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1  | INTRODUC TION

The volatile alkylpyrazines, particularly methyl‐ and methoxypyr‐
azines (MPs) are heterocyclic aromatic, nitrogen‐containing com‐
pounds, which produce odors of diverse biological significance. 
Apart from being important constituents of flavor in food, food 
products, several drinks and wine, numerous pyrazines also show 

antibacterial, and tuberculostatic properties, making them import‐
ant agents in the food processing and the biomedical research in‐
dustry (Bonde, Peepliwal, & Gaikwad, 2010; Maga, 1982). Pyrazines 
are also widespread in nature, with diverse roles ranging from plant 
defense and promotion of plant growth, to serving semiochemicals 
in plant–insect interactions, components of insect sex pheromones, 
and in inter‐specific defenses within fungi (von Beeren, Schulz, 
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Abstract
The volatile alkylpyrazines methyl‐ and methoxypyrazines (MPs) present in the reflex 
bleeds of coccinellid beetles such as the harlequin ladybird beetle Harmonia axyridis 
are important semiochemicals that function in antipredatory defense behavior. 
Pyrazines have also been coadapted from a primarily defensive role into pheromones 
that function in intraspecific communication, attraction, and aggregation behavior. 
However, the biosynthesis of MPs in ladybird beetles is poorly understood. Here, we 
tested the hypothesis that MPs could be produced by microbial symbionts in H. axy‐
ridis, which generates four different MPs. The evaluation of tissue‐specific MP pro‐
duction showed that MP concentrations were highest in the gut tissue and hemolymph 
of the beetles rather than the fat body tissue as the presumed site of MP biosynthe‐
sis. Furthermore, manipulation of gut microbiota by antibiotic‐containing diets re‐
sulted in a lower MP content in adult beetles. The analysis of the bacterial community 
of the digestive tract revealed the presence of bacteria of the genera Serratia and 
Lactococcus which are reportedly able to produce MPs. In line with the known diet‐
dependent production of MP in H. axyridis, we determined that the presence or rela‐
tive abundance of some of the potential MP producers (Enterococcus and 
Staphylococcus) is also diet‐dependent. We hypothesize a potential role of the micro‐
biota in MP production in H. axyridis as a possible example for outsourcing the syn‐
thesis of ecologically important semiochemicals to its gut bacteria.
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Hashim, & Witte, 2011; Murray, Shipton, & Whitfield, 1970; Murray 
& Whitfield, 1975).

In insects, pyrazines are present in diverse orders (Moore, 
Brown, & Rothschild, 1990; Supporting information Table S1). 
Beetles, particularly in the predacious subfamily Coccinellinae 
(Coleoptera: Coccinellidae) containing the two‐spotted ladybeetle 
Adalia bipunctata, the seven‐pointed ladybird Coccinella septempunc‐
tata, the convergent ladybird Hippodamia convergens as well as the 
harlequin ladybird Harmonia axyridis, have evolved to use pyrazine in 
several inter‐ and intraspecific interactions, as allomones or phero‐
mones, which function as deterrents or attractants (Guilford, Nicol, 
Rothschild, & Moore, 1987, Rizzi, 1988, Woolfson & Rothschild, 1990, 
Rothschild & Moore, 1987, Moore et al., 1990, Rowe & Guilford, 
1999, Siddall & Marples, 2008, Verheggen, Vogel, & Vilcinskas, 2017; 
Supporting information Table S2). H. axyridis like other members of 
Coccinellidae releases a noxious exudate from its tibio‐femoral joints 
through a defensive mechanism known as reflex bleeding to deter 
predators. The exudate, which can account for up to 20% of their 
body weight, functions to release several bitter, toxic compounds 
having a characteristic odor, which repel vertebrate and invertebrate 
predators (Daloze, Brackman, & Pasteels, 1994; Hemptinne & Dixon, 
2000; King & Meinwald, 1996; Majerus & Majerus, 1997; Marples, 
1993; Verheggen et al., 2017). The pyrazines form an important class 
of compounds responsible for this characteristic repellent. Several 
dull colored coccinellid beetles show little pyrazine content, whereas 
the aposematic species show relatively higher pyrazines content 
(Cai, Koziel, & O'Neal, 2007; Moore et al., 1990). Thus, there could be 
considerable selective pressure to use pyrazines as warning signals, 
given the substantial energetic costs involved in their synthesis and 
release (Holloway, Jong, Brakefield, & Vose, 1991). Semiochemicals 
in Coccinellidae tracks and feces also act as warning cues leading 
to avoidance behavior and reduction in plant colonization by prey 
animals such as aphids (Ninkovic, Al Abassi, & Pettersson, 2001; 
Youren, 2012). The odor of coccinellid feces also has an influence 
on feeding and oviposition activities of conspecific as well as hetero‐
specific competing female coccinellids (Agarwala, Yasuda, & Kajita, 
2003). The three main groups of MPs found in insects are 2‐isobu‐
tyl‐3‐methoxypyrazine (IBMP), 2‐isopropyl‐3‐methoxypyrazine 
(IPMP), and 2‐sec‐butyl‐3‐methoxypyrazine (SBMP). They are pres‐
ent in diverse species of Orthoptera, Hemiptera, Lepidoptera, and 
Coleoptera (Moore et al., 1990; Supporting information Table S1). 
Besides IBMP, IPMP, and SBMP, the coccinellid beetles H. axyridis 
and C. septempunctata exhibit a fourth distinct MP: 2,5‐dimethyl‐3‐
methoxypyrazine (DMMP) which represents a further component of 
the coccinellid characteristic odor (Cai et al., 2007).

