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Spinal manipulation (SM) is a manual therapy technique frequently applied to treat musculoskeletal disorders because of its
analgesic effects. It is defined by a manual procedure involving a directed impulse to move a joint past its physiologic range of
movement (ROM). In this sense, to exceed the physiologic ROM of a joint could trigger tissue damage, which might represent
an adverse effect associated with spinal manipulation. The present work tries to explore the presence of tissue damage associated
with SM through the damage markers analysis. Thirty healthy subjects recruited at the University of Jaén were submitted to a
placebo SM (control group; n = 10), a single lower cervical manipulation (cervical group; n = 10), and a thoracic manipulation
(n = 10). Before the intervention, blood samples were extracted and centrifuged to obtain plasma and serum. The procedure was
repeated right after the intervention and two hours after the intervention. Tissue damage markers creatine phosphokinase (CPK),
lactate dehydrogenase (LDH), C-reactive protein (CRP), troponin-I, myoglobin, neuron-specific enolase (NSE), and aldolase were
determined in samples. Statistical analysis was performed through a 3 x 3 mixed-model ANOVA. Neither cervical manipulation
nor thoracic manipulation did produce significant changes in the CPK, LDH, CRP, troponin-I, myoglobin, NSE, or aldolase blood
levels. Our data suggest that the mechanical strain produced by SM seems to be innocuous to the joints and surrounding tissues in
healthy subjects.

1. Introduction

Spinal manipulation (SM) is a common form of intervention
used by a wide range of practitioners used to relieve pain and
disability of the musculoskeletal system. A precise definition
of SM is still under review. The SM is frequently defined as a
manual procedure that involves a directed impulse to move a
joint past its physiologic ROM without exceeding its anatom-
ical limit [1, 2]. Although its effectiveness has been demon-
strated in some spinal syndromes such as [3, 4], several
studies show concomitant organic complications with the
application of cervical spinal manipulation (CSM) [2, 5, 6].

Mild to moderate adverse effects occur in a large proportion
of patients receiving spinal manipulation [7]. Although the
majority of the adverse effects are transient and nonserious
[7], severe adverse events such as cerebrovascular accidents
and paraplegia have been associated with SM [8]. These
injuries are typically described following an upper-back CSM.
Although some authors have proposed that, in the presence
of a marked degree of atherosclerosis, the mechanical stret-
ching and compression effects of rotational manipulative
techniques [9] may impose a further risk factor not only for
vertebrobasilar insufficiency but also for lesions of the endo-
thelium [10], recent studies suggest that SM may induce less
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arterial strain than the range of motion test when cervical
rotation is examined [11].

Therefore, there are controversial data about the possi-
bility of CSM inducing pathological mechanical stress that
might in turn provoke vascular and neurological accidents
[11-14]. Some evidence supports thoracic spinal manipulation
(TSM) as an alternative to CSM to relieve pain and disability
in the cervical spine [15]. There is no evidence of serious adv-
erse events related to TSM. Given this situation, it is necessary
to determine whether spinal manipulation is an innocuous
technique.

Several proteins have been widely used in medicine as
markers of tissue damage. These damage biomarkers are cell
proteins or enzymes normally located inside specific cells.
The detection of these proteins in serum and cerebrospinal
fluid is a tell-tale of cell breakage produced by tissue damage.
Proteins like creatine phosphokinase (CPK), lactate dehydro-
genase (LDH), aldolase, myoglobin, and troponin-I [16] have
been described as tissue damage markers in conditions such
as strenuous exercise, brain injury, and heart damage [16-21],
when altered levels of theses markers were detected in blood
samples. CPK [22] and myoglobin [16] are the most widely
used blood parameters for the detection of striated muscle
injury although other parameters seem to be more sensitive
to the difference between cardiac muscle and skeletal muscle
damage. In this respect, the skeletal muscle troponin-I sub-
unit may be an earlier and more suitable marker for skeletal
muscle damage than CPK [23] and it is widely used as a mus-
cle damage maker after strenuous exercise [24].

