). In order to fi t the LDL apoB-100 tracer data, a delay 
compartment (compartment 6) between the TRL and LDL compart-
ments was required. B: Compartment model describing TRL 
apoB-48 and HDL apoA-I kinetics The kinetics of TRL apoB-48 and 
HDL apoA-I were described by a three-compartment model. Com-
partment 1 represents the precursor compartment, which is the 
plasma leucine pool. Compartment 2 is an intracellular delay 
compartment that accounts for the synthesis and secretion of 
apoB-48 or apoA-I into the TRL or the HDL pool, respectively 
(compartment 3). Compartment 3 accounts for the kinetics of 
apoB-48 or apoA-I in the TRL or HDL fraction, respectively. Of 
note, the TRL apoB-100 plateau was used as the tracer plateau for 
HDL apoA-I kinetic analysis.   
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on TRL apoB-48 metabolism in humans. Furthermore, no 
studies have examined the effects of dietary fi sh-derived 
n-3 FAs as part of a therapeutic low total and saturated fat, 
and cholesterol diet on lipoprotein metabolism. Our study 
extends previous reports by examining the effects of two 
TLC diets, in which total fat, saturated fat, and cholesterol 
content were lowered, with one low and the other high in 
dietary fi sh-derived FAs, on TRL, IDL, and LDL apoB-100, 
TRL apoB-48, and HDL apoA-I using stable isotope 
methods. 

 Effects of TLC diets on apoB-100 metabolism 
 Studies in animals and humans have shown that the hy-

potriglyceridemic effect of n-3 FAs chiefl y involves the sup-
pression of TRL apoB-100 synthesis ( 22–26, 40, 41 ). This 
suppression is due to reduced triglyceride synthesis via in-
hibition of diacylglycerol acyltransferase, FA synthase, and 
acetyl CoA carboxylase enzyme activities ( 14 ). N-3 FAs also 
enhance FA  �  oxidation via a peroxisome proliferator-
activated receptor- � -mediated pathway resulting in de-
creased substrate availability for triglyceride formation 
( 14 ). In addition, n-3 FAs suppress transcription of the 
sterol regulatory element binding protein (SREBP)-1c 
gene and hence, inhibit de novo lipogenesis ( 14 ). Further-
more, n-3 FAs may stimulate the post-endoplasmic retic-
ulum (ER) presecretory proteolysis pathway, thereby 

signifi cance ( r  = 0.617,  P  = 0.07 and  r  = 0.57,  P  = 0.11, respec-
tively). All of these associations were also observed with 
the TLC low-fi sh diet but were not statistically signifi cant. 

 DISCUSSION 

 We provide new information on the effects of two diets 
adhering to the TLC diet criteria, one high and the other 
low in dietary fi sh-derived n-3 FAs, on lipoprotein metabo-
lism in middle-aged and elderly men and women. The 
TLC high-fi sh diet decreased postprandial plasma triglyc-
eride concentration, with concomitant reductions in TRL 
apoB-100 concentration, PR, and direct catabolism, and 
TRL apoB-48 concentration, FCR, and PR. Both TLC diets 
had comparable effects on LDL apoB-100 and HDL apoA-I 
metabolism. These effects were achieved with no signifi -
cant change in body weight. 

 Previous kinetics studies 
 To date, only three studies have examined the effects of 

decreasing dietary saturated fat together with increasing 
n-6 FAs on apoB-100 metabolism ( 37–39 ). These studies 
have yielded inconsistent results due, in part, to different 
study populations and/or the degree of saturated fat re-
placement with n-6 FAs (please see supplementary data). No 
studies have examined the effects of these dietary changes 

 TABLE 2. Fasting plasma FA profi le of study subjects following baseline, TLC high-fi sh, and TLC low-fi sh diets 