Although the importance of MPs in the ecology of Coccinellinae 
has received considerable attention, little is known about the site 
and mechanism of synthesis/acquisition in these beetles, leading 
to the question as to how the insects acquire these multi‐purpose 
semiochemicals. Several plants, including Pisum sativum, a host 
plant for aphids (on which some coccinellid beetles prey) produce 
MPs (Murray et al., 1970). A direct correlation between MP content 
of plants and those of carnivorous ladybeetles is however not yet 

known. Ladybirds may also gather semiochemicals with additional 
diets such as grapes in autumn (Dunlevy et al., 2010). Additionally, 
MPs could also be sequestered by feeding on pyrazine‐rich prey, 
such as aphids (Kögel, Eben, Hoffmann, & Gross, 2012).

Besides plants, more than 350 microbial volatiles are known to 
be released from bacteria with pyrazines as the most prevalent sub‐
stances (Dickschat, Reichenbach, Wagner‐Döbler, & Schulz, 2005, 
reviewed in Schulz & Dickschat, 2007). The structural similarity of 
some bacterial volatiles to insect pheromones suggests the possi‐
bility of microbial involvement in pyrazine synthesis in the beetles 
(Davis, Crippen, Hofstetter, & Tomberlin, 2013; Dickschat et al., 2005; 
Supporting information Table S3). Since, (a) pyrazines are a major 
group of volatile compounds released by bacteria, and (b) H. axyridis 
MP concentration in adults and larvae is determined by their dietary 
components (Kögel et al., 2012), we hypothesize that a combination of 
diets and gut microbiota affects MP concentrations in the beetles. In 
this study, we test this hypothesis by characterizing the gut microbiota 
of H. axyridis fed on different diets and its effect on the concentration 
of MPs.

2  | METHODS

2.1 | Harmonia rearing

The experiments were conducted with a greenhouse strain of the 
Asian ladybeetle Harmonia axyridis collected from invasive wild 
populations in and around Giessen (Germany) and kept in groups of 
about 50 individuals in cages (60 × 60 × 30 cm) according to Gegner, 
Schmidtberg, Vogel, & Vilcinskas, 2018. Larvae and adults were 
reared on the pea aphid Acyrthosiphon pisum on bean plants (Vicia 
faber var. minor) and maintained under a photoperiod of 16:8 hours 
(L:D) at average temperature of 21°C. For testing the MP concentra‐
tions under diapause‐conditions, we collected adult beetles from ag‐
gregations sites in autumn and spring found in indoor overwintering 
sites and kept them in cages at 4–8°C in the dark.

2.2 | Diets

Harmonia axyridis are polyphagous generalist insects. They are known 
to feed on diverse diets including aphids (along with other insects of 
the suborder Sternorrhyncha), immature stages or eggs of numerous 
invertebrate prey, honeydew, pollen, and fruits like grapes (Berkvens 
et al., 2008; Botezatu, Kotseridis, Inglis, & Pickering, 2013; Galvan, 
Koch, & Hutchison, 2008; Koch, 2003; Roy et al., 2016). They can 
also be reared on eggs of the Angoumois grain moth Sitotroga cereal‐
lella or the flour moth Ephesitia kuehniella (Gegner et al., 2018; Kögel 
et al., 2012; Laugier et al., 2013). To investigate the effect of diet on 
MP synthesis, we fed the beetles with five different plant‐based and 
insect‐based diets. We divided the beetles into five experimental 
groups based on the diets they received. The beetles were offered 
living aphids (group I, aphid), or bisected organic grapes (group II, 
grape). In group III, beetles were provided with 50 µl of 4:1 honey 
syrup (H) diluted with water. In group IV, beetles were fed with a diet 
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containing 500 mg eggs of Sitotroga cerealella mixed with 1 ml honey 
syrup to increase palatability (group IV, HS). In group V, the beetles 
were fed antibiotics through a honey syrup‐egg mass containing 
1:1 tetracycline/ampicillin mix (50 µg/ml, Roth, Germany) (group 
V, HSAB) to study the effect of manipulation of gut microbiota on 
MP concentrations (modified after Hurst, Majerus, & Walker, 1992, 
Noriyuki, Kameda, & Osawa, 2014). Diets were kept at the periph‐
ery of Petri plates that contained moistened filter paper and housed 
adults (females and males) and freshly hatched first instar (L1) larvae. 
The ratio of females to males was retained 1:1. For adults, ad libitum 
food was provided daily for 10 days, while larvae were fed until they 
reached L4 stage or the pupal stage. At the end of the experiment, 
adults and larvae were dissected to remove their entire alimentary 
canal, and the residual body was frozen in liquid nitrogen. Another 
group of L4 larvae was allowed to pupate, and emerging adults were 
frozen 0–24 hr after hatching. The samples were stored at −20°C 
for gas chromatography‐mass spectrometry (GC/MS) analysis and 
stored in 70% ethanol at −80°C for DNA extraction.

2.3 | Identification of gut microbiota

For analysis of the gut microbiome, we used male and female adult 
beetles fed on an aphid or grape diet. Beetles were washed in PBS (pH 
7.2) before dissections. The gut samples were again washed in PBS and 
pooled in 70% ethanol. The residual bodies were also collected in 70% 
ethanol. This procedure was separately performed with females and 
males for two diets (aphids vs. grapes). Thus, we analyzed the follow‐
ing groups: I) guts from males fed on grapes (M‐gut‐gr), II) guts from 
males fed on aphids (M‐gut‐ap), III) guts from females fed on grapes 
(F‐gut‐gr), IV) guts from females fed on aphids (F‐gut‐ap), V) residual 
bodies from males fed on grapes (M‐body‐gr), VI) residual bodies from 
males fed on aphids (M‐body‐ap), VII) residual bodies from females fed 
on grapes (F‐body‐gr), and VIII) residual bodies from females fed on 
aphids (F‐body‐ap). DNA was extracted from pooled samples using 
the PowerSoil DNA extraction kit (MoBio Laboratories, USA) accord‐
ing to the manufacturer's recommended protocol.