On the other hand, neuron-specific enolase (NSE) is also
a glycolytic enzyme, which occurs in neurons and axons and
is an appropriate marker for neuronal damage [25].

Finally, C-reactive protein (CRP) is a widely employed
systemic marker of inflammation and tissue damage [26].

The aim of this preliminary study is to determine the pos-
sible noxious effects of spinal manipulation. To the extent of
our knowledge, this is the first work that focused on the study
of SM and mechanically induced tissue damage through the
analysis of damage biomarkers in blood samples.

2. Methods

2.1. Design Overview. It is randomized repeated-measures
controlled trial.

2.2. Setting and Participants. The study was approved by the
Ethics Committee of the University of Jaén (Spain), and all
subjects provided written informed consent. A total of 40
healthy students from the University of Jaén were previously
selected for this study. Subjects who had one or more of the
following conditions were excluded from the current study:
contraindication to manipulation, history of whiplash or
cervical surgery, pain related to cervical spine or arm in the
previous month, subject under pharmacological treatment,
subject who has practice strenuous exercise 7 days prior to
the experiment, headache in the previous days, having under-
gone spinal manipulative therapy in the previous 2 months,
or loss of standing balance. Information about eating and
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physical exercise habits was obtained from participants after
the experiment was conducted.

2.3. Randomization and Intervention. A number was assign-
ed to each participant by an external consultant, who did not
have any further involvement in the research. After that, a
list of random numbers ranging from 0 to 30 was generated
by Microsoft Excel software. The first ten numbers of this
list were assigned to the control group, the next ten numbers
to the cervical manipulation group, and the last ten to the
thoracic manipulation group. Randomization was done by
an external assessor who did not participate in the research.

Thoracic SM technique involved a high-velocity, end-ran-
ge, anterior-posterior force through the elbows to the middle
thoracic spine (T3-T4) on the lower thoracic (T4-T5) spine in
a supine position with patient’s arms crossed. In the cervical
manipulation, a high-velocity, midrange left rotational force
to the midcervical spine (C4) on the lower (C5) cervical spine
in supine, with left rotation and right side bending.

Control participants were treated following the cervical
manipulation protocol with regard to hand contact, but with-
out intention of mobilization, nor application of tissue ten-
sion by the treating clinician.

The time devoted to HVLA thrust manipulations in the
intervention groups and that to the simulated procedures in
control group were similar, in order to minimize the potential
for an attention effect. All the researchers were blinded to the
therapist’s intervention.

2.4. Blood Extraction. Serum samples were extracted before
intervention, right after intervention, and two hours after
manipulation by venipuncture of the cephalic vein using a
Vacutainer system (Becton-Dickinson, United Kingdom).
Blood was collected in two different tubes for both serum
(BD Vacutainer SST II Advance, ref. 367953) and plasma (BD
Vacutainer LH PST II Advance, ref. 367374) separation. After
blood extraction, tubes were let stand at room temperature
for one hour until the blood clotted. Afterwards, tubes were
centrifuged for ten minutes at 2000 g (Avanti J-30I, Beckman
Coulter, USA). Supernatant was collected from the tubes.
Three serum aliquots were done for the determination of
CPK, LDH, CRP, aldolase, and NSE. Plasma was divided into
two different aliquots for troponin-I and myoglobin assay. All
the aliquots were kept at —80°C until used.

2.5. Outcomes and Follow-Up. CPK, LDH, and aldolase ser-
um concentrations were calculated by enzymatic assay in an
OLYMPUS AU5400 Analyzer (Beckman-Coulter, USA). Tro-
ponin-I levels were measured through chemiluminescence
(Dimension EXL, Siemens, Germany), as was neuron-specific
enolase (LiasonAnalyzer, Dia-Sorin). CRP concentration was
determined by turbidimetry assay (OLYMPUS AU5400 Ana-
lyzer, Beckman Coulter, USA). Myoglobin was determined by
means of enzymatic immunoassay (Dimension EXL, Siem-
ens, Germany). All the assays were carried out in the Ciudad
de Jaén University Hospital following the manufacturer’s pro-
tocol.
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» Pharmacological treatment (n = 3)
« Strenuous exercise (n = 2)
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|

|
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Analyzed (n = 10) |

| Analysis ||Follow-up || Allocation |

FIGURE I: Flowchart diagram of the study.