FAs (mol %) Baseline Diet High-Fish Diet 

Median % 
Change from 
Baseline Diet Baseline Diet Low-Fish Diet 

Median % 
Change from 
Baseline Diet

High-Fish 
Diet vs. Low-
Fish Diet   a   P 

14:00 1.00 (0.79, 1.54) 0.75 (0.71, 1.08)  b   � 23 0.86 (0.72, 0.98) 0.65 (0.59, 0.95)  b   � 18 0.41
16:00 20.0 (19.3, 21.8) 18.8 (18.2, 20.3)  b   � 6 20.3 (18.8, 22.1) 18.9 (16.5, 21.3)  � 5 0.62
18:00 6.33 (6.19, 6.77) 6.18 (5.94, 6.27)  b   � 5 6.28 (5.86, 7.55) 6.10 (5.37, 7.25)  b   � 6 0.22
18:1n-9 17.3 (16.1, 18.6) 15.0 (13.8, 16:1)  b   � 13 18.3 (16.7, 19.3) 18.9 (17.5, 20.4) 5 <0.01
18:2n-6 32.0 (27.6, 33.9) 34.4 (29.9, 35.8) 7 36.9 (30.2, 40.8) 36.7 (32.3, 43.6) 2 0.12
18:3n-3 0.57 (0.52, 0.81) 1.17 (1.04, 1.22)  b  106 0.47 (0.39, 0.65) 1.03 (0.47, 1.38)  b  106 0.57
20:4n-6 7.87 (7.13, 8.53) 5.92 (5.43, 6.51)  b   � 28 8.37 (7.70, 8.94) 7.17 (5.39, 7.90)  b   � 17 0.02
20:5n-3 0.67 (0.55, 0.77) 2.72 (1.82, 3.39)  b  287 0.47 (0.42, 0.62) 0.75 (0.56, 0.92)  b  53 <0.01
22:6n-3 2.97 (2.35, 3.70) 5.15 (4.15, 6.23)  b  65 1.74 (1.70, 2.30) 2.09 (1.84, 2.54)  b  10 <0.01

Data are presented as median (IQR).
  a    Comparison between change from baseline of high-fi sh vs. low-fi sh diet. n = 10.
  b     P  < 0.05 compared with corresponding baseline diet.

 TABLE 3. Postprandial plasma lipid, lipoprotein, and apolipoprotein concentrations following baseline, TLC 
high-fi sh, and TLC low-fi sh diets 

Baseline Diet High-Fish Diet

Median % 
Change from 
Baseline Diet Baseline Diet Low-Fish Diet 

Median % 
Change from 
Baseline Diet

High-Fish vs. 
Low-Fish  a   P 

Total cholesterol, 
 mmol/l

4.77 (4.29, 5.88) 3.99 (3.72, 5.02)  b   � 16 5.02 (4.39, 6.24) 3.97 (3.50, 4.96)  b   � 19 0.26

Triglyceride, mmol/l 1.93 (1.51, 2.87) 1.46 (1.21, 1.79)  b   � 24 1.56 (1.38, 2.34) 1.76 (1.30, 2.07)  � 1 0.02
LDL cholesterol, 
 mmol/l

3.24 (2.97, 3.71) 2.50 (2.08, 2.88)  b   � 22 3.48 (3.11, 4.32) 2.70 (2.31, 3.34)  b   � 24 0.82

HDL cholesterol, 
 mmol/l

1.16 (0.83, 1.48) 1.04 (0.71, 1.52)  � 9 1.06 (0.93, 1.31) 0.93 (0.71, 1.06)  b   � 19 0.04

Apolipoprotein B, g/l 0.97 (0.92, 1.15) 0.82 (0.79, 0.97)  b   � 14 1.12 (0.99, 1.40) 0.98 (0.73, 1.21)  b   � 20 0.11
Apolipoprotein A-I, g/l 1.24 (1.09, 1.39) 1.04 (0.92, 1.14)  b   � 18 1.29 (1.14, 1.48) 1.08 (0.93, 1.27)  b   � 21 0.94