To characterize the bacterial gut community, the V1–V3 region 
of the 16S rRNA gene was amplified from total genomic DNA using 
Gray28F and Gray519R primers (Sun, Wolcott, & Dowd, 2011) and 
sequenced using a Roche 454 FLX instrument with Titanium chem‐
istry at an external facility (Molecular Research LP, Shallowater, TX). 
Sequences were quality filtered in QIIME (version 1.8.0; Caporaso, 
Kuczynski, et al., 2010b) using default parameters and denoised 
using Denoiser (Reeder & Knight, 2010). Sequences were quality 
filtered, chimeric sequences were removed, and high‐quality se‐
quences were clustered using the USEARCH (Edgar, 2010) pipe‐
line in QIIME. Taxonomy was assigned using RDP (Wang, Garrity, 
Tiedje, & Cole, 2007) at 80% confidence level using the with the 
Greengenes database version 13_8 (DeSantis et al., 2006) pre‐
clustered at 97% identity. Representative sequences were aligned 
using PyNAST (Caporaso, Bittinger, et al., 2010a), filtered, and a 
phylogenetic tree was constructed using FastTree (Price, Dehal, & 
Arkin, 2010). For downstream analyses, the OTU table was rarefied 

to 15,000 sequences per sample. Data were analyzed in R (Pinheiro, 
Bates, DebRoy, & Sarkar, 2014) and Qiime. Heatmaps were plotted 
using lattice (Sarkar, 2010) in R with OTUs summarized at the genus 
level, and those classified below family level, and with cumulative 
relative abundance <0.1% grouped into “Others.”.

2.4 | GC/MS analysis of MPs

For MP analysis, at least five H. axyridis (larvae and adults), their tissues 
and the diets were individually measured for each experiment. They 
were washed in sterile PBS before they were frozen in liquid nitrogen 
and stored subsequently at −20°C until analysis. Whole gut tissue along 
with residual body tissue was also washed and frozen. Each specimen 
of the different diet groups was thawed, separately weighed using an 
electronic balance, and transferred into a vial. Beetles and larvae were 
macerated with a scoop, and guts were slightly pressed with the tip of 
a pipette. The headspace GC/MS analsyis was modified from Cudjoe, 
Wiedekher, and Brindle (2005). The collected headspace samples were 
analyzed on a GC‐MS system (model 5977B, Agilent, Santa Clara, CA, 
USA) equipped with a UNIS 500 split/splitless injector (JAS, Moers, 
Germany). Compounds were separated on a HP‐5MS Ultra Inert GC 
column (Agilent) with helium as carrier gas. The MS was operated in full 
scan mode (EI Energy: 70 eV, transfer line: 280°C, ion source: 230°C, 
quadrupole: 150°C) and spectra were recorded from m/z 50‐550. 
Signals were integrated in extracted ion chromatograms specific for 
the individual MP (IPMP: m/z 137, 11.1 min; IBMP: m/z 124, 12.5 min; 
SBMP: m/z 138, 12.4 min; IPEP (IS): m/z 166, 12.2 min). Concentrations 
were calculated based on calibration curves generated using the identi‐
cal IS addition and NTD sampling protocol with MP standard dilutions 
and normalized on a ‘per fresh weight’ or ‘per sample’ basis.

2.5 | Microscopy

For light microscopy, guts were dissected while submerged in ice‐
cold PBS (pH 7.2). Prefixation was performed in 2.5% glutaraldehyde 
plus 2% paraformaldehyde in 0.1 M cacodylate buffer (pH 7.4) for 
2 hr. After washing in cacodylate buffer, the samples were post‐fixed 
with 1% OsO4 in 0.1 M cacodylate buffer (pH 7.4) for 1.5 hr, dehy‐
drated through a graded ethanol series and embedded in Araldite. 
Semi‐thin sections were prepared with a Reichert Om/U3 ultrami‐
crotome stained with 0.5% toluidine blue in 0.5% sodium borate. The 
samples were observed under a Leica DM 5000 B microscope.

2.6 | Statistical analysis

Statistical analysis for the different life stages and diets was carried 
out using SIGMAPLOT v. 12.0 (Systat Software Inc., San Jose, CA). 
Significant differences between groups of parametric data were 
determined by one‐way analysis of variance (ANOVA) with a sub‐
sequent Holm–Sidak test. Nonparametric data were analyzed by 
ANOVA on ranks with a subsequent Dunn's test. For the pairwise 
comparison of controls and antibiotic treatments, we used IBM SPSS 
Statistics v23 software (Armonk, USA). Statistical differences were 
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calculated by Mann‐Whitney U test for nonparametric data and 
Student's t test for normally distributed data. Statistical significance 
was defined as a threshold of p < 0.05 (Appendix S1: Supplementary 
Material Part II—Statistical Analysis and Data Set).

3  | RESULTS AND DISCUSSION

3.1 | MP concentrations during life cycle of H. 
axyridis reared on aphid diet

The total MP contents in H. axyridis individuals were affected by 
their life stages. For groups that were exclusively fed with the aphid 
A. pisum, there was an overall increase in total MP concentration in 
their fresh weight. Whereas larval stages showed significantly lower 

concentrations (mean ± SE = 4.192 ± 0.908 pg/mg) than adults 
(24.982 ± 3.356 pg/mg), MP concentrations were comparable be‐
tween newly hatched adults (22.798 ± 2.645 pg/mg), mature adults, 
and adults in diapause (23.364 ± 4.546 pg/mg; Figure 1a; Supporting 
information Table S4). However, total amount of MPs (per sample) 
was lower in diapause‐induced adults (235.943 ± 50.244 pg/mg) 
than in mature adults (403.410 ± 111.993 pg/mg). Generally, the 
egg stage showed relatively higher MP content per mg fresh weight 
(8.115 ± 0.908 pg/mg) than the L4 larvae (4.192 ± 0.5 pg/mg).