2.6. Statistical Analysis. Continuous variables were described
by means and standard deviation, and categorical variables by
frequencies and percentages. Kolmogorov-Smirnov was used
to verify the normal distribution of continuous variables in
the groups, and Levene’s test was used to confirm the homo-
scedasticity of the samples. One-way analysis of variance
and Chi-squared test were used to prove comparability on
sociodemographic baseline values. To prove the effect of the
independent factor (control, thoracic, or cervical manipu-
lation) on the dependent variables (blood concentrations)
at each time point (pretreatment, zero hours posttreatment,
and two hours posttreatment), a mixed-model ANOVA was
employed. The hypothesis of interest was the group-by-time
interaction. A separate 3 x 3 mixed-model ANOVA was
applied for each dependent variable. In order to measure the
effect size, eta-squared and Cohen’s d were used for group-
by-time effect and pairwise comparisons, respectively. For
Cohenss d interpretation an effect size of 0.2 was considered
small, 0.5 moderate, and 0.8 large [27]. Demographic and
experimental data were treated with the software SPSS 19.0
(IBM, USA) and MedCalcl2.7 (MedCalc, Belgium). All of
the analyses were performed with a 95% confidence interval
(P < 0.05).

3. Results

Of the 40 patients screened in the University of Jaén, a total of
30 subjects met the inclusion criteria and agreed to participate
in the study. Ten participants were randomly assigned to each
treatment group. Demographic data are displayed in Table 1.
Figure 1 shows the flowchart depicting participant recruit-
ment and retention. No differences were observed between
groups at baseline measures. Only CPR shows a difference in
the limits of significance. No vitamin supplementation was

reported by the participants. They followed the Mediter-
ranean diet [28] and had a sedentary lifestyle [29].

Descriptive data for all dependent variables in each group
for each time point are shown in Table 2. Mixed-model
ANOVA failed to reveal a group-by-time interaction in any
of the dependent variables (P > 0.05). Effect sizes, measured
with eta-squared, were small for all dependent variables and
the interaction never explained more than 12% of the variance
(Table 2). The higher effect was apparent for LDH (11.2%) and
the smaller was shown for aldolase (1.9%).

The pairwise comparisons between control and both the
thoracic and cervical manipulation groups show a result in
the limits of statistical significance only for the comparison
between control and thoracic groups in CRP at zero hours
posttreatment and for myoglobin at two hours posttreatment
(Table 3). However, these statistical significances have no real
meaning because of the lack of statistical significance of the
ANOVA. Nevertheless, the effect sizes could be considered
high (d > 0.8) for the comparison between the control
and the thoracic groups for CRP in all time points and for
myoglobin at two hours posttreatment. In the comparison
between control and cervical manipulation groups, only the
effect size for myoglobin at two hours posttreatment could
be considered high (Table 3). Troponin-I data are not shown
because the value for the subjects was zero in all the time-
point and groups.