Data are presented as median (IQR).
  a     P  < 0.05 compared with corresponding baseline diet. To convert cholesterol, HDL cholesterol, LDL cholesterol and non-HDL cholesterol in 

mmol/l to mg/dl, divide by 0.0259; triglycerides in mmol/l to mg/dl, divide by 0.0113.
  b    Comparison between change from baseline of high-fi sh vs. low-fi sh diet, n = 10.
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TRL particles enriched with n-3 FAs may be better substrates 
for lipolysis. Animal studies suggest that fi sh oil increased 
margination of TRL (binding to LPL at the endothelium) 
( 47 ). If TRL binds more tightly to LPL, the period of interac-
tion may be longer, resulting in the formation of smaller rem-
nants. This hypothesis is supported by experimental data 
indicating that heparin injection in primates, which stimu-
lates release of LPL from heparin sulfate proteoglycans, tran-
siently increased LDL concentrations ( 48 ) and that fi sh oil 
supplementation in humans increased LPL activity ( 46 ). In 
addition, we cannot rule out the possibility that higher n-3 FA 
intake results in the secretion of smaller and less apoE-
enriched TRL particles. Yamada et al. previously reported 
that apoE-poor TRL particles are preferentially converted to 
LDL ( 49 ). Of note, no change in TRL apoB-100 metabolism 
was observed with the TLC low-fi sh diet. This supports the 
notion that the reductions in TRL apoB-100 secretion and 
altered TRL apoB-100 catabolism were chiefl y an effect of 
dietary fi sh-derived n-3 FAs. 

 Moderate fat and low cholesterol diets are recom-
mended nutritional modifi cations to reduce CHD risk 
due, in part, to their hypocholesterolemic effects ( 4–8 ). 
In the present study, both TLC diets signifi cantly reduced 
total, LDL cholesterol, and LDL apoB-100 concentrations. 

increasing the degradation of newly synthesized apoB ( 42 ). 
Our study concurred with earlier human studies that 
n-3 FAs decrease TRL apoB-100 hepatic secretion and 
concentration. 

 Of interest, the associations between changes in TRL 
apoB-100 concentrations and PRs, with fasting plasma FAs, 
particularly oleic acid, EPA, and DHA, are consistent with 
prior in vitro studies. These studies, utilizing either HepG2 
cells and/or perfused rat liver, suggest that oleic acid stim-
ulates apoB-100 secretion, without altering apoB-100 
mRNA levels, whereas EPA and DHA have the opposite 
effects ( 43–45 ). These observations, together with our 
fi ndings, support the concept of differential modes of 
action of individual FAs in regulating TRL apoB-100 
secretion ( 43 ). 

 We observed that dietary fi sh-derived n-3 FAs decreased 
TRL apoB-100 direct catabolism, and, by implication, conver-
sion of TRL to LDL was increased. Consistent with this ob-
servation, others ( 46 ) have shown that enrichment of n-3 FAs 
in TRL preferentially converts TRL to LDL. Furthermore, 
a positive association between changes in TRL-to-LDL 
conversion with changes in EPA, and a concomitant increase 
in LDL apoB-100 PR were observed. The mechanism for the 
accelerated conversion of TRL to LDL, however, is unknown. 

 TABLE 4. Concentrations and kinetics of TRL, IDL and LDL apoB-100, TRL apoB-48, and HDL apoA-I 
following baseline, TLC high-fi sh, and TLC low-fi sh diets 

Baseline Diet High-Fish Diet (HF)

Median % 
Change from 
Baseline Diet Baseline Diet Low-Fish Diet 

Median % 
Change from 
Baseline Diet

High Fat vs. 
Low Fat   a   P 

Concentrations (mg/l)
 TRL apoB-100 9.57 (5.26, 16.3) 6.58 (4.12, 40.4)  b   � 23 5.52 (3.53, 8.63) 5.63 (3.32, 8.10) 1 <0.01
 IDL apoB-100 2.27 (1.03, 2.45) 1.77 (1.44, 2.19)  � 3 1.59 (0.88, 3.21) 1.3 (1.00, 2.66)  � 17 0.97
 LDL apoB-100 85.1 (75.9, 96.7) 73.0 (67.6, 91.1)  b   � 9 105 (91.9, 133) 90.3 (67.1, 111)  b   � 23 0.01
 TRL apoB-48 0.48 (0.31, 0.9) 0.42 (0.10, 0.56)  b   � 24 0.33 (0.31, 0.71) 0.34 (0.27, 0.79) 6 0.04
 HDL apoA-I 120 (109, 139) 104 (92, 114)  b   � 15 129 (114, 148) 108 (93, 127)  b   � 14 0.77