The different MPs tested (IPMP, IBMP, and SBMP) varied in 
their relative concentrations across beetle life stages that were 
exclusively fed with A. pisum (Figure 1b; Supporting informa‐
tion Table S4). The most abundant of the three tested MPs was 
SBMP, whose overall distribution over life stages was similar to 

F I G U R E  1   Methoxypyrazine (MP) content in life stages of the ladybird beetle H. axyridis. (a) Total MP content. (b) SBMP (2-sec-butyl-
3-methoxypyrazine) content. (c) IPMP (2-sec-butyl-3-methoxypyrazine) content. (d) IBMP (2‐isobutyl‐3‐methoxypyrazine) content. Gray: 
data for MP pg/mg fresh weight (fw); dark gray: data for MP pg/sample. Life stages of H. axyridis: eggs, last larval instars (L4), beetles 
post hatching without food intake (beetle p.h.), mature beetles (adult beetle), beetles in diapause (beetle diapause). Statistical significant 
differences in values *p < 0.05
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that of the total MP content. In contrast, IPMP constituted a 
relatively smaller proportion of the total MP fraction (Figure 1c; 
Supporting information Table S4). It was the lowest in L4 larvae 
(1.414 ± 0.231) and significantly higher in beetles (newly hatched 
beetle 18.286 ± 1.985 pg/mg, mature beetle 14.769 ± 2.536 pg/
mg, beetle in diapause 17.486 ± 4.870 pg/mg). IBMP concentra‐
tions also constituted a relatively smaller proportion of the total 
MP content. However, contrary to IPMP concentrations, IBMP 
levels were significantly higher in mature adult beetles (pg/per 
mg fresh weight 1.235 ± 0.428, per individual 44.906 ± 13.137) 
as compared to immature beetles. In the latter group, only one 
individual showed a detectable IBMP level. Thus, IBMP levels ap‐
peared more important in the larval stage and in mature adult bee‐
tles (Figure 1d; Supporting information Table S4). Our result that 
L4 larvae of H. axyridis show relatively lower MP production than 

their adult stages corroborates with the experiments by Ninkovic 
et al. (2001) and Moore et al. (1990) which show lower levels of MP 
volatiles in larvae which can produce lower avoidance behavior in 
aphids.

Both non‐diapausing and diapausing beetles produced MPs 
(Figure 1), indicating that the potential aggregating pheromone 
of reflex bleeds are also produced under nonwintering conditions 
(Durieux et al., 2015; Jeanson & Deneubourg, 2009). However, 
these data also indicate the relative proportion of SBMP, IPMP, 
and IBMP differed between non‐diapause and diapause, such that 
a change in the relative proportion within the MP cocktail could 
enable the beetles to use the same set of volatile compounds to 
display different signals under different conditions (Figure 1b–d). 
Diapausing and non‐diapausing A. bipunctata produce the same 
three methoxypyrazines (IBMP, IBMP, and SBMP) regardless of 

F I G U R E  2   Influence of diets on total MP content in mature beetles. Quantification of MP content in gut and residual body (body) of 
male and female H. axyrids. Gray: data for MP pg/mg fresh weight (fw); dark gray: data for MP pg/sample. The following feeding assays were 
performed for 10 days: (a) Aphid diet on Petri dishes. (b) Grape diet. (c) Honey syrup diet. (d) Honey syrup/S. cerealella eggs diet. Statistical 
significant differences in values *p < 0.05; **p < 0.01.
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physiological state, but IBMP (alone or combined with IPMP) can re‐
sult in aggregation and causing diapause (Susset et al., 2013). Since 
adult beetles can secrete MPs through reflex bleeding throughout 
their lifetimes, including during autumnal aggregation, MPs form 
part of a multi‐modal display strategy in H. axyridis. In conjunction 
with other traits such as coloration, gregarious behavior, and reflex 
bleeding that are primarily defensive, MPs have likely been co‐opted 
as aggregation pheromones (Wheeler & Cardé, 2013). MPs are also 
associated with inducing aggregation; for example, A. bipunctata 
spend more time in the vicinity of an MP source when an extract 
containing cuticular hydrocarbons from diapausing individuals was 
present (Durieux et al., 2015; Susset et al., 2013). In H. convergens, 
IBMP has the strongest aggregative effect, whereas beetles aggre‐
gate only in specific doses of SBMP, while IPMP is repellent. IBMP 
is released only by adults that are on target for their overwintering 
locations attaining the diapause (McCord, 2015; Wheeler & Cardé, 
2013). In our experiments, the adult beetles of H. axyridis showed 
the highest IBMP content (pg per mg fresh weight 1.235 ± 0.428, 
per individual 44.906 ± 13.137), whereas diapausing beetles had 
comparatively low amounts (per mg fresh weight 0.307 ± 0.102, per 
individual 11.728 ± 3.779) (Figure 1d; Supporting information Table 
S4). If IBMP also functions in inducing aggregation in H. axyridis, 
these data suggest that the release of IBMP could occur prior to 
beetles entering diapause, when it would function to induce aggre‐
gation among diapausing adults.

