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Abstract. Whereas it has been demonstrated that 
muscle and nonmuscle isoactins are segregated into 
distinct cytoplasmic domains, the mechanism regulat- 
ing subcellular sorting is unknown (Herman, 1993a). 
To reveal whether isoform-specific actin-binding pro- 
teins function to coordinate these events, cell extracts 
derived from motile (Era) versus stationary (Es) 
cytoplasm were selectively and sequentially fraction- 
ated over filamentous isoactin affinity columns prior to 
elution with a KC1 step gradient. A polypeptide of in- 
terest, which binds specifically to/3-actin filament 
columns, but not to muscle actin columns has been 
conclusively identified as the ERM family member, 
ezrin. We studied ezrin-/3 interactions in vitro by 
passing extracts (Era) over isoactin affinity matrices in 
the presence of Ca2+-containing versus Ca2+-free 
buffers, with or without cytochalasin D. Ezrin binds 
and can be released from/3-actin Sepharose-4B in the 
presence of Mg2+/EGTA and 100 mM NaC1 (at 4°C 
and room temperature), but not when affinity fraction- 
ation of Em is carried out in the presence of 0.2 mM 
CaC12 or 2/~M cytochalasin D. N-acetyl-(leucyl)2- 
norleucinal and E64, two specific inhibitors of the 
calcium-activated protease, calpain I, protect ezrin 
binding to B actin in the presence of calcium. 
Moreover, biochemical analysis of endothelial lysates 
reveals that a calpain I cleavage product of ezrin 
emerges when cell locomotion is stimulated in re- 

sponse to monolayer injury. Immunofluorescence anal- 
ysis of leading lamellae reveals that anti-ezrin and 
anti-~-actin IgGs can be simultaneously co-localized, 
extending the results of isoactin affinity fractionation 
of Em-derived extracts and suggesting that ezrin and 
B-actin interact in vivo. To test the hypothesis that ez- 
rin binds directly to B-actin, we performed three sets 
of studies under a wide range of physiological condi- 
tions (pH 7.0-8.5) using purified pericyte ezrin and ei- 
ther o~- or B-actin. These included co-sedimentation, 
isoactin affinity fractionation, and co-immunoprecipi- 
tation. Results of these experiments reveal that purified 
ezrin does not directly bind to ~-actin filaments, either 
in solution or while isoactins are covalently cross- 
linked to Sepharose-4B. This is in contrast to our 
finding that ezrin and ~-actin could be co-immunopre- 
cipitated or co-sedimented from E,~-derived cell ly- 
sates. To explore whether calcium transients occur in 
cellular domains enriched in ezrin and ~-actin, we 
mapped cellular free calcium in endothelial mono- 
layers crawling in response to injury. Confocal imag- 
ing of fluo-3 fluorescence followed by simultaneous 
double antibody staining reveals a transient rise of 
free calcium within ezrin-/3-actin-enriched domains in 
the majority of motile cells bordering the wound edge. 
These results support the notion that calcium and cal- 
pain I modulate ezrin and B-actin interactions during 
forward protrusion formation. 

ECE~qT studies indicate that the contractile protein iso- 
forms play distinct roles in facilitating cell function. 
For the isoactins, there is an emerging literature to 

indicate that this is, indeed, the case (Rubenstein, 1990; 
Herman, 1993a). Three lines of evidence currently exist. 
First, localization studies using isoform-specific antibodies 
reveal that in cells simultaneously expressing muscle and 
nonmuscle isoactins (e.g., myocytes, smooth muscle cells, 
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and pericytes), c~-(muscle) isoactins are largely restricted to 
sarcomeres and stress fibers (Lubit and Schwartz, 1980; 
Herman, 1993b; Herman and Dgtmore, 1985; DeNofrio et 
al., 1989; Otey et al., 1988). In contrast,/3- (nonmuscle) ac- 
tin is positioned in cytoplasm that is actively being remod- 
eled, such as the membrane ruffles and forward protrusions 
(Hoock et al., 1991; Herman, 1993a; Hill et al., 1994). Sec- 
ond, over-expression of/3- versus 3'-nonmuscle isoactins in 
C2 myoblasts results in differential effects on cell surface 
area and morphology, respectively (Schevzov et al., 1992). 
And lastly, cultured cell lines expressing variants of/3-actin 
display such phenotypes as cytochalasin resistance, altered 

© The Rockefeller University Press, 0021-9525/95/03/837/12 $2.00 
The Journal of Cell Biology, Volume 128, Number 5, March 1995 837-848 837 



morphology, and heightened tumorigenicity (Ohmori, 1992; 
Leavitt et al., 1987; Leavitt and Bushar, 1982). These obser- 
vations point to functionally diverse roles for the conven- 
tional actin isoforms and raise questions about the manner 
in which their subcellular segregation is achieved. 

Does mRNA targeting explain the non-random distribu- 
tions of isoactins observed in living cells? Pioneering studies 
demonstrated an association of mRNA with the cytoskele- 
ton, since treatment of ceils with cytochalasin B or RNAase 
A disrupted polysome distribution (Lenk et al., 1977). More 
recently it has been shown that actin mRNA localization can 
be randomized when the cellular actin network is disrupted 
(Sundell and Singer, 1991). mRNA anchoring is not, how- 
ever, disrupted by puromycin or cycloheximide, suggesting 
that nascent polypeptides do not participate in mRNA local- 
ization (Sundell and Singer, 1990, 1991). Insights into isoac- 
tin mRNA targeting have also recently emerged from in situ 
hybridization studies on transfected cells harboring plasmids 
containing reporter genes, which were linked upstream of 
the ~-actin 3' UTR. These results reveal that a ~-actin mRNA 
targeting "address" exists in this non-coding region and 
directs message localization (Kislauskis et al., 1993, 1994; 
Hill and Gunning, 1993). These results could help to explain 
the selective placement of ~-actin mRNA within leading 
lameUae, when locomotion is initiated following injury 
(Hoock et al., 1991; Herman, 1993c). Yet, in spite of this 
documented ~-actin mRNA targeting, evidence is lacking to 
suggest that a cortical, functionally intact translational ma- 
chinery either contributes to the/3-actin found in these distal 
cytoplasmic domains or is sufficient to sequester it within the 
cytoskeletal-plasma membrane interface once nascent poly- 
peptides are produced. 

Mechanisms mediating/3-actin dynamics in non-erythroid 
cells may mirror actin organization in erythrocytes, where 
~-actin is the lone isoform that is expressed (Pinder and 
Gratzer, 1983). In erythrocytes, ~actin is found as short 
oligomers bound by spectrin tetramers near its filament ends 
(reviewed by Bennett, 1985). Protein 4.1 and ankyrin foster 
the formation of this two-dimensional spectrin/actin lattice 
and join it to the plasma membrane via their association with 
integral membrane proteins. In a similar fashion, homo- 
logues of protein 4.1 may act to sequester/3-actin in non- 
erythroid cells. Could ezrin, radixin, moesin, merlin, or 
talin, all of which are protein 4.1 homologues of the ERM 
family of putative tumor suppressor proteins (Tsukita et al., 
1993) help to regulate isoactin dynamics in non-erythroid 
cells? Clearly, ezrin has been localized within membrane 
ruffles and cellular projections (Bretscher, 1983, 1989; Birg- 
bauer et al., 1989), domains that we have previously re- 
ported to be enriched in ~-actin (Hoock et al., 1991; Her- 
man, 1993c). And domain mapping studies predict that the 
COOH-terminal portion of ezrin may associate with the ac- 
tin cytoskeleton (Algrain et al., 1993; Turenen et al., 1994). 
However, in spite of the "historical" co-localization of these 
two proteins, ezrin's role as a bona fide actin-binding protein 
remains controversial since the full length molecule fails to 
bind c~-actin in vitro (Bretscher, 1983, 1991). 