Fractional catabolic rates (pools/day)
 TRL apoB-100 5.91 (4.18, 8.89) 8.22 (5.44, 10.8)  b  16 7.71 (5.04, 11.5) 7.1 (4.84, 16.3)  � 9 0.50
 IDL apoB-100 2.92 (2.12, 3.39) 3.79 (2.62, 5.27) 37 2.93 (1.93, 5.64) 3.82 (2.45, 5.50) 12 0.50
 LDL apoB-100 0.25 (0.22, 0.38) 0.43 (0.32, 0.46)  b  44 0.28 (0.22, 0.36) 0.43 (0.35, 0.54)  b  48 0.76
 TRL apoB-48 4.93 (3.69, 5.79) 3.37 (2.73 . 5.24)  b   � 20 4.58 (2.78, 5.10) 3.71 (3.02, 5.14) 8 0.04
 HDL apoA-I 0.21 (0.19, 0.26) 0.22 (0.18, 0.27) 9 0.22 (0.18, 0.27) 0.21 (0.18, 0.26) 2 0.97

Production rates (mg/kg/day)
 TRL apoB-100 28.2 (20.4, 34.3) 23.2 (18.1, 27.1)  b   � 9 22 (14.9, 23.2) 22.9 (16.0, 26.5) 1 0.03
 IDL apoB-100 3.41 (1.07, 3.63) 2.75 (1.99, 4.00) 20 2.01 (1.28, 7.40) 2.97 (1.48, 5.23) 10 0.55
 LDL apoB-100 9.45 (7.97, 14.3) 14.3 (11.2, 17.5)  b  32 12.9 (10.9, 17.4) 14.7 (12.0, 20.0) 7 0.29
 TRL apoB-48 1.02 (0.68, 1.71) 0.57 (0.23, 0.94)  b   � 50 0.74 (0.60, 0.96) 0.80 (0.48, 1.13)  � 9 0.04
 HDL apoA-I 12.2 (10.9, 13.5) 10.7 (7.71, 13.7)  b   � 11 12.0 (10.2, 15.6) 9.47 (8.71, 14.2)  b   � 12 0.53

Percent conversion (%)
 TRL to IDL apoB-100 10.6 (7.92, 13.3) 12.1 (9.32, 23.5) 27 10.5 (6.65, 34.4) 11.61 (6.13, 28.8)  � 9 0.33
 IDL to LDL apoB-100 100 (100, 100) 100 (100, 100) … 100 (100, 100) 100 (100, 100) … …
 TRL to LDL apoB-100 48.5 (26.6, 65.5) 79.6 (45.8, 92.3)  b  39 70.1 (58.9, 83.8) 75.63 (67.7, 88.3) 7 0.08

Absolute conversion rates (mg/kg/day)
 TRL to IDL apoB-100 3.4 (1.1, 3.6) 2.7 (2.0, 4.0) 20 2.0 (1.3, 7.4) 3.0 (1.5, 5.2) 10 0.55
 IDL to LDL apoB-100 3.4 (1.1, 3.6) 2.7 (2.0, 4.0) 20 2.0 (1.3, 7.4) 3.0 (1.5, 5.2) 10 0.55
 TRL to LDL apoB-100 9.4 (8.0, 14.3) 14.3 (11.2, 17.5)  b  32 12.9 (10.9, 17.4) 14.7 (12.0, 20.0) 6 0.29

TRL apoB-100 direct catabolism
(mg/kg/day) 17 (7.20, 23.2) 4.4 (1.10, 15.9)  b   � 53 5.2 (1.90, 7.10) 5.4 (3.20, 7.50) 3  <0.01

Data are presented as median (IQR).
  a    Comparison between change from baseline of high-fi sh vs. low-fi sh diet, n = 10.
  b     P  < 0.05 compared with corresponding baseline diet.
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upregulate hepatic expression of LDL receptors and hence, 
binding and clearance of LDL particles in vivo. Of note, 
the incorporation of dietary fi sh-derived n-3 FAs did not 
confer additional effect on LDL apoB-100 FCR. The de-
crease in LDL apoB-100 concentration, however, was of a 
smaller magnitude relative to the TLC low-fi sh diet, in 
spite of comparable increases in LDL apoB-100 FCR. This 
is probably due to the enhanced TRL-to-LDL apoB-100 
conversion with the high-fi sh diet. Nonetheless, the de-
crease in total plasma apoB-100 concentration was similar 
with both TLC diets. 