Male H. axyridis beetle guts showed higher MP concen‐
trations than females quantified in both fresh weight (males 
11.956 ± 3.424 pg/mg, females 5.783 ± 1.622 pg/mg) and per indi‐
vidual (males 30.640 ± 9.382 pg/mg, females 20.013 ± 4.448 pg/
mg) (Figure 2a; Supporting information Table S4). The magnitude of 
the differences was even stronger in residual body samples (males 
426.478 ± 70.175 pg/mg, females 205.908 ± 34.576 pg/mg) that 
were analyzed after removal of the gut, indicating that beetles carry 
substantial MP content in extra‐intestinal tissue.

3.2 | Source of MPs in ladybird beetles

To investigate the source of MPs in H. axyridis, we explored two 
scenarios through which the beetles could acquire or generate MPs: 
external acquisition through diets, or through autogenous synthe‐
sis. Potential “external” sources include sequestration of compounds 
from their host plants or host prey (such as aphids), or acquisition 
through their microbiota (von Beeren et al., 2011; Dettner, 1987; 
Rothschild, Euw, & Reichste, 1973; Witte, Ehmke, & Hartmann, 
1990).

To test the influence of diet on the MP content of H. axyridis, 
we provided the beetles with plant‐based and insect (prey)‐based 
diets: A. pisum, grapes, honey syrup, and S. cerealella eggs mixed with 
honey (Figure 2). MPs were below the detection level and likely ab‐
sent in all these diets (Appendix S1: Supplementary Material Part 
II—Statistical Analysis and Data Set), and thus, we ruled out these 
diets as a direct source of sequestering pyrazines in beetles. Despite 
this, all three MPs were detected in beetle life stages, and these 

concentrations were influenced on the diets on which they fed, the 
life stage of the beetles and the sex of the adults. Residual body 
tissue showed greater than tenfold increase in total MP content in 
mg/sample in all four diets. Aphid‐fed males (Figure 2a; Supporting 
information Table S4) showed higher MP levels than the females, 
significantly in the residual body (males 22.386 ± 3.552 pg/mg, fe‐
males 8.514 ± 1.437 pg/mg). Generally, aphid‐fed males had higher 
MP concentrations in mg fresh weight (gut 11.956 ± 3.424 pg/mg, 
residual body 22.386 ± 3.552 pg/mg) than grape‐fed male bee‐
tles (gut 7.253 ± 1.411 pg/mg, residual body 11.717 ± 1.641 pg/
mg) (Figure 2b; Supporting information Table S4). On the grape 
diet, the MP contents of females were generally higher than in 
males. Both sexes of beetles with honey syrup diet show higher 
MP amounts in mg/fresh weight particularly in the gut tissue (fe‐
males 21.487 ± 2.692 pg/mg, males 15.384 ± 2.832 pg/mg) in 
comparison to the grape (females 5.741 ± 1.075 pg/mg, males 
7.235 ± 1.411 pg/mg) and aphid diet (females 5.783 ± 1.622 pg/mg, 
males 11.956 ± 3.424 pg/mg) (Figure 2c; Supporting information 
Table S4). The addition of S. cerealella eggs to honey syrup led to the 
highest measured MP levels in the residual body of H. axyridis (pg per 
mg fresh weight 19.251 ± 2.259, per individual 643.689 ± 101.086; 
Figure 2d; Supporting information Table S4).

To further investigate the site of MP synthesis in H. axyridis 
beetles, we used different tissues from dissected beetles that were 
fed on an aphid diet. We isolated the beetles’ hemolymph, fat body, 
muscle, and the alimentary canal to analyze their MP content. We 
found no detectable levels of total MPs in the muscle or the fat body 
(Appendix S1: Supplementary Material Part II—Statistical Analysis 
and Data Set). However, the hemolymph showed the highest con‐
centration of MP content (37.65 ± 2.486 pg/mg fresh weight), which 
was approximately four times greater than MP concentration in the 
alimentary canal (9.07 ± 2.375 pg/mg fresh weight; Appendix S1: 
Supplementary Material Part II—Statistical Analysis and Data Set). As 
a reflex bleeder, it is likely that pyrazines are secreted from the he‐
molymph, facilitating a spontaneous as well as voluminous exudate 
during warning displays. In conclusion, these results indicated that 
MPs were not present in the diets themselves, but were detected in 
gut of the beetles that feed on these diets, with a high prevalence 
in their hemolymph. We therefore hypothesized that the alimentary 
canal is the site of synthesis of the MPs from which they are released 
into the hemolymph, which act as a storage tissue for release during 
reflex bleeding.

We thus ruled out the sequestration of MPs in H. axyridis either 
through plant sources (grapes, honey syrup) or through insect prey 
(aphids and Sitotroga eggs). An MP uptake via other food sources 
could also be excluded, because H. axyridis individuals were exclu‐
sively fed on their assigned diets throughout these experiments. 
Although Moore et al. (1990) examined several insect host plants for 
the presence of alkylpyrazines and found IPMP, IBMP, and SBMPs 
in Asclepiadaceae, Aristolochiaceae, Passifloraceae, Asteraceae, and 
Papaveraceae families, we show here that MP levels were not de‐
tected in grapes that were fed to our experimental beetles. Thus, 
we infer that since beetles could not acquire MPs from their diets, 
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F I G U R E  3   Microbiome analysis of 
gut of Harmonia axyridis. (a) Micrograph 
of bacteria in the lumen of the hindgut 
of a female H. axyridis. b: bacteria; hc: 
hemocoel, hg: hindgut; mu: muscle layer; 
mp: Malpighian tubules. (b) Heatmap 
showing relative proportion of bacteria 
summarized at genus level for male and 
female samples (gut tissue and residual 
body tissue) for adult beetles fed on 
aphid and grape diets. ap: aphid diet; bod: 
residual body tissue; M: males; F: females; 
gr: grape diet. Bacteria highlighted in red 
are presumed to produce MPs

(a)

(b)
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they must synthesize them within their body. This could be achieved 
either by the host themselves, or through the metabolic activity of 
microbial symbionts.

