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INTRODUCTION

It is widely presumed that Schwann cells and glial
cells modify the interactions of neurons with the
extracellular environment in several ways, in
addition to the formation and maintenance of
myelin. In particular, it is thought that these cell
types control the composition of the medium that
gains access to the neuronal surface (see, e.g.,
references 2, 7, 10, 14, 26, 29, 30) and perhaps also
play active roles in transfer of specific molecules to
neurons (16, 29).

Among the preparations that should be of use
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for the experimental study of relations between
Schwann cells and axons are the giant neurons of
invertebrates such as the lobster and squid. Pre-
vious work has led to the suggestion that low
molecular weight and colloidal materials can tra-
verse the Schwann cell sheath surrounding giant
axons by passage through flat, slitlike channels
formed by the overlapping and folding of Schwann
cells (1, 4, 6, 10, 23, 30, 31). The present study
indicates that in lobster walking limb nerves
horseradish peroxidase gains access to the axon
surface not only by these routes but also by passage
through the networks of anastomosing tubules



found in the Schwann cell cytoplasm. Preliminary
reports of the findings have been published (13,
15).

METHODS AND MATERIALS

Nerves were dissected from the walking limbs of
lobsters, and bundles of axons were rinsed in crusta-
cean Ringer’s solution (0.465 M NaCl, 0.01 m KCI,
0.025 m CaCl,) as previously described (8). Under
all conditions used, the isolated nerves were capable
of sustained conduction of repeated impulses. Many
of the nerves studied were stimulated at 30-50 impulses
per second for 2045 min; such stimulation had no
obvious effects on the Schwann cells.

In most cases, the nerves were soaked in horse-
radish peroxidase (Sigma Biochemicals, St. Louis,
Type II;0.05-0.29%, in Ringer’s solution at room tem-
perature) for 20-45 min before fixation. Fixation
usually was carried out in Karnovsky’s (18) phos-
phate - buffered glutaraldehyde - paraformaldehyde
mixture at room temperature for 1-3 hr. The tissue
was then rinsed in ice-cold pH 7.4 buffer, either 0.1 m
phosphate or 0.1 M cacodylate with 7%, sucrose (28).
For morphological studies, the tissue was rinsed for
approximately 15 min and then was postfixed for 1-2
hr in ice-cold 19, osmium tetroxide in 0.1 M phos-
phate buffer (20), dehydrated in ethanol, and em-
bedded in Epon (19). In several experiments, en bloc
staining with uranyl acetate was employed (9).

For demonstration of peroxidase activity, the rinse
after aldehyde fixation was prolonged to several
hours or overnight. The tissue was then frozen on the
head of a freezing microtome, incubated at room tem-
perature in the medium of Graham and Karnovsky
(11), and then postfixed in osmium tetroxide and
embedded as above.

Cholinesterase activity was demonstrated by the
methods of Karnovsky (17) after fixation for 1-2 hr
in ice-cold 2-2.5%, glutaraldehyde in pH 7.4, 0.1 m
phosphate or cacodylate buffer. Rinsing, freezing,
and postfixation were done as with the peroxidase-
incubated tissue.

As controls for the enzyme incubations, tissue was
incubated in substrate-free peroxidase or cholinester-
ase medium and nerves that had not been soaked in
peroxidase were incubated in the full peroxidase
medium. In all cases, sites described below as contain-
ing reaction product in incubated tissues were found
in the controls to show no density likely to be con-
fused with reaction product.

Thin sections for electron microscopy were cut on
diamond knives and examined unstained, stained
with lead citrate, or stained with uranyl acetate fol-
lowed by lead (24, 32). Photographs, at initial mag-
nifications of 2-17,000, were taken on an RCA EMU
3F microscope.

RESULTS

All observations reported are from study of the
largest axons in the nerve (usually with diameters
of 50-100 u), and thus are obtained on systems
in which a given Schwann cell is associated with
a single axon (see references 4, 10, 31).

Reaction product for peroxidase is found pri-
marily in the extracellular spaces in the nerves. It
is present between the layers of connective tissue
that surround the giant axons, in the axon—
Schwann cell space, and in the flat channels
crossing the Schwann cell sheath (Figs. 1-4). The
flat channels represent the spaces between adjacent
Schwann cells and between folded regions of a
given cell. Broad (50-75 mp or more in width)
channels of this kind are most often seen in the
outer part of the sheath and are continuous with
the space outside the sheath (Fig. 5); the narrower
channels (Figs. 3, 10) are continuous with the
broad ones, with the space outside the sheath, and
with the axon—Schwann cell space (see references
4, 8, 10, 31). The narrower channels and the
axon—Schwann cell space are approximately 15-20
my in width.