This was chiefl y due to increased LDL apoB-100 FCR. 
Animal studies have reported increases in LDL apoB-100 
FCR with reduced dietary saturated fat and cholesterol in-
take ( 50–53 ). In addition, fat and cholesterol feeding 
have been associated with a reduction in SREBP-2 and 
LDL receptor mRNA expression ( 51, 52, 54 ). Further-
more, postprandial enrichment of TRL particles with 
apoE after fat ingestion was recently shown to inhibit LDL 
binding and uptake by the LDL receptor in HepG2 
cells ( 55 ). Collectively, these observations imply that 
reductions in dietary saturated fat and cholesterol, may 

  Fig.   2.  Correlations between the changes in TRL apoB-100 concentration with changes in plasma oleic acid (A), the changes in TRL 
apoB-100 production rate with changes in plasma oleic acid (B), EPA (C), and DHA (D), and the changes in TRL-to-LDL apoB-100 con-
version rate with changes in plasma EPA (E) in the NCEP high-fi sh diet group (n = 9; the plasma FA profi le of one subject was not measured 
during the study). Spearman correlation analyses were performed to examine the statistical associations between changes from baseline in 
variables.   
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ratio, a powerful predictor of CHD risk, was signifi cantly 
decreased in a pooled analysis of both diets ( � 6.2%,  P  < 
0.01). Hence, we propose that the reduction in HDL cho-
lesterol with the TLC diets should not be viewed as a neg-
ative outcome with regard to CHD risk. 

 Limitations 
 Several limitations are noteworthy. We studied mid-

dle-aged and elderly subjects with mild-to-moderate hyper-
cholesterolemia. Studies in hypertriglyceridemic and type 
2 diabetic subjects are warranted. Our study examined the 
combined effects of decreasing dietary total fat, saturated 
fat, and cholesterol content. Future studies to distinguish 
the independent effects of these dietary macronutrients, 
as well as the impact of specifi c carbohydrate ( 69 ), are re-
quired. TRL subspecies and TRL triglycerides kinetics 
were not examined, but we anticipate that their produc-
tion will also be reduced with n-3 FA consumption. ApoB-
containing particles are subject to modifi cations by hepatic 
lipases and may exhibit kinetic and structural heteroge-
neity based on the content of regulatory apolipoproteins, 
including apoC-III and apoE ( 70 ). Measurements of lipase 
masses and activities, as well as the concentrations and ki-
netics of key regulatory apolipoproteins, may further elu-
cidate our fi ndings. 

 Implications and conclusions 
 Our study showed that the consumption of dietary fi sh-

derived n-3 FAs against the background of the TLC thera-
peutic diet decreased plasma triglyceride and TRL 
concentrations. This is particularly relevant in light of re-
cent evidence that nonfasting plasma triglycerides are risk 
factors for CHD ( 71–73 ). The reduction in TRL concen-
tration with n-3 FA intake was, chiefl y, a function of de-
creased hepatic and intestinal TRL particle production. 
Consumption of various TLC diets, low in fat, saturated 
fat, and cholesterol content, was associated with signifi cant 
reductions in LDL cholesterol and LDL apoB-100 due to 
increased catabolism of LDL particles. These diets were 
also associated with decreases in HDL cholesterol, a func-
tion of decreased HDL apoA-I production. The changes in 
lipoprotein metabolism with the TLC diets may provide a 
mechanistic explanation for the CHD benefi ts reported in 
intervention studies ( 6, 11–13, 74 ). Our study supports the 
nutritional and lifestyle recommendations of the NCEP 
and AHA for the prevention of CHD to lower saturated fat 
and cholesterol to that of the TLC diet and increase the 
consumption of fi sh-derived FAs.  
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