3.3 | The bacteria community of the gut of 
H. axyridis

To investigate the effect of diet on the H. axyridis microbiome, we 
characterized the bacterial community of gut and residual body sam‐
ples of adult beetles that were fed on either aphids or grapes. We 
used two approaches to characterize the effect of diet on the beetle 
microbiome. First, we identified a core bacterial community sepa‐
rately for gut tissue and residual body tissue by identifying OTUs 
(summarized at the genus level) that were present in 100% sample 
replicates for the two categories (irrespective of the diet). Secondly, 
we identified which OTUs were differentially abundant as an effect 
of the diets in the two tissue types.

A total of 14 OTUs were identified as the core bacterial com‐
munity for the male and female gut tissue. These included the gen‐
era Lactococcus, Serratia, and unclassified Enterobacteriaceae and 
Enterococcaceae. The core community for the residual body tissue for 
adults consisted of 35 OTUs consisting Lactococcus, Staphylococcus, 
Serratia, Corynebacterium, Delftia, Pseudomonas, Stenotrophomonas, 
Acinetobacter, Providencia, Methylobacterium, Flavobacterium, 
Comamonas, and several unclassified families. Proteobacteria and 
Firmicutes were the two most dominant bacterial phyla in male and fe‐
male samples (Figure 3). At the species level, some Lactococcus OTUs 
were assigned to L. garvieae, while the most abundant OTU was identi‐
fied as L. lactis (BLAST against the nr database, 98% sequence identity). 
The Serratia OTUs were identified as S. marcescens (BLAST against the 
nr database, 98% sequence identity), and the Enterobacteriaceae were 
identified as Enterobacter hormaechei (BLAST against the nr database, 
98% sequence identity; Table 1).Several OTUs showed differential rel‐
ative abundances based on the tissue sampled and the diets. Although, 

TA B L E  1   Bacterial community of the gut of H. axyridis

Bacteria in gut of H. axyridis
MP production verified in strains or closely 
related strainsPhylum Order Family Genus/species

Firmicutes Bacillales Staphylococcaceae Staphylococcus kloosii Staphylococcus sciuri, S. aureus (Robacker, 
2007; Robacker et al., 1991, 1998)Staphylococcus succinus

Staphylococcus sciuri

Lactobacillales Enterococcaceae Unclassified 
Enterococcaceae

No information

Enterococcus

Enterococcus mundtii

Streptococcaceae Lactococcus Lactococcus lactis subsp. lactis biovar. 
diacetilactis (Heon & Lee, 1991; Lee, 
DeMilo, Moreno, & Martinez, 1995)

Lactococcus lactis subsp. 
lactis

Lactococcus garvieae

Bacillales See Table 2

γ‐Proteobacteria Enterobacteriales Enterobacteriaceae Unclassified 
Enterobacteriaceae

Enterobacter agglomerans (Robacker et al., 
1998, Robacker & Lauzon, 2002, Robacker 
et al. 2007)Enterobacter hormaechei

Serratia sp. Serratia marcescens, S. ficaria, S. rubidea, S. 
odorifera (Gallois & Grimont, 1985)Serratia marcescens

Aeromonodales Aeromonadaceae Aeromonas sp. no information

Pseudomonaldales Pseudomonadaceae Pseudomonas Pseudomonas perolens, P. taetroleus, P. 
aeruginosa (Morgan et al., 1972, Miller et 
al., 1973, Dumont et al., 1983, Gallois et 
al., 1988, Cheng et al., 1991, Cheng & 
Reineccius 1991)

Moxarellaceae Acinetobacter Acinetobacter baumannii (Gao et al., 2016)

Xanthomonadales Xanthomonadaceae Stenotrophomonas Stenotrophomonas maltophilia (Zou et al., 
2007)

α‐Proteobacteria Rhizobiales Methylobacteriaceae Methylobacterium Methylobacterium sp.: diverse pyrazines 
(Balachandran, Duraipandiyan, & 
Ignacimuthu, 2012)

Bacteroidetes Flavobacteriales Flavobacteriaceae Wautersiella no information

Note. Bold: species with already described MP production and the respective references; underlined: core bacteria of the gut of H. axyridis.
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TA B L E  2   “Harmonia” MPs and others produced by bacteria and fungi

Origin—bacteria/fungi Mainly produced pyrazines Reference

Enterobacter agglomerans 
from mouthparts of Anastrepha ludens and 
Rhagoletis pomonella

2,5‐dimethylpyrazine, trimethylpyrazine Robacker et al. (1998), Robacker, Lauzon, and 
He (2004), Robacker and Lauzon (2002)

Cedecea davisae SBMP, 3‐isopropyl‐2‐methoxypyrazine, 
IBMP

Dalamaga and Vrioni (2011), Gallois and 
Grimont (1985)

Serratia ficaria IPMP, 
3‐s‐butyl‐2‐methoxy‐5(6)‐methylpyrazine

S. marcescens 3‐isopropyl‐2‐methoxy‐5‐methylpyrazine, 
2,3,5‐trimethylpyrazine

S. odorifera 3‐isopropyl‐2‐methoxy‐5‐methylpyrazine, 
3‐isobutyl‐2‐methoxy‐6‐methylpyrazine

S. rubidaea 3‐isopropyl‐2‐methoxy‐5‐methylpyrazine, 
3‐s‐butyl‐2‐methoxy‐5(6)‐methylpyra‐
zine, 2,3,5‐trimethylpyrazine, 
2‐ethyl‐6‐methylpyrazine