In addition, peroxidase in the Schwann cell
sheath is demonstrated within networks of anas-
tomosing tubules (Figs. 1, 3, 4) that appear as
patches spaced every few microns along the axon
(Fig. 2). Although direct continuities with the
space outside the sheath are sometimes seen, the
tubules most often are found to be continuous
with the Schwann cell plasma membranes at the
axon—Schwann cell space and at the broad chan-
nels (Figs. 6 and 7). The impression gained from
extensive study of nonserially sectioned material
and limited work with serial sections is that the
flat channels and the tubules form a single,
elaborately interconnected system by which
peroxidase can pass from outside the Schwann cell
sheath to the axon—Schwann cell space.

Peroxidase reaction product in the Schwann
cells also is found in coated vesicles approximately
100 myu in diameter (Figs. 5 and 8). Some of the
vesicles are seen to be attached to the anastomo-
sing tubules (Fig. 9).

When either acetylthiocholine or butyrylthio-
choline is used as substrate, reaction product for
cholinesterase is present in the spaces between
connective tissue cells. With butyrylthiocholine,
product also is found in the axon—Schwann cell
space and in the anastomosing tubules (Fig. 10).
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All figures are electron micrographs of giant axons and the Schwann cells associated with them. Bar length
equals 0.25 & in all micrographs.

Figure 1  Portion of a Schwann cell (S) and axon (4). The arrow indicates the axon-Schwann cell space,
and E, the extracellular space outside the Schwann cell sheath. In the Schwann cell are seen Golgi appa-
ratus (), a mitochondrion (M), and a number of smooth-surfaced tubules (T). Stained en bloc with uranyl
acetate and as a thin section with uranyl and lead. X 53,000.

Figure 2 Portion of a fiber fixed after exposure for 20 min to peroxidase and then incubated (45 min)
for peroxidase activity. Reaction product is seen in the axon—Schwann cell space (arrow) and in three re-
gions of anastomosing tubules (7') present in the Schwann cell. 3 indicates mitochondria in the axon. The

thin section was stained lightly with lead. X 18,000.

DISCUSSION

Studies with several types of tracers on crab (1)
and squid (30, 31) fibers and on vertebrate un-
myelinated fibers (see references 12, 14, 26 for
reviews and 29, 33, 34 for consideration of myeli-
nated fibers) have indicated that the axon-
Schwann cell space is reasonably accessible to ma-
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terial introduced in the extracellular medium
outside the Schwann cell sheath. The present ob-
servations demonstrate this to be the case for
lobster giant axons as well.

The penetrability of peroxidase into the tubule
networks and the dimensions and distribution of
the tubules suggest that the networks are a major



Figure 3 Portion of a fiber from the same nerve used for Fig. 2. Peroxidase reaction product is present
in the axon-Schwann cell space (arrow) and in a broad channel (B) that separates two regions of Schwann
cell cytoplasm. Some product also is present in a network of tubules (7) and in a narrow Schwann cell chan-
nel (N). A mitochondrion in the axon is seen at M. The thin section was stained lighfly w11;h
lead. X 27,000.

B

Figure 4 Portion of a Schwann cell from a preparation fixed after 25 min in peroxidase and incubated
(45 min) for peroxidase activity. Reaction product is present in a network of anastomosing tubules (T".
Product also is seen in the extracellular space outside the Schwann cell sheath (E) and in the end of a broad
channel (B). The thin section was stained with lead. X 31,000. : Ty

component of the extracellular pathway across
the Schwann cell sheath of lobster walking limb
axons. Initial peroxidase studies indicate that this
is probably also true for the giant axons of the
circumesophageal system in the lobster. In addi-
tion, although relevant tracer studies have not been
reported, it is almost certain that a comparable
channel system exists in several crayfish nerves.
Networks of tubules have been observed in the
Schwann cell cytoplasm (23, 25), and Peracchia
and Robertson (discussion of their paper at the
1968 ASCB meetings, reference 22), and Pappas
(personal communication) have noted connections
between agranular Schwann cell tubules and the
plasma membrane.

Presumably, the tubule systems contribute to
the relatively rapid passage of ions and water
across the Schwann cell sheath (2, 7, 8, 30, 31).
It has been proposed (see, e.g., references 30, 31)

that the composition of the medium passing to
and from the axon surface is under the active
control of the Schwann cell. The large surface area
of the anastomosing tubule systems would facilitate
exchanges between Schwann cell and extracellular
fluid that might be involved in such control. The
peroxidase-containing coated vesicles seen in the
Schwann cells deserve further study in this con-
nection. Vesicles of similar size and appearance
have been reported to participate in pinocytosis in