In light of what is known about the biochemical properties 
and localization of/3-actin and ezrin in non-erythroid cells, 
we asked whether ERM family members function to spa- 
tially restrict or sequester/~-actin within cortical cytoplasm. 
To these ends, we used isoactin affinity fractionation to iden- 

tify candidate polypeptides that preferentially or exclusively 
bind to/3- versus c~-actin filaments. Application of cytoplas- 
mic extracts derived from motile cytoplasm (Era: membrane 
ruffles, pseudopods, and leading lamallae) onto isoactin 
affinity columns reveals a population of four to six polypep- 
tides that preferentially associate with/3-, but not c~-actin illa- 
ments. Western blotting of the /3-actin column elutions 
reveals that one of the polypeptides is ezrin. In vitro asso- 
ciation of ezrin and fl-actin occurs in the presence of physio- 
logic salts (KC1, MgCI2) and EGTA, but not in the presence 
of micromolar levels of free calcium or cytochalasin D. The 
calcium-dependent inhibition of ezrin association with 
/3-actin can be reversed with specific inhibitors of the cal- 
cium-activated protease, calpain I, or cytochalasin D. While 
an in vitro association of ezrin and #-actin can be demon- 
strated by co-precipitation of ezrin from Em, ezrin does not 
directly bind to ~-actin since it can neither be co-sedi- 
mented, co-precipitated, nor retained on/3-actin affinity ma- 
trices when the purified molecules are mixed together. Using 
confocal microscopy and the calcium-sensitive fluorescent 
dye, fluo-3, we document transient elevations in cytosolic- 
free calcium occurring in moving regions of cytoplasm 
where/3-actin and ezrin are positioned, and where calpain 
I-mediated ezrin proteolysis can be demonstrated. The com- 
bined results of these biochemical experiments and localiza- 
tion studies suggest that calcium-activated cleavage of ezrin 
from ~-actin could facilitate isoactin dynamics during for- 
ward protrusion formation as advancing cytoplasm is re- 
modelled during cell motility. 

Materials and Methods 

Vascular Cell Culture 
Bovine vascular cell cultures were established as previously published (Her- 
mana and Dg, more, 1985). Bovine retinal endothelial cell (EC) I and peri- 
cyte cultures were grown in DME supplemented with 5 % calf serum, L-glu- 
tamine, and antibiotics; pericytes were cultured through their second 
passage in DME containing 10% calf serum, L-glutamine, and antibiotics. 

Antibodies 
Isoform-specific polyclonal antibodies were raised against ~ vascular 
smooth muscle and nonmuscle (fl) actin and affinity selected as previously 
described (Herman and D~more, 1985; Herman, 1988; Hoock et al., 
1991). Mouse monoclonal anti-ezrin IgG was purchased from ICN Bio- 
medicals (Costa Mesa, CA). Anti-ezrin IgG was a gift from Dr. Anthony 
Bretscher (Cornell University, Ithaca, NY; Bretscher, 1983). One series of 
localization studies was also performed using monoclonal anti-ezrin 
(13H9), provided by Dr. Frank Solomon (MIT, Boston, MA). 

Purification of Actin lsoforms 
Muscle Actin. Acetone powder from chicken skeletal and bovine aortic 
smooth muscle was prepared according to previously published procedures 
(Spudich and Watt, 1971; Herman and Pollard, 1979). Actin was extracted 
from an acetone powder in G buffer (2 mM Tris-HC1, 0.2 mM CaCI2, 0.2 
mM DTT, 0.2 mM ATE 0.02% NAN3) and cycled through one round ofpo- 
lymerization-depolymerization prior to gel permeation chromatography on 
Sephadex G-150. 

Erythrocyte Actin. Erythrocyte acetone powder was prepared as previ- 
ously described (Puszkin et al., 1978), with several modifications. Acetone 
powder was extracted twice using 15 ml G buffer/gram powder for 2 h at 
4°C. After clarification at 27,000 g for 1 h at 4"C, the extract was fraction- 
ated over DEAE cellulose (DE-52; Sigma Chem. Co., St. Louis, MO) 

1. Abbreviations used in this paper: CNBr, cyanogen bromide; DSP, dithio- 
bis(succinimidylpropionate); EC, endothelial cells; LB, lysis buffer. 
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equilibrated with G buffer, and released with a linear gradient of 0.05-1.0 M 
NaCI. Actin eluted from the column between 0.15-0.25 M NaCI. These 
fractions were pooled, concentrated to 4-6 ml, and applied to a 3 c m x  
48 cm Sephadex G-150 column equilibrated with G buffer. Peak actin frac- 
tions were then pooled, and filaments were assembled at room temperature 
in 2 mM MgCI2 and 100 mM KCI. After centrifugation at 100,000 g, 
F-actin was disassembled in G buffer, sterile-filtered, and reehromato- 
graphed on G-150 Sephadex prior to storage on ice. SDS-gel electrophore- 
sis as well as isoelectric focusing of purified actins demonstrate that each 
isoactin pool is greater than 98% pure, both at the level of isoactins and 
with respect to other contaminating proteins. 

Preparatin of F-actin Affinity Matrices 
Isoactins were covalently cross-linked to Sepharose-4B by cyanogen bro- 
mide (CNBr) activation as described (Herman and Pollard, 1979). Briefly, 
20 ml Sepharose-4B was washed three times with deionized water at 40C 
by pelleting/resnspension. Washed Sepharose-4B was resnspended in an 
equal volume of dH20 and allowed to warm to 15°C prior to activation 
with CNBr (0.25 g/ml beads). The pH was held between 10.5-11.0 using 
6 N NaOH for 15 rain, prior to washing (2 liters, 0.1 M Sodium borate, 
pH 8.8). Following dialysis in borate buffer, equal volumes of phalloidin- 
stabilized actin (0.5 mg/ml, 11.6 t~M; 1:4 too|at ratio; phalloidin/actin) and 
washed CNBr-activnted Sepharose-4B were mixed overnight at 40C. Un- 
bound actin was removed by pelleting and resuspension in excess berate 
buffer prior to quenching with 100 mM glycine, 20 mM Tris-HCl, 0.2 mM 
CaC12, pH 7.8, overnight at 4°C. The concentration of bound actin ranged 
from between 4.1 and 5.0 ~M (0.17-0.22) mg/ml. Phalloidin-stabilized 
F-actin bound to Sepharose-4B was either used immediately or stored on 
ice in 20 mM Tris-HCl, pH 7.8, 70 mM KCI, 0.2 mM DTT, 0.2 mM ATE 
0.1 mM CaCl2, 0.02% NAN3. 

Extraction of Retinal Pericytes for 
Affinity Fractionation 
Subconfluent pericyte cultures were washed three times with PBS at room 
temperature prior to extraction for 10 rain at room temperature in lysis 
buffer (LB) (3 ml/106 cells). LB contains either 0.1% Triton X-100 or 34 
mM octyl-glucoside, 40 mM Hepes, pH 7.15, 50 mM Pipes, pH 6.9, 75 mM 
NaCI, 1 mM MgC12, 0.5 mM EGTA, 1 mM PMSF, 0.1 mg/ml pepstatin, 
0.1 mg/ml SBTI, 0.1 mM TLCK, 0.1 mM TPCK, 1 mM TAME, and 2.5 
mM sodium orthovanadate. Alternatively, cells were lysed in LB that con- 
tained either 0.2 mM CaCi2 or 0.2 mM CaCI2 with 0.1 mg/ml calpain in- 
hibitor I (N-acetyl-[leucyl]2-norleucinal; Boehringer-Mannheim Biochem- 
icals, Indianapolis, IN) (Tsujinaka et al., 1988). In other experiments, 
5 tzM E,64 (L-trans-epoxysuceinyl-leueylamido [4-guanidino]butane) (Sigma 
Chem. Co.), another inhibitor of calpain I, was used (Barrett et al., 1982). 
After removal of the Triton-soluble fraction, the Triton-insoluble fraction 
was dissolved using LB containing 0.1% SDS. Fractions were clarified at 
20,000 g, and then dialyzed against three changes of G buffer containing 
either 0.2 mM CaCI2, 0.2 mM MgC12/0.5 mM EGTA, 100 mM NaCI at 
either 0°C or room temperature. Protein content was determined colori- 
metrically (Bio-Rad-Laboratories, Richmond, CA). 

lsoactin Affinity Fractionation 
Lysates (Triton-soluble, 1-2 x 106 cells) that were dialyzed as described 
above were mixed for 4-20 h with muscle-actin Sepharose-4B, either at 4"C 
or room temperature. Unbound protein was collected, split into two equal 
fractions and re-applied to both or- and/~-actin Sepharose-4B. Following ex- 
haustive washing, bound proteins were eluted using a 0.1, 0.5, and 1.0 M 
KCI step gradient. Fractions were collected into chilled tubes, dialyzed 
(versus G buffer), and then lyophilized prior to boiling in SDS-PAGE sam- 
ple buffer containing 10% 2-mercaptoethanol and electrophoresis on 10% 
SDS-PAGE mini gels. Fractions were either directly visualized by silver 
staining or transferred to nitrocellulose for Western blotting with anti-ezrin 
or -actin antibodies using previously described procedures (Herman, 1988; 
DeNofrio et al. 1989). 

Co-immunoprecipitation of Ezrin and Actin from 
Lamellar Extracts 
Retinal pericytes were labelled for 10 h with 85 t~Ci/ml [3SS]methio- 
nine/[35S]cysteine (Translabel; ICN Biomedical), in methionine- and cys- 
teine-deficient DME supplemented with 10% calf serum, glutamine, and 

antibiotics. Media was briefly exchanged with three washes of PBS. To 
stabilize any low-affinity, protein-protein interactions against the detergents 
present in the lysis and immunoprecipitation buffers, cells were treated with 
the thiol-reducible, cross-linking agent dithiobis(suecimmidylpropionate) 
(DSP) (Pierce Chem. Co., Rockford, IL) (0.25 raM) in PBS containing 
0.002 % Digitonin for 10 rain at room temperature. Cells ware washed three 
times with 10 mM Tris-HC1, 150 mM NaCI, pH 7.4, to quench residual 
DSP, prior to lysis in 0.5 ml 0.5% Triton X-100, 40 mM sodium 
pyrophosphate, pH 7.5, 150 mM NaCI, 1 mM EGTA, 1 mld EDTA, 2 mM 
DTT, 5 mM ATP, 5 mM iodoacetamide, supplemented with 0.1 mM PMSF, 
0.1 mg/ml soybean trypsin inhibitor, 0.1 mg/ml pepstatin, 2.5 mM sodium 
orthovanadnte, 0.1 mM TLCK, 0.1 mM TPCK, and 1 m.M TAME (LBi) 
for 10 rain at room temperature. Immunoprecipitation was performed as 
previously described (Yost and Herman, 1990). To ensure loading of sam- 
ples, TCA precipitation was performed on duplicate samples to determine 
incorporation of [~SS]methionine/cysteine into total cell protein, and equal 
counts were loaded. Samples were resolved on 7.5% SDS-PAGE and then 
processed for fluorography (Laskey and Mills, 1975). 

Quantification of Ezrin in Cell Lysates 
To quantify the amount of ezrin present in vascular cell lysates, immunopre- 
cipitation was performed from pericyte Em as described above (Yost and 
Herman, 1990). Immunoprecipitated ezrin was resolved by SDS-PAGE and 
transferred to Immobilon PDVF membrane (Millipore Corp., Milford, 
MA). After staining with 0.1% Coomassie R-250, the ezrin band (as 
identified by parallel Western blotting) was excised and treated with 6 N 
HCI for 24 h at ll0°C. Amino acid analysis was then performed using 
PICO.TAG amino acid analysis sytem (Waters, Milford, MA) in the protein 
analysis facility (Department of Physiology, Tufts University, Boston, MA) 
(Cohen et ai., 1984). The identity of the excised band was confirmed as ez- 
tin by comparing the mole fraction of amino acids present to those predicted 
(Gould et al., 1989). The concentration of ezrin in pericytes was determined 
to be 7.7 pmol/106 ceils. 

Purification of Pericyte Ezrin 
Native, intact ezrin was purified from cultured bovine retinal pericytes es- 
sentially as described (Bretscher, 1983, 1986) with the following modifica- 
tions. 2.5 × 107 cells were lysed in 4 ml LB per 150 mm dish as described 
for isoactin affinity fractionation (see above). Following clarification of the 
ezrin-containing lysate at 27,000 g for 15 rain at 4°C, it was dialyzed against 
three changes of 10 mM imidazole, pH 6.7, 20 mM NaCI, 1 mM DTT, 
and 0.1 mM PMSF at 0°C. The lysate was clarified by centrifugation at 
100,000 g for 30 rain, 4°C prior to application onto a 1.0 × 4.0 cm hydrox- 
ylapatite column pre-equilibrated with 100 mM KH2PO4, pH 7.0. Ezrin- 
containing fractions were eluted with a 40 ml linear gradient of KH2PO4 
(0.1-0.8 M) containing 5/~M E64 to inhibit proteolysis, l-nil fractions were 
collected and analyzed by 10% SDS-PAGE. Ezrin-containing fractions 
were identified by ELISA and subsequently pooled prior to dialysis against 
10 mM Tris-C1, pH 7.5, 1 mM DTT, 0.5 mM EGTA. The pooled fraction 
was re-clarified prior to loading onto a 0.5 x 1.0 cm column of DEAE cellu- 
lose (DE-52; Sigma Chem. Co.) equilibrated in 10 mM Tris. pH 7.5, 1 mM 
DTT, 0.5 mM EGTA. Fractions were ehited with a linear NaC1 gradient 
(0-0.2 M). Ezrin elutes in the middle of the gradient (0.1 M NaCI). Ezrin 
purity was assessed by SDS-PAGE, and judged to be >92% pure by den- 
sitometry. Its identity was also confirmed by Western blotting (see above). 
Purification of ezrin by this affinity isolation procedure yielded a 1,000-fold 
enrichment where 15-20 t~g of ezrin could be purified from 15 nag of start- 
ing material. Ezrin was stored in 10 mM Tris-C1 pH 7.5, 1 mM DTT, 20 
mM NaC1, 0.5 mM EGTA~ 0.02% NaN3 on ice. 

Interaction of Pericyte Ezrin with Gel-filtered lsoactins 
Co-sedimentation Analysis. Gel-filtered (0.5 #M) skeletal muscle (or) and 
erythrocyte (B) actin were assembled separately into filaments following a 
second round of polymerization. Actin assembly proceeded in the barrel of 
a 1-cc syringe at 37"C for 30 min prior to shearing through a 25-gauge nee- 
dle. This yielded many foreshortened filaments, maximizing the number of 
filament ends. Filament lengths prior to shearing were 3.7 + 0.65/~m, and 
following shearing were 0.75 + 0.2/~m as measured by negative stain trans- 
mission electron microscopy. 290 t~l of sheared filaments were added to 
prewarmed microfuge tubes containing 10 td of either F-actin buffer or 40 
~g/ml ezrin. Either ezrin-containing lamellar lysates or purified ezrin was 
mixed with isoactin filaments by rotation for an additional 30 rain at either 
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room temperature or 37°C. The mixtures were then pelleted by centrifuga- 
tion at 110,000 g in a Beckman TLA 100.2 rotor (Beckman Instruments, 
Palo Alto, CA) for 35 min at 15°C. The supernatants were removed, and 
the proteins present in the supernatant and pellet fractions quantitatively 
precipitated using 3 vol of ice cold ethanol (100%). Protein pellets were 
dried in a Speedvac (Savant, Farmingdale, NY), and re-solubilized in boil- 
ing SDS-PAGE sample buffer. Supernatant and pellet fractions were ana- 
lyzed by 10% SDS-PAGE and Western blotting (DeNofrio et al., 1989). 

lmmunoprecipitation of Ezrin-Actin Complexes. Twice-polymerized 
isoactin filaments were incubated with pericyte ezrin as described above. 
Anti-a~tin IgG-coated Atflgel beads (Bio-Rad Laboratories, Richmond, 
CA) were prepared exactly as described (Yost and Herman, 1990). Ez- 
rin-actin (1:300 molar ratio; ezrin/actin) mixtures were incubated with 
anti-actin IgG-coated affigel beads at a 4 molar excess of IgG to actin for 
3 h at room temperature. Immunoprecipitates were washed three times by 
pelleting, and resuspension in F-actin buffer prior to boiling in SDS-PAGE 
sample buffer and Western blotting for ezrin using mouse monoclonal 
anti-ezrin IgG (ICN Biomedicals) and alkaline phosphatase-conjugated 
goat anti-mouse IgG (Bio-Rad Laboratories). 

lsoactin A~inity Fractionation of Purifwd Ezrin. To further assess 
whether purified pericyte ezrin could bind directly to the isoactin affinity 
columns, 0.5 ~g ('~106 cell equivalents) ezrin in G buffer (with 0.2 mM 
MgClz, 0.5 mM EGTA, 5:100 mM NaC1) was mixed with 0.5 ml of 5 #M 
(c~ or #) actin Sepharose-4B in a fashion identical to that described for 
affinity fractionation of Era. Isoactin Sepharose-4B-ezrin mixtures were in- 
cubated for 3 h at room temperature, and the unbound fractions were col- 
lected. Columns were washed, and bound protein eluted with 1 M NaC1. 
Protein present in the unbound fractions and 1.0 M NaCI elutions were 
quantitively precipitated (with ethanol), and probed for the ezrin by Western 
blotting. 

Simultaneous Localization of Ezrin and B-Actin by 
Double Antibody Staining 
Bovine endothelial cells were plated at confluence, injured with a fire- 
polished pasteur pipet and allowed to recover for 60 rain at 37°C, and then 
were fixed and processed for indirect immunofluoreseence according to pre- 
viously published procedures (Hoock et al., 1991). For ezrin localization, 
2 #g/ml affinity-purified, rabbit anti-ezrin IgG (Bretscher, 1983) or 5 #g/ml 
monoclonal anti-ezrin IgG (ICN Biomedicals) were used. For anti-/~-actin 
IgG localization, 5-50 ~g/ml affinity-selected antibodies were used (Hoock 
et al., 1991). Cells processed for co-localization were viewed using either 
an Odyssey laser scanning confocal microscope (Krypton-argon laser; No- 
ran Instruments, Middleton, WI) or a Zeiss IM 35 inverted fluorescent mi- 
croscope equipped with a 50 W Hg lamp and a Zeiss planapochromat oil 
immersion objective lens (NA 1.4). Confocal images were stored in TIF 
files (Metamorph; Universal Imaging, West Chester, PA), and fluorescence 
micrographs were recorded with Tri-X film (Herman and D'Amore, 1985). 

Localization of Free Calcium in Motile 
Endothelial Cells 
To examine calcium transients in migrating cells, resting endothelial 
monolayers were injured in the presence of 5 #M Fluo-3 as described above 
(Molecular Probes, Eugene, OR). Coverslips with cells attached were then 
mounted on a warmed chamber slide and allowed to recover 30-120 rain 
at 370C on the confocal microscope stage. Image capture, processing and 
quantification was accomplished using Metamorph (Universal Imaging, 
West Chester, PA). Coverslips with cells attached were then processed for 
simultaneous anti-ezrin and anti-~-actin indirect immunofluorescence. Ez- 
rin and/3-actin images were paired and scaled using Optimas (Bioscan In- 
corperated, Edmonds, WA) and Adobe Photoshop (Adobe Systems Incor- 
porated, Mountain View, CA). To record the frequency of Ca 2+ transients 
in the leading lamellae of motile cells, random fields of cells bordering the 
v~und edge were selected by transmitted light microscopy, and the inci- 
dence of Fluo-3 fluorescence was recorded for 100 cells per experiment 
(n = 3). 

Results 

lsoactin Affinity Fractionation: Identification of 
{3-Actin-binding Proteins 
Our earlier work revealed a selective, non-random distri- 

bution of ~-actin and its encoding mRNA within the for- 
ward protrusions of locomoting endothelial cells and fibro- 
blasts recovering from monolayer injury (Hoock et al., 
1991). Since then, we have tested whether retention of lo- 
cally translated or recently transported B-actin (to the 
membrane-associated, cortical cytoskeleton) is dependent 
upon/~-actin-specific binding protein(s). To this end, we 
prepared Sepharose-4B columns containing homogeneous 
pol:ulations of phalloidin-stabilized actin filaments purified 
from either skeletal muscle (o~; chicken), vascular smooth 
muscle (or; bovine) or erythrocytes (8; bovine or human). 
Sequential fractionation of extracts derived from spreading 
cytoplasm (Era) over these isoactin affinity matrices af- 
forded an opportunity to identify putative or- and/or/3-actin- 
specific binding proteins (bABPs). 

Based on the solubility properties of the isoactin network 
present in mobile projections (DeNofrio et al., 1989; Ruben- 
stein, 1981), we presumed that bABPs would also be present 
in F_~, associated with their respective isoactins using ei- 
ther 34 mM octyl-glucoside or 0.1% Triton X-100. When 
Em (250 #g/ml) (Fig. 1, lane 1 ) is percolated over 5 /xM 
a- (skeletal or smooth muscle) actin columns, 4 % of the pro- 
tein pool (10 izg bound/ml o~-actin Sepharose-4B) is retained. 

Figure I. Affinity selection of fl-actin-binding proteins. Retinal 
pericytes were lysed in a buffer containing 0.1% Triton X-100 (as 
described in Materials and Methods). Following dialysis to remove 
detergent, lysate (lane 1 ) was applied to skeletal muscle-Sepha- 
rose-4B (o~-actin). Bound proteins were eluted using 1 M KC1 (lane 
2). The flow-through (lane 3) was re-applied to erythrocyte ac- 
tin-Sepharose-4B (/3-actin) (in the presence of 0.2 mM MgCI2/0.5 
mM EGTA [lane 4] or 0.2 mM CaCI2 [lane 5]), and bound pro- 
teins eluted with 1.0 M KCI (lanes 4 and 5).  The eluted fractions 
were resolved on 10% SDS-PAGE gels and visualized by silver 
staining. 
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Following exhaustive washing, bound proteins are released 
with 1.0 M KCI (Fig. 1, lane 2). Inclusion of 100 mM NaCI 
in the dialysis and affinity fractionation buffers does not alter 
the constellation of polypeptides eluted (data not shown). 
SDS-gel electrophoresis and silver staining reveals between 
20-22 polypeptides present in fractions released from 
ot-actin-Sepharose-4B. These include several in the lower 
(34, 37/38, 40/43, 51, 53 kD), middle (69/73, 78, 98, 100, 
105/107, 118 kD), and high molecular weight ranges (200, 
250 kD) (Fig. 1, lane 2). Western blotting of these polypep- 
tides electrophoresed and transferred to nitrocellulose indi- 
cate that myosin II, fodrin (a chain), and caldesmon (low and 
high molecular weight isoforms) are amongst the actin- 
binding proteins that can be released from o~ skeletal and 
~-smooth muscle actin Sepharose-4B. While these actin- 
binding proteins share identical elution profiles from c~- and 
/3-actin affinity columns, dot blot overlay analysis reveals that 
one polypeptide, p34 calponin, preferentially binds illa- 
ments of smooth muscle actin (Shuster, C. B., I. M. Herman, 
manuscript in preparation). 

When the flow-through fraction (Fig. 1, lane 3), which is 
not retained on c~-actin-Sepharose-4B, is reapplied to 5 #M 
~-actin-Sepharose-4B, only 1.5-3 % of the total Em protein 
pool (4-7.5 t~g bound/ml ~-actin-Sepharose) is retained (Fig. 
1, lane 4). Silver staining of this fraction reveals 11 polypep- 
tides, 5 of which were present in the a-actin-binding frac- 
tions (Fig. 1, lane 2). The remaining six polypeptides prefer- 
entially bind and can be released from fl-actin Sepharose-4B 
(Fig. 1, lane 4). These include polypeptides of 35, 65, and 
doublets of 70-73 and 80/83 kD. These bABPs can be 
released from the fl-actin affinity columns using 1.0 M KC1 
(Fig. 1, lane 4). While inclusion of 100 mM NaC1 in affinity 
fractionation buffers does not affect the binding of these 
bABPs, inclusion of 0.2 mM CaCI2 reduces or obliterates 
the association of two polypeptides, most notably those poly- 
peptides at 65 and 80/83 kD (Fig. 1, lane 5). 