Citrobacter freundii 2,5‐dimethylpyrazine DeMilo, Lee, Moreno, and Martinet (1996), 
Robacker and Bartelt (1997), Robacker 
(2007)

Klebsiella pneumoniae 2,5‐dimethylpyrazine, 
2‐isopropyl‐5‐methylpyrazine

Martinez, Robacker, Garcia, and Esau (1994), 
Lee et al. (1995), Robacker et al. (2004), 
Robacker (2007), Schulz and Dickschat 
(2007)

Pseudomonas perolens IPMP, SBMP Morgan et al. (1972), Miller et al. (1973), 
Dumont et al. (1983), Cheng et al. (1991), 
Cheng & Reineccius (1991)

Pseudomonas taetrolens IPMP Gallois et al. (1988)

Acinetobacter baumannii 2,5‐dimethylpyrazine Gao et al. (2016)

Stenotrophomonas maltophilia 2,3,5‐trimethylpyrazine, 
2,5‐dimethylpyrazine

Zou et al. (2007)

Staphylococcus aureus 
isolated from A. ludens

2,5‐ dimethylpyrazine Rohbacker and Flath (1995), Robacker et al. 
(1998), Robacker (2007)

Lactococcus lactis subsp lactis biovar. diacetilactis tetramethylpyrazine Heon and Lee (1991), Lee et al. ( 1995)

Bacillus subtilis 2,5‐dimethylpyrazine, 
2,3,5,6‐tetramethylpyrazine

Besson, Creuly, Gros, and Larroche (1997), 
Larroche, Besson, and Gros (1999), Xiao, Xie, 
Liu, Hua, and Xu (2006), Zou et al. (2007), 
Zhu, Xu, and Fan (2009)

Bacillus licheniformes 2,3 dimethylpyrazine, trimethylpyrazine, 
tetramethylpyrazine

Zhang, Wu, and Xu (2013)

Bacillus thuringiensis 2,5‐ dimethylpyrazine Robacker et al. (1991), Robacker et al. (1998), 
Robacker (2007)Bacillus sphaericus 2,5‐ dimethylpyrazine

Bacillus megaterium 2,5‐ dimethylpyrazine

Bacillus popilliae 2,5‐ dimethylpyrazine

Paenibacillus polymyxa tetramethylpyrazine, methylethylpyrazine, 
2,5‐di(propan‐2‐yl)pyrazine, 
2,5diisopropylpyrazine

Beck, Hansen, and Lauritsen (2003), Schulz 
and Dickschat (2007)

Alicyclobacillus acidoterrestris 
isolated from apple juice

IBMP Siegmund and Pöllinger‐Zierler (2006)

Micrococcus luteus 2,5‐ dimethylpyrazine Robacker et al. (1991), Robacker et al. (1998), 
Robacker (2007)

Actinomycetes sp 
isolated from apple juice

IBMP Siegmund and Pöllinger‐Zierler (2006)

Corynebacterium glutamicum tetramethylpyrazine Dickschat et al. (2010)

(Continues)
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OTUs assigned to the genus Lactococcus were present in all samples, 
they showed higher relative abundances in female and male gut tis‐
sue with aphid diets and female gut tissue with grape diet. Serratia 
showed highest relative abundance in male body and male gut tissue 
fed on grapes. Corynebacterium was exclusively found in residual body 
tissue in males and females. Based on the Bray‐Curtis dissimilarity 
measure, the female gut tissues across diets clustered together, indi‐
cating greater similarity in gut microbiomes in females despite feeding 
differences.

The bacteria community composition described here shows 
overlap with the community composition of native H. axyridis (from 
Korea), which consisted of α‐ and γ‐Proteobacteria, Actinobacteria, 
Firmicutes, and Deinococcus–Thermus (Kim, Han, Moon, Yu, & Whang, 
2011; Moon et al., 2011). In contrast, the beetles used in this study 
showed Enterococcus and Lactococcus strains which were not iden‐
tified in samples of native H. axyridis. However, the microbiome of 
invasive H. axyridis from Poland encompassed Lactococcus, but not 
Enterococcus (Dudek, Humińska, Wojciechowicz, & Tryjanowski, 
2017). However, it remains uncertain whether the differences in 
these taxa were an effect of diet.

Some of the bacteria we detected in the gut of H. axy‐
ridis are known producers of methoxypyrazines (Table 1): viz. 
Firmicutes with the genus Lactococcus, and particularly the spe‐
cies Lactococcus lactis subsp. lactis and the species Staphylococcus 
sciuri; γ‐Proteobacteria with the genera Serratia, Pseudomonas, 
Acinetobacter, Stenotrophomonas, and those belonging to the fam‐
ily Enterobacteriaceae. For example, Lactococcus lactis subsp. lac‐
tis, which was highly abundant in male and female beetles in this 
study, produces tetramethylpyrazines (Heon & Lee, 1991). Several 
Serratia species are also known to generate MPs (Dalamaga & Vrioni, 
2011; Gallois & Grimont, 1985; Tables 1 and 2). In the current study, 
Serratia was relatively more abundant in males. It is presumed that 
Serratia strains in the insect digestive tract probably originate from 
plants (Grimont & Grimont, 2006), and it is known that several 
Serratia strains generate potato‐like odors with a combination of 
different pyrazine compounds such as 3‐isopropyl‐2‐methoxy‐5‐
methylpyrazine, 3‐sec‐butyl‐2‐methoxy‐5(6)‐methylpyrazine, and 
3‐isobutyl‐2‐methoxy‐6‐methylpyrazine (Gallois & Grimont, 1985) 
(Table 2). Staphylococcus was detected in male and female tissue of 