4. Discussion

Spine manipulation (SM) is a manual therapy technique com-
monly applied, which presents benefits for patients such as
an anti-inflammatory effect [30], pain relief, and reduction of
drug consumption [31]. However, some studies have propos-
ed a noxious effect of SM application. In this sense, the reports
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TABLE 1: Sociodemographic characteristics and baseline measures of the groups.
Characteristic Control Thoracic Cervical P-value
n=10 n=10 n=10
Age” (years) 27.60 + 3.22 29.80 + 3.52 28.60 + 3.99 0.195
BMI* 21.45 + 2.38 23.98 +3.97 2317 +2.94 0.206
Weight* (Kg) 66.60 + 8.47 73.70 + 14.33 71.20 +12.19 0.528
Height" (m) 1.72 £0.07 1.75 + 0.06 175 +0.12 0.301
CPK" (U/L) 74.90 +17.21 72.00 +13.73 65.10 + 14.78 0.353
LDH" (U/L) 276.03 + 57.30 297.20 + 52.66 275.90 + 43.40 0.573
Enolase* (ng/mL) 9.48 +1.81 9.09 +1.50 9.57 +3.26 0.887
CPR" (mg/L) 1.41 +1.00 0.56 + 0.30 1.48 +1.16 0.056
Aldolase* (U/L) 3.09 + 1.60 3.10 £ 1.06 313 +1.02 0.998
Myoglobin® (ng/mL) 50.76 + 31.39 36.80 +10.81 35.40 + 20.87 0.262
Gender' Male 6 60.0% 50500% 5 50.0% oo
Female 4 40.0% 5 500% 5 50.0%

BMI: body mass index; CPK: creatine phosphokinase; LDH: lactate dehydrogenase; CRP: C-reactive protein.
*Continuous variables are expressed as a mean + standard deviation. P values correspond to one-way ANOVA test.

T Categorical variables are expressed as frequencies and percentages. P values correspond to Chi-squared test.

TABLE 2: Blood concentrations for all groups at each follow-up period. Statistical significance and effect size for group-by-time interaction.

Pre-T Post-0 H Post 2H P value Fta?
Mean + SD Mean + SD Mean + SD

Control 74.90 +17.21 74.10 + 1712 74.40 + 16.57

CPK (U/L) Thoracic 72.00 + 13.73 72.10 +16.00 7110 +19.09 0.425 0.065
Cervical 65.10 + 14.78 65.20 +16.29 68.10 + 16.38
Control 276.03 + 57.30 283.43 + 44.29 268.11 + 47.02

LDH (U/L) Thoracic 297.20 + 52.66 294.70 + 52.69 289.80 + 67.36 0.167 0.112
Cervical 275.90 + 43.40 276.00 + 28.20 302.80 + 82.64
Control 9.48 +1.81 8.90 +1.24 8.86 +1.29

Enolase (ng/mL) Thoracic 9.09 + 1.50 9.52 + 1.41 9.42£2.95 0.235 0.100
Cervical 9.57 +3.26 9.23 +1.97 11.57 + 6.17
Control 1.41 +1.00 1.61 +1.02 1.53 +1.19

CPR (mg/L) Thoracic 0.56 + 0.30 0.50 + 0.27 0.50 + 0.30 0.486 0.058
Cervical 1.48 +1.16 1.48 +1.22 1.47 + 1.15
Control 3.09 +1.60 3.36 + 1.37 3.50 + 1.57

Aldolase (U/L) Thoracic 310 +1.06 323 +125 317 +1.37 0.859 0.019
Cervical 313 £1.02 3.29 +0.90 3.63+1.38
Control 50.76 + 31.39 5218 + 23.63 70.20 + 43.56

Myoglobin (ng/mL) Thoracic 36.80 + 10.81 38.30 + 10.80 36.60 + 10.60 0.312 0.083
Cervical 35.40 + 20.87 35.80 +19.62 39.10 +22.19

Pre-T: pretreatment values; Post-0 H: values 0 H after intervention; Post-2 H: values 2 H after intervention; CPK: creatine phosphokinase; LDH: lactate

dehydrogenase; CRP: C-reactive protein.

on its effects on inducing tissue injuries are controversial, as
it has been related to adverse events [7, 12, 32, 33]. The liter-
ature points at catastrophic manual-therapy-induced adverse
events being dependent on tissue damage. In this sense,
the detection of some proteins in blood samples has been
revealed as useful in some musculoskeletal and neurological
conditions [34-36] to detect tissue damage. Thus, the present
work is focused on the determination of biological dam-
age markers in blood samples after a cervical or a thoracic

manipulation, in order to corroborate whether or not spinal
manipulation causes measurable tissue damage.