Ezrin Present within Lamellar Extracts Specifically 
Associates with ~, but Not ~-Actin Filaments: Calcium 
Sensitivity and Calpain Activation 

Ezrin, along with other ERM family members, has been 
localized within the cortical cytoskeleton; but intact, native 
ezrin does not bind muscle actin in vitro (Bretscher, 1983, 
1989; Birgbauer and Solomon, 1989). Therefore, we wished 
to explore whether ezrin was one of the ~-actin-specific 
binding proteins present in the 65-85 kD elutions isolated 
from/3-actin Sepharose-4B. After probing this Era-derived 
fraction with monoclonal or polyclonal anti-ezrin IgGs, we 
see that ezrin does not bind parallel ot-actin columns. How- 
ever, ezrin present in the a-actin Sepharose-4B flow-through 
specifically binds and can be released from fl-actin columns. 
With a KC1 step gradient, 20 % of the bound ezrin is released 
with 0.1 M KCI, 78% with 0.5 M, and 2% with 1.(3 M KC1. 
Since >198% of the bound ezrin can be released with 0.5 M 
KC1, 1.0 M KC1 was used for all further experiments to strip 
fl-actin columns of associated ezrin (Fig. 2). 

When Em lysates are fractionated in the presence 0.2 mM 
CaC12, the immunoreactive ezrin species is barely detect- 
able, even in the 1.0 M KC1 releasates derived from either 
or- or fl-actin affinity columns at 4°C or room temperature 
(Fig. 2, lanes 4 and 5; respectively; Table I). Based on den- 
sitometric analyses, there is roughly a 20-fold difference in 

Figure 2. Calcium-calpain I regulates fl-actin-ezrin interactions. 
Lamellar lysates were absorbed over cf-actin Sepharose-4B, and the 
flow-through was re-applied to parallel ct- and /~-actin affinity 
columns. To test the effects of divalent cations on the association 
of ezrin and fl-actin, extracts were prepared, and subsequent isoac- 
tin affinity fractionation was performed in the presence of 0.2 mM 
CaCI2 (lanes 4 and 5), 0.2 mM MgCI2/0.5 mM EGTA (lanes 8 
and 9), or Mg2÷/EGTA with 100 mM NaCI (lanes 10 and 11). 
Further, to examine whether the interaction of ezrin and I$-actin 
was regulated by calpain I, lysates were derived and isoactin affinity 
fractionation performed in buffers containing 0.2 mM CaCI2, 
which also included 5 #M E64, a specific inhibitor of calpain I 
(lanes 6 and 7). Finally, to assess whether ezrin-binding to/3-actin 
occurred via the ends of the isoactin filament or along their lengths, 
phalloidin-stabilized isoactin filaments covalently attached to 
Sepharose 4B were treated with 2 #M cytochalasin D prior to per- 
colatin of lamellar extracts over isoactin columns (lanes 12 and 13). 
Proteins bound and eluted from isoactin affinity columns were 
resolved on 10% PAGE gels, transferred to nitrocellulose, probed 
with 1 #g/ml anti-ezrin IgG, and visualo_r..xl with 1 #g/ml goat 
anti-rabbit IgG-horseradish peroxidase. (Lane 1 ) Lysate prepared 
in the presence of 0.2 mM CaCI2. (Lane 2) Lysate prepared in the 
presence of 0.2 mM MgCI2/0.5 mM EGTA. (Lane 3) Lysate pre- 
pared in the presence of 0.2 mMCaCI2 with 5 I~M E64. (Lane 4) 
a-actin-Sepharose eluted with 1 M KCI. (Lane 5) fl-actin-Sepha- 
rose eluted with 1 M KCI. (Lane 6) a-actin-Sepharose eluted with 
1 M KCI. (Lane 7)/3-actin-Sepharose eluted with 1 M KCI. (Lane 
8) tx-actin-Sepharose eluted with 1 M KC1. (Lane 9) #-actin-Seph- 
arose eluted with 1 M KCI. (Lane 10) t~-actin-Sepharose eluted 
with 1 M KCI. (Lane 11 ) ~-actin-Sepharose elnted with 1 M KCI. 
(Lane 12) fl-actin-Sepharose eluted with 0.5 M KC1. (Lane 13) Cy- 
tochalasin D-pretreated/3-actin-Sepharose eluted with 0.5 M KC1. 

ezrin released (from f3-actin columns) when affinity fraction- 
ation is performed in the presence of EGTA (n = 7) versus 
Ca 2+ (n = 7) (Fig. 2, lane 9; Table I). Ezrin-/3-actin inter- 
actions are maintained when calcium is chelated, and under 
low (G buffer) or near physiologic (100 mM NaCI) salt con- 
centrations (Fig. 2, lane 11 ). Under all of these experimental 
conditions, ezrin binding to parallel skeletal or smooth mus- 
cle actin columns is not measurable (n = 14) (Fig. 2, lanes 
4, 6, 8, and 10). 

To learn whether the effect of calcium on the association 
of ezrin with B-actin is via calcium-activated proteases, Em 
lysates were derived and fractionated in the presence of 0.2 
mM CaClz with or without peptide inhibitors of the neutral 
cysteine proteases, calpain I, and calpain II. A report in the 
literature has indicated that calpain I catalyzes a limited pro- 
teolysis of ezrin, yielding a major species of 55 kD (Yao et 
al., 1993). Indeed, western blotting reveals a 55-kD break- 
down product (ezrin p55) present in E~, prepared in the 
presence of 0.2 mM CaCI2 (Fig. 2, lane I ) ,  which in- 
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Table L Quantitative Analysis of [3-actin-Ezrin Interactions 

20oc 4°C 

Percent control* Molar ratio:~ Percent control Molar ratio Percent control Molar ratio Percent control Molar ratio 

Ca 2+ 5.6 0.24 5.8 0.23 3.4 0.13 ND§ ND 
Ca2÷/E64 61 2.40 ND ND 57 2.24 ND ND 
EGTA 100 3.94 10 0.39 59 2.34 ND ND 
EGTA/IO0 mM NaC1 75 2.94 ND ND 55 2.17 ND ND 

* Percentage of ezrin released from ~l- and a-actin-Sepharose-4B affinity columns in the presence of EGTA. Ezrin was identified by western blotting as described 
in Materials and Methods. Bands were quantified by whole band analysis using a Bioimage electrophoresis analyzer (Millipore Corp.). 

Molar ratios ezrin/actin (× 104). The amount of ezrin present in column elutions was calculated as a fraction of a known standard (unfractionated lysate; 7.7 
pmol/l(P cells); and the molar ratio determined by the moles ezrin bound/mole actin Sepharose-4B, where the concentration of actin conjugated to Sepharose-4B 
is 5 #M. 
§ ND = not detectable. 

creases with cell motility (see Fig. 5). We cannot detect ezrin 
p55 when lysates are prepared in the presence of  EGTA (Fig. 
2, lane 2), nor in any of  our 1 M KC1 elutions from a- or 
l}-actin affinity columns (Fig. 2, lanes 2-13). Ezrin-iS-actin 
interactions can be sustained in the presence of  0.2 mM 
CaCI2 when either of the two calpain I-specific inhibitors, 
E64 (L-tmns-epoxysuccinyl-leucylamido[4-guanidino]bu- 
tane) or calpain inhibitor I (N-Ac- [leucyl]2-norleucinal) are 
included in the extraction and affinity fractionation buffers 
(Barrett et al., 1982; Tusjinaka et al., 1988) (Fig. 2, lane 7; 
Table I). 

(Fig. 3, lane 2). In addition to the ezrin and ~-actin present 
in the co-precipitates, there is one prominent band at 45 kD, 
and another at approximately 73 kD (Fig. 3, lane 1, asterisk), 
which is most likely p73 seen in the 1.0 M releasate from the 
~-actin column (Fig. 1, lane 4). The 45-kD polypeptide is 

Cytochalasin D Inhibits Association of Ezrin with 
/3-actin Sepharose-4B 

To test whether ezrin binding to/3-actin occurs via the ends 
or along the sides of the/3-actin filament, we next asked if 
cytochalasin D treatment of  phalloidin-stabilized /3-actin 
filament matrices could prevent ezrin's association. When 
ezrin-containing E~ are percolated over j3-actin-Sepharose- 
4B columns in the presence of 2 #M cytochalasin D, ezrin 
binding to/3-actin is completely blocked (n = 4) (Fig. 2, lane 
13). The CD inhibition of  ezrin binding is reversible, since 
ezrin and bABP binding to ~3-actin Sepharose-4B is restored 
when CD is washed from the column. This indicates that 
the effect is not due to CD-induced depolymerization of  the 
actin filaments. Electron microscopy of  negatively stained 
phalloidin-stabilized actin filaments treated with 2 #M CD 
also confirms that cytochalasin D is not depolymerizing ac- 
tin from the affinity columns (Shuster, C. B., unpublished 
observations), but does not rule out the possiblity that an- 
other /3-actin-specific binding protein is responsible for 
mediating the CD-sensitive/3-actin capping/ezrin associa- 
tion (see below) (Figs. 8 and 9). 

Association of Ezrin and [3-actin In Vivo: 
Co-precipitation Using Covalent Cross-linkers 

To reveal whether an ezrin-/3-actin complex could be iso- 
lated from living cells, co-immune precipitation was em- 
ployed. To stabilize ezrin-/3-actin interactions prior to cell 
lysis, biosynthetically labeled cells were treated with DSP as 
described (see Materials and Methods). Fluorographic anal- 
ysis of immune precipitates electrophoresed on 7.5 % poly- 
acrylamide gels reveals that/3-actin and ezrin can be co- 
precipitated using anti-actin IgG (Fig. 3, lane 1). Ezrin 
cannot, on the other hand, be co-precipitated from the DSP 
cross-linked, ct-actin-containing stress fiber fraction (Es) 

Figure 3. Co-precipitation of ezrin and B-actin from DSP cross- 
linked cytoplasm. Retinal pericytes were labeled with 85 #Ci/ml 
[35S]methionine/[35S]cysteine for 10 h. Cells were washed three 
times with PBS prior to treatment of 0.25 mM Dithiobis[succini- 
midylpropionate] (DSP) in PBS/0.005 % digitonin for 10 rain. Lysis 
and immunoprecipitation were performed on Triton-soluble (lanes 
1 and 3) and SDS-soluble (lanes 2 and 4) fractions as described 
(Yost and Herman, 1990). Precipitates were washed, solubilized in 
SDS-PAGE sample buffer. Samples were resolved on 7.5 % SDS- 
PAGE, and processed for fluorography. (Top arrow) Ezrin; (Bottom 
arrow) actin; (Asterisk) lO73 (lane 1). (Lanes 1 and 2) Anti-actin 
immunoprecipitates from Triton-soluble (lane 1 ) and SDS-soluble 
(lane 2) lysates. (Lanes 3 and 4) Anti-ezrin immunoprecipitates 
from Triton-soluble (lane 3) and SDS-soluble (lane 4) lysates. 
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an electrophoretic variant of actin (confirmed by Western 
blotting), and the 73 kD species is novel and under study. 

Ezrin and f3-Actin are Co-localized within Leading 
LameUae and Rearward Protrusions 

Because ezrin associates specifically with/~-, but not tx-actin 
filaments in vitro, we examined whether the proteins are co- 
localized within cells. We turned to our "wound healing" 
model, where we have already demonstrated that/~-actin and 
its encoding mRNA are rapidly recruited and retained within 
the advancing protrusions of crawling cells, which migrate 
in response to monolayer injury in vitro (Hoock et al., 1991). 
Using affinity-selected anti-fl-actin IgG and monoclonal 
anti-ezrin IgG, we can simultaneously localize ezrin and 
/3-actin within the distal reaches of advancing protrusions 
and in membrane veils undergoing rapid ruffling (Fig. 4). 
Broad fan lamellae that slowly extend forward as well as 
rearward regions that are released from contact inhibition 
are also/~-actin and ezrin-rich (data not shown). Bright foci 
of ~-actin and ezrin (1.32 + 0.4 #m 2) can also be seen 
within the ventral aspects of forward protrusions behind the 
leading edge, and in apical projections that move centripe- 
tally toward the nucleus (Fig. 4, A and B). These co-local- 
ization patterns are independent of the nonmuscle cell type 
studied, i.e., in each case, ezrin and ~-actin are exclusively 
seen within the membrane-cytoskeletal interface and are 
particularly prevalent within domains that engage in cyto- 
plasmic remodelling, either during cell locomotion or pro- 
trusion formation. 

Ezrin Proteolysis Is Elevated in Motile Cells 

Based on results of isoactin affinity fractionation experi- 
ments where Ca2÷-activated calpain I modulates ezrin-/3- 

actin interactions, we wished to determine whether such a 
mechanism might be in place in crawling cells. To these 
ends, extracts were derived from populations of stationary 
endothelial cells and those undergoing a uniform, migratory 
response to injury. Confluent monolayers of endothelial cells 
were injured with a rake that creates concentrically uniform, 
denuded zones that are 400-600 #m in width (Herman, 
1993c). Following injury and during the recovery (motile) 
phase, cultures were lysed and probed for the presence of in- 
tact and ezrin p55 with polyclonal anti-ezrin IgG. Western 
blotting reveals the accumulation of ezrin p55 by 30 min af- 
ter injury, which persists through the motile, wound-healing 
phase (Fig. 5). During post-injury motility, ezrin p55 levels 
are 14-18-fold greater than at the time of injury. 

Cytosolic-free Calcium Is Transiently Elevated within 
Ezrin and #-Actin-enriched Cytoplasmic Domains 

Results from the isoactin affinity fractionation, co-immune 
precipitation and antibody localization studies indicate that 
ezrin and /~-actin interact in a calcium-sensitive fashion. 
Could local elevations in free calcium be found in ez- 
rin-actin-rich cytoplasmic domains during the migratory re- 
sponse to injury in vitro? Using fluo-3 and confocal micros- 
copy qualitative assessments of free calcium transients were 
made in endothelial cells recovering from injury in vitro. 
Image analysis of fluo-3 fluorescence across the injured 
monolayer reveals that cells crawling at the wound edge pos-' 
sess a threefold greater level of free calcium than those cells 
within the resting monolayer, which are 7.5-8 cell diameters 
from the injury site (Fig. 6). Within forward protrusions, 
bursts of fluo-3 fluorescence emerge and then disappear as 
moving cytoplasm advances along the wound edge. Bright 
perinuclear and organellar fluorescence can also be seen. 

Figure 4. ~actin and ezrin are co-localized in leading lamellae. Bovine endothelial ceils were plated at confluence onto glass coverslips. 
Monolayers were injured as described and allowed to recover for 60 min at 37"C prior to fixation and permeabilization (Hoock et al., 
1991). Cells were stained simultaneously with affinity-selected anti-/~-actin IgG (detected with rhodamine-Iabeled goat anti-rabbit IgG) 
(.4) and monoclonal anti-ezrin IgG (detected with fluorescein-labeled goat anti-mouse IgG) (B). Bar, 10 t~m. 
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Figure 5. Ezrin proteolysis is 
elevated in motile cells. Bo- 
vine endothelial cells, which 
are plated at confluence, are 
injured as described (Her- 
man, 1993c). Cells are al- 
lowed to recover from 0-90 
min after injury. Lysates are 
then prepared from crawling 
or control cells. Lanes 1-4, 
Western blot, anti-ezrin IgG. 
Arrow indicates the emer- 
gence of ezrin p55, the cal- 
pain I-generated proteolytic 
breakdown product. (Lane 1 ) 
Control, no motility (0 time). 
(Lane 2) 30 min after injury. 
(Lane 3) 60 min after in- 
jury. (Lane 4) 90 min after 
injury. 

Within live cell cultures, 45% + 2.18 of fluo-3 fluorescence 
is observed as discrete focal domains occupying 2.7 + 2 
/~m 2. In other cells 12% 5:2.33 of the fluo-3 fluorescence 
is diffuse, extending back from the wound edge, enveloping 
the entire cortex and occupying roughly 67 + 28.8 t~m 2. In 

9 % of cells bordering the wound edge, the entire cytoplasm 
is filled with a low level of fluo-3 fluorescence. 

Following confocal imaging of fluo-3 fluorescence in live 
cell cultures, we mapped regions of overlap between free cal- 
cium, ezrin and fl-actin by fixing the identical cultures and 
preparing them for double antibody staining. Co-localiza- 
tion reveals that fluo-3 fluorescence maps to within 70% + 
2.5 of the ezrin- and B-actin-rich domains (Fig. 6). Quan- 
titative analysis reveals that ezrin is localized within 2.6 + 
1.8 #m of the leading edge (n = 38), and is found exclusively 
in the cortex (Fig. 6). /g-actin is present within the ezrin 
"shell," extending only 1.57 + 0.77 #m from the leading edge 
(n = 38) (Fig. 6). Fluo-3 fluorescence envelops the entire 
ezrin-/3-actin-rich zone, leaving a statistically significant 
area of overlap of ~1.35 t~m. A t-test reveals that non-overlap 
between ezrin and free calcium is not statistically significant 
(P = 0.427). 

Pericyte Ezrin Does Not Directly Bind #-Actin 
Filaments In Vitro 

Co-sedimentation and Co-immunoprecipitation. To ad- 
dress whether ezrin binds B-actin filaments directly or 
through other components, we mixed homogeneous prepara- 
tions of ezrin with c~- or/3-actin filaments in vitro. 0.5 I~M 
hydroxylapatite- and DE-52-purified pericyte ezrin (Fig. 7) 

Figure 6. Simultaneous map- 
ping of free calcium in ez- 
rin-#-actin-rich cytoplasmic 
domains. Bovine endothelial 
cells were plated at confluence 
and injured in the presence of 
5 ~M Fluo-3. Cells were al- 
lowed to recover for 25 min at 
37°C, prior to mounting on a 
warmed chamber slide. Fluo-3 
fluorescence was monitored 
by confocal microscopy, and 
qualitative differences in free 
calcium levels are shown in A 
as a histogram of fluo-3 
fluorescence observed in cells 
bordering both sides of the 
wound edge, with each peak 
representing the fluorescence 
of a single cell along its x-axis. 
Cortical-free Ca z+ in cells 
bordering the wound edge are 
shown in B. Following image 
capture, cells were fixed and 
processed for ezrin (C) and 
/~-actin (D) localization. Bar, 
10 ~m. 
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Figure 7. Purification of peri- 
cyte ezrin. (Lanes 1-3) Coo- 
massie brilliant blue R-250. 
(Lane 4) Western blot, anti- 
ezrin IgG. Em extracted from 
subconfluent cultures of bo- 
vine retinal pericytes (lane 1 ) 
was chromatographed over 
hydroxylapatite as described 
in Materials and Methods. 
Ezrin-enriched fractions were 
pooled (lane 2) and re- 
chromatographed over DEAE 
cellulose. The 0.1 M NaC1 
fraction eluted from the 
column contains purified ez- 
rin (lane 3) as confirmed by 
Western blotting using rabbit 
anti-ezrin IgG (lane 4). 

were mixed together with either 0.5 #M c~- or/3-actin under 
physiological ionic conditions and over a pH range (7.0-8.5) 
prior to sedimentation of actin filaments at 110,000 g. Taking 
into account our earlier isoactin affinity fractionation data 
indicating that ezrin putatively binds to the barbed end of the 
~-actin filament (Fig. 2, lane 13), affinity-purified pericyte 
ezrin (8-16 nM) was combined at ratios that were 5-10-fold 
greater than the estimated number of free isoactin filament 
ends. Examination of soluble and pellet fractions reveals that 
ezrin cannot be co-sedimented with either or- or/~-actin fila- 
ments under any condition (n = 12) (Fig. 8). Further, as we 
have demonstrated that ezrin present within lamellar lysates 
associates with/~-actin-Sepharose 4B, it can also be shown 
that ezrin sediments with fl-actin when this isoactin is added 
to the lamellar lysate (Fig. 8). Increasing actin concentra- 
tions or altering the incubation temperature/time yielded 
identical results (data not shown). As an alternative, perhaps 
more sensitive means of assessing these protein-protein in- 
teractions, we again employed our actin antibodies to co- 
precipitate ezrin/isoactin complexes from these purified pro- 
tein mixtures. Western blotting of actin immunoprecipitates 
indicates that ezrin cannot be detected in the immunoprecipi- 

tates of either or- or/~-actin filaments pre-incubated in the 
presence of ezrin (data not shown). 

lsoactin AJfinity Fractionation. As a final assessment of 
whether ezrin binding to/~ actin is direct, we applied purified 
ezrin to the isoactin Sepharose-4B columns under experi- 
mental conditions identical to those we had initially estab- 
lished as being supportive for the/3-actin-ezrin interactions 
described in Fig. 2. Western blotting of the unbound fraction 
as well as the material released with 1.0 M NaCI indicates 
that ezrin does not directly bind to either a-or ~-actin affinity 
columns, while control experiments using Em containing 
ezrin reaffirms our earlier results, which suggest that ezrin 
binding to B-, but not ot-actin is specific, indirect, and most 
likely to be mediated through other accessory protein(s) 
(Fig. 9). 

Discussion 

We have been able to conclusively demonstrate that ezrin, 
one member of the recently discovered ERM family of puta- 
tive tumor suppressor proteins (Tsukita et al., 1993), inter- 
acts specifically with ~-, but not ot-actin filaments. Further, 
this association is sensitive to calcium, through the action of 
calpain I. The in vitro association between/$-actin and ezrin 
is not only consistent with their co-localization within distal 
reaches of forward protrusions, but is also supported by the 
transient increase of cytosolic free calcium within the ez- 
rin-/3-actin-enriched cell cortex. In addition, we find that 
when cells undergo a migratory response to injury and posi- 
tion both ezrin and/3-actin in leading lameUae, ezrin proteol- 
ysis is elevated. Co-immune precipitation of ezrin from 
E~-derived lysates using actin antibodies confirms both the 
morphological and biochemical observations and suggests 
that the two proteins are, indeed, interactive in vivo. How- 
ever, co-sedimentation, co-precipitation, and isoactin affin- 
ity fractionation experiments reveal that a direct interaction 
between ezrin and ~-actin is unlikely, since homogenous, na- 
tive preparations of ezrin fail to bind either isoactin under 
any experimental condition tested. The results of these 
studies suggest that ezrin most likely interacts with a ~-actin- 

Figure 8. Co-sedimentation analysis 
of ezrin-actin interactions. Ezrin 
was incubated alone or in the pres- 
ence of filamentous (0.5 #M, a or/~) 
actin prior to pelleting by centrifuga- 
tion (middle, purified Ezrin). Alter- 
natively, the identical experiment 
was performed using lamellar ex- 
tracts (right, Era). Supernatant (S) 
and pellet (P) fractions were ana- 
lyzed by Western blotting with 
anti-ezrin IgG. Actin polymerized 
and pelleted in the absence of ezrin 
is shown (left, Coomassie brilliant 
blue R-250 staining). Molecular 
weight markers in kD are shown). 
The addition of ezrin does not 
influence the amount of actin 
sedimented. 
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Figure 9. Affinity fractionation of 
purified pericyte ezrin. Pericyte ez- 
rin (le3~ panel) was incubated with 
ct-or #-actin Sepharose-4B under 
conditions described for affinity 
fractionation of F_~-derived lysates 
(Figs. 1, 2 and right panel). For 
controls ,  Em was percolated over 
ct- or ~-actin Sepharose-4B follow- 
ing its pre-absorbtion over ct-actin 
Sepharose-4B (right panel). Col- 
umns were washed and eluted as de- 
scribed, and the protein that re- 
mained unbound, or that which was 
released with 1.0 M NaCI was 
probed by Western blotting with 
anti-ezrin IgG (lanes 1-4, both 
panels). (Lane/) Unbound fraction 
from c~-actin Sepharose-4B. (Lane 2) 
1.0 NaCI elution from c~-actin 
Sepharose-4B. (Lane 3) Unbound 
fraction from/3-actin Sepharose-4B. 
(Lane 4) 1.0 NaCI elution from 
/~-actin Sepharose-4B. 

specific binding protein, and that proteolytic modification of 
ezrin dissociates it from the ~-actin filament complex. 