beetles feeding on aphids and is also known to produce methoxy‐
pyrazines (Robacker, 2007; Robacker, DeMilo, & Voaden, 1991; 
Robacker, Martinez, Garcia, & Bartelt, 1998). In aphids, S. sciuri is 
known to produce volatile semiochemicals that attract natural en‐
emies. Bacteria of the genus Pseudomonas are known to produce 
IPMP and SBMP (Chen & Reineccius, 1991; Cheng, Reineccius, 
Bjorklund, & Leete, 1991; Dumont, Mourgues, & Adda, 1983; Filipiak 
et al., 2012; Gallois, Kergomard, & Adda, 1988; Miller, Scanlan, Lee, 
Libbey, & Morgan, 1973; Morgan, Libbey, & Scanlan, 1972) and Kim 
et al. (2011) and Moon et al. (2011) also described two Pseudomonas 
strains in native H. axyridis. Bacteria associated with Acinetobacter 
and Stenotrophomonas that were detected in the gut tissue of adults 
feeding on aphids are reported to synthesize pyrazines (Gao et al., 
2016; Zou, Mo, Gu, Zhou, & Zhang, 2007).

3.4 | Role of gut bacteria on the MP production

To investigate the role of gut bacteria in MP production in H. 
axyridis, we fed adult beetles with S. cerealella eggs (containing 
honey) or a HS diet supplemented with ampicillin and tetracycline 
(HSAB) for 10 days (Figure 4). The HSAB‐fed beetles were then 
dissected, and the total MP content was analyzed in their gut tis‐
sue and residual body tissue. Antibiotic‐fed beetles showed lower 
MP concentrations (per mg fresh weight) compared to the control 
beetles, both in residual body tissues as well as in the gut tissues 
(Figure 4a; Supporting information Table S4). There was reduction 
in MP levels in the residual body tissue of antibiotic‐fed males and 
females, but no difference in the gut tissues when MP concentra‐
tions were analyzed per sample (Figure 4b; Supporting informa‐
tion Table S4).

Diets can have considerable impact on MP levels at larval 
stages (Kögel et al., 2012); hence, we analyzed MP concentra‐
tions in larval stages and newly eclosed beetles fed on the HSAB 
diet. HSAB‐fed larvae had lower MP concentration than the con‐
trols, both in the gut as well as the residual body tissue. A stron‐
ger trend was also observed in newly hatched beetles, where 
HSAB‐fed beetles showed significantly reduced MP concentra‐
tions (control beetles 33.622 ± 4.134 pg/mg, HSAB‐fed beetles 
11.329 ± 4.099 pg/mg), also in the gut (control 16.438 ± 4.674 pg/

Origin—bacteria/fungi Mainly produced pyrazines Reference

Chondromyces crocatus 2,5‐dialkylpyrazine, 3‐methoxy‐2,5‐di‐
alkylpyrazine (side‐chains: methyl, 
isopropyl, isobutyl, or sec‐butyl)

Dickschat et al. (2005)

unclassified on fruit surface 2,5‐diisopropylpyrazine Zilkowski, Bartelt, Blumberg, James, and 
Weaver (1999)

unclassified 3,5‐dimethyl‐2‐methoxypyrazine Mottram and Patterson (1984)

unclassified 2,5‐diisopropylpyrazine Zilkowski et al. (1999)

Aspergillus parasiticus IPMP, 2‐hydroxy‐3,6‐di‐sec‐butylpyrazine Buchanan and Houston (1982)

Septoria nodorum IPMP Devys, Bousquet, Kollmann, and Barbier 
(1978)

Note. IBMP: 2‐isobutyl‐3‐methoxypyrazine; IPMP: 2‐isopropyl‐3‐methoxypyrazine); SBMP: 2‐sec‐butyl‐3‐methoxypyrazine.

TA B L E  2   (Continued)
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mg, HSAB 6.077 ± 2.219 pg/mg) and in the residual body tissue (con‐
trol 15.092 ± 2.842 pg/mg, HSAB 4.997 ± 0.872 pg/mg) (Figure 4c; 
Supporting information Table S4). Thus, these data indicate that the 
gut microbiota seems important for MP synthesis, especially in early 
life stages of the beetles. We further show, that dysbiosis (the imbal‐
ance of the microbial gut community) at larval stages, can influence 
MP levels at adult stages, indicating that larval gut community could 
have lifelong influences on the beetles physiology and display signal‐
ing, if the native gut microbiota is disrupted.

4  | CONCLUSIONS

The secretion of repellents containing methoxypyrazines 
through reflex bleeds is an important ecological adaptation in 
several insects, especially in the family Coccinellidae. The in‐
vasive ladybird beetle H. axyridis is known to coadapt multiple 
pyrazines in its reflex bleeds, which function in defense, aggre‐
gation and as warning signals. In this study, we quantified MPs 
in H. axyridis and found that MP concentrations vary across bee‐
tle life stages, sexes, and physiological status. We rule out their 
plant‐based and insect (prey)‐based diets as a potential source 

of these pyrazines, but show several fold higher accumulation 
in adult stages, indicating that beetles generate pyrazines en‐
dogenously or through their microbiota. Further, adults showed 
relatively high MP concentrations in the gut and the hemolymph, 
but not in the fat body or other tissue. Manipulating the gut 
microbiota of larvae with antibiotics significantly reduced MP 
concentrations. Thus, we hypothesize that the gut is the site for 
MP synthesis possibly involving the gut microbiota, from where 
it is transported to the hemolymph for release through reflex 
bleeds. The abundance of bacteria particularly of the genera 
Lactobacillus and Serratia which are known MP producers sup‐
ports this hypothesis.
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