Adverse events from manual therapy range from the cata-
strophic, such as cervical artery dissection producing a
stroke, through bruising to muscle soreness that could be
regarded as a minor, and expected, consequence of treatment
[37]. Rubinstein et al. reported that 72% of adverse events occ-
urred after the first treatment [38]. Most adverse events repor-
ted by manual therapy patients are thought to be benign and
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TABLE 3: Mean differences between control and both the thoracic and the cervical groups.

Control-thoracic

Control-cervical

Mean difference 95% CI P value Cohen-D .Mean 95% CI P value Cohen-D
difference

Pretreatment 2.90 (-14.57; 20.37)  1.000 0.19 9.80 (=7.67;27.27) 0.491 0.61

CPK (U/L) Post 0 H 2.00 (-16.81;20.81)  1.000 0.12 8.90 (=9.91;2771)  0.713 0.53
Post 2H 3.30 (-16.55;23.15)  1.000 0.18 6.30 (-13.55; 26.15)  1.000 0.38

Pretreatment 2117 (~79.90; 3755)  1.000 0.38 013 (-58.60; 58.85)  1.000 0.00

LDH (U/L) Post 0H -11.27 (-60.29; 37.75)  1.000 0.23 7.43 (-41.59; 56.45)  1.000 0.20
Post 2H -21.69 (-98.48;55.11)  1.000 0.37 3469  (-111.48;4211) 0.777 0.52

Pretreatment 0.39 (-2.26;3.04)  1.000 0.23 -0.09 (-2.74;2.56)  1.000 0.04

Enolase (ng/mL) Post 0 H -0.62 (-2.42;117) 1000 0.47 -0.33 (-2.13;1.46)  1.000 0.20
Post 2H -0.56 (-5.15;4.03) 1000 0.24 -2.71 (-730;1.88)  0.431 0.61

Pretreatment 0.85 (—0.18;1.88) 0.136 1.14 -0.07 (-1.10; 0.96) 1.000 0.07

CRP (mg/L) Post 0H 111 (0.05;2.18)  0.039 1.49 0.13 (-0.93;1.20)  1.000 0.12
Post 2H 1.03 (-0.09;2.14)  0.078 118 0.06 (-1.06;1.17)  1.000 0.05

Pretreatment -0.01 (-1.44;1.43)  1.000 0.00 —0.04 (-1.47;1.40)  1.000 0.03

Aldolase (U/L) Post 0H 0.13 (-1.23;1.49)  1.000 0.10 0.07 (-1.29;1.43)  1.000 0.06
Post 2H 0.33 (-1.32;1.98)  1.000 0.22 -0.13 (-1.78;1.52)  1.000 0.09

Pretreatment 13.96 (-11.89; 39.80)  0.538 0.59 1536  (~10.49;41.20) 0.423 0.58

Myoglobin (ng/mL)  post 0 H 13.88 (-757;35.34)  0.331 0.76 16.38 (-5.07;37.84)  0.185 0.75
Post 2H 33.60 (0.63; 66.57)  0.045* 1.06 31.10 (~1.87;64.07)  0.069 0.90

Pre-T: pretreatment values; Post-0 H: values 0 H after intervention; Post-2 H: values 2 H after intervention; CPK: creatine phosphokinase; LDH: lactate

dehydrogenase; CRP: C-reactive protein.
*Trend to statistical significance.