Ezrin Association with F-Actin Isoform Specificity 

Binding of ezrin of F-actin is currently controversial. Origi- 
nally, ezrin was not considered to be an actin-binding pro- 
tein, as it did not associate with muscle actin in vitro 
(Bretscher, 1983, 1991). More recently, it has been reported 
that ezrin does contain an actin-binding domain at its COOH 
terminus. Independent expression of this decapeptide dem- 
onstrates that it possesses a strong affinity for both skeletal 
muscle and cytoplasmic actin (Turenen et al., 1994). Our 
data suggest that the actin-binding activity of the expressed 
COOH-terminal domain may not reflect the behavior of the 
intact, native ezrin molecule, since we could not detect any 
binding of skeletal muscle actin, and no direct association 
with/~-actin. 

In our hands, only ezrin contained with cell lysates (de- 
rived from moving cytoplasm) associates with ~-, but not 
~-actin filaments in vitro (Fig. 2, 8, and 9). Purified, intact 
ezrin does not bind to either isoactin affinity columns or na- 
tive filaments when the identical experiments are performed 
with purified molecules (Fig. 9). Co-sedimentation and 
-immunoprecipitation experiments designed to detect direct 
binding between affinity-purified ezrin and/~-actin filaments 
fail to reconstitute this interaction (Fig. 8). This suggests that 
one or more polypeptides present in the lamellar lysates, 
which do not bind ~-actin, potentiates ezrin binding to the 
~-actin filament. There are five possible polypeptides eluting 
from ~-actin affinity columns along with ezrin (Fig. 1 ) that 
might be responsible for such an interaction. Co-precipita- 
tions of ezrin and 5-actin (from labeled cell lysates) contain 
a polypeptide of '~73 kD (Fig. 3), which does not bind to 
~-actin and is also present in the ~-actin column releasates 
(Fig. 1). It is possible that ezrin binds p73, which in turn caps 
the barbed end of the/~-actin filament. That cytochalasin D 

blocks ezrin binding to/3-actin when p73 is present suggests 
that this is, indeed, the case. 

Morphological studies examining actin interactions with 
the plasma membrane have reported that actin is joined to 
the plasma membrane at its ends and along its sides (Luna 
and Hitt, 1993). End-on associations of actin filaments with 
the plasma membrane have been described in several model 
systems, including the intestinal epithelial cell brush border, 
where bundled arrays of actin filaments terminate at the 
plasma membrane via their barbed ends (reviewed by 
Bretscher, 1991). The pointed ends of actin filaments have 
also been shown to interact with the plasma membrane in the 
advancing front of nerve growth cones (Lewis and Bridg- 
man, 1992). Lateral associations of actin filaments with the 
plasma membrane have also been documented. In Dic- 
tyostelium, actin filament-membrane interactions are medi- 
ated through an integral membrane protein, ponticulin 
(Wuesteuhube and Luna, 1987). Ponticulin organizes actin 
by binding the sides of filaments, but this binding is not 
isoactin-specific. Our own immunoelectron microscopic ex- 
amination of/~-actin filament organization in leading lamel- 
lae and other forward protrusions indicates that short 
stretches of 13-actin filaments (7-10 molecules in length) ter- 
minate at the plasma membrane. From these anti-~-actin 
IgG-decorated nuclei, undecorated ~,-actin-containing fila- 
ments could extend (Shujath, J., and I. M. Herman, unpub- 
lished observations). Our biochemical data, which indicates 
that cytochalasin D blocks the interaction of ezrin/p73 with 
~-actin in vitro (Fig. 2), suggests that the ezrin/p73 complex 
associates at or in close approximation to the fast growing 
end of the/~-actin nucleus, at the plasma membrane (Figs. 
2 and 3). Indeed, studies using fluorescent derivatives of ac- 
tin in permeabilized cell models suggest that a regulated, 
barbed-end capping activity exists at the tips of lamellipodia 
(Symons and Mitchison, 1991). Collectively, these data 
point to a possible role for ezrin in tethering a/3-actin fila- 
ment capping complex at the plasma membrane. However, 
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more work is required before the details of these putative 
events are understood. 

Ca 2+-activated Proteolysis Regulates 
Ezrin-C3-Actin Interactions 
Our results performing isoactin affinity fractionation in the 
presence of calcium and/or calpain-specific inhibitors reveal 
that ezrin undergoes a calpain I-mediated cleavage, and this 
abolishes its ability to associate/~-actin in vitro (Fig. 2). And 
in vivo, there is an accumulation of the ezrin p55 proteolytic 
breakdown product as cells polarize and crawl in response 
to monolayer injury. This is not the first report indicating that 
modulation of protein-protein interactions can occur by 
calcium-activated proteolysis. During platelet activation, lo- 
cal elevations of intracellular calcium induce an autolytic 
cleavage of calpain I, activating the protease (Saido, 1992). 
In its activated state, calpain I is localized at the plasma 
membrane, where it acts on filamin and fodrin (Fox et al., 
1985; Saido et al., 1993). Also, activation of erythrocyte cal- 
pain I (with ionophores) results in protein 4.1 and spectrin 
degradation (Hayashi et al., 1991). More pertinent to our 
findings are indications that calpain I mediates the limited 
proteolysis of parietal cell ezrin both in vitro and in vivo. In 
vivo, calpain I-mediated degradation of parietal cell ezrin 
results in the inhibition of proton secretion (Yao et al., 
1993). Based on these findings, we postulate that/3-actin- 
ezrin interactions may be regulated via a calpain-mediated 
cleavage. The calpain-mediator turnover of ezrin, as well as 
other cytoskeletal components, may facilitate the remodel- 
ling of the actin cytoskeleton, and allow for new monomer 
addition at the plasma membrane within forward protru- 
sions. Our observations that cytosolic-free calcium is tran- 
siently elevated in forward protrusions and that ezrin pro- 
teolysis is also elevated in motile cells lends credence to this 
notion (c.f. Figs. 5 and 6). 

It should be pointed out that elevations in free calcium 
have been carefully monitored in single crawling cells using 
ratio imaging analysis (Hahn et al., 1992; Brundage et al., 
1991). Results reveal that the highest free calcium concentra- 
tion is present in the trailing, contracting portion of the cell 
(Hahn et al., 1992; Brundage et al., 1991). Based on this 
work, it has been proposed that elevated free calcium leads 
to myosin R-mediated contraction of the posterior 
cytoplasm, therein providing a protrusive force propelling 
cytoplasm and actin monomers forward for polymerization at 
the leading lamellae (Gough and Taylor, 1993). However, 
computer-assisted analysis of endothelial motility following 
injury reveals a deliberate, sheet-like migration of the 
monolayer where pseudopodial and lamellar extension occur 
in the absence of any significant rearward contraction (Askey 
and Herman, 1988; Herman, 1993b). All of these observa- 
tions are consistent with our present work, which reveals that 
calcium is transiently elevated within leading lameUae in the 
majority of cells surveyed along the wound edge (Fig. 6). 
This temporal and spatial rise and fall of free calcium in dis- 
crete cytoplasmic domains may dictate where calpain I could 
cleave ezrin and release/3-actin for barbed end assembly. It 
will be important to reveal whether p73 is not capable of 
binding ezrin after Ca2÷/calpain-mediated cleavage or it p73 
dissociates from the/3-actin filament with ezrin p55. Current 
studies are focused on these open questions. 
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