transient and are often unknown to the practitioner unless
patients show observable signs (e.g., loss of motion or neuro-
logical deficits) or report pain or discomfort [39]. A recent
systematic review shows that nearly half of patients expe-
rience adverse events after manual therapy. These adverse
events are short-lived and minor, and most will occur within
24 hours and resolve within 72 hours. The relative risk of these
adverse events is similar for manual therapy plus exercise
treatment and for sham/passive/control interventions [37].
The biomarkers used in the study are generally used to
detect tissue damage. Creatine phosphokinase (CPK) is an
intracellular enzyme related to energy metabolism, and its
level in serum has been extensively used as a diagnostic mar-
ker for muscle injury [18]. Myoglobin and troponin-I are
sensitive markers for skeletal muscle or cardiac muscle dam-
age [19]. Both aldolase and lactate dehydrogenase (LDH) are
biomarkers for general tissue damage. The presence of neu-
ron-specific enolase (NSE) in plasma samples is used as a
diffuse neuronal damage marker [40]. The C-reactive protein
(CRP) is a nonspecific marker of inflammation. In fact,
Huang et al. showed that elevated mechanical strain on vess-
els could induce the local expression of proinflammatory cyt-
okines like CRP [41]. These parameters had been exten-
sively used in research in order to analyze the effect of
active physical therapy in the expression of tissue damage
markers [42, 43]. After the analysis of seven tissue damage
markers, our data do not show any significant differences in
CPK, LDH, troponin-I, myoglobin, aldolase, NSE, and CRP

concentrations. A mixed-model ANOVA failed to reveal a
group-by-time interaction in any of the dependent variables
(P > 0.05). The pairwise comparisons between the con-
trol and both the thoracic and the cervical manipulation
groups show lack of statistical significance except for two
comparisons in the limit of statistical significance (which
lack real meaning). The relatively high effect size found in
the comparison of CRP levels between the control group
and the thoracic manipulation group was already apparent
at pretreatment and did not increase significantly in the two
posttreatment measurements. The behavior of these parame-
ters suggests that the mechanical stimulus induced by spinal
manipulation alone is not enough to provoke cell damage
or tissue breakage in healthy subjects. These data agree
with other works that show no alteration in pathologic
blood vessels after a cervical manipulation [44]. Nevertheless,
Huang et al. showed that mechanical strain increased CRP
expression in the saphenous vein in a strength-dependent
manner [41]. Rather than an episode of mechanical stretch,
some studies propose that a repetitive mechanical stress was
needed to induce microstructural damage in vessels [45].
Moreover, studies demonstrated that the mechanical load of
the vertebral artery during SM application was almost an
order of magnitude lower than the strain required to cause
its mechanical disruption [14].

The findings of the present study contradict those of prev-
ious studies on other manual therapies modalities. Dannesk-
iold-Samsee et al. identified an increase on serum myoglobin



after a deep massage [46, 47]. Arkko et al. also found increases
of serum CPK and LDH concentrations [48]. This contradic-
tion may be due to differences between modalities or because
the studies of Danneskiold-Samsge and Arkko were con-
ducted on nonhealthy subjects whereas our subjects were
healthy. Moreover, the deep massage protocol used in these
studies differs from our manipulation technique in the appli-
cation time of the treatment protocol. The process for a single
spinal manipulation takes a few seconds but, in contrast,
massage protocol takes some minutes. It is therefore possible
that the long time during which mechanical force was directly
applied to tissues could explain the observed increase in
myoglobin, CPK, and LDH in these studies [4, 38, 39].

After the manipulation, two of the subjects suffered syn-
cope. Both belonged to the thoracic manipulative group. It
is likely that syncope after spinal manipulative therapy is not
related to tissue damage and that such adverse event may be
explained by other reasons.

Strengths and Limitations of the Study. First, the sample was
small due to methodological issues, making it difficult to gen-
eralize our results. Second, it was not possible to blind the
clinician or the subjects due to the nature of the intervention,
which constitutes a risk of bias. Third, the present study was
conducted on asymptomatic subjects, so it is not possible to
extrapolate the present findings to a symptomatic population.

5. Conclusions

Our data show no changes in any of the studied damage
markers. Although this study examined the outcomes in an
asymptomatic population, lower cervical and thoracic mani-
pulative techniques seem to be safe manual therapies tech-
niques which cause no harm to the health of the subject.
These data may be used as evidence of the safe application of
spinal manipulation to healthy subjects. Further studies with
a large sample size and a patient population are needed to
corroborate the innocuous effects of spinal manipulation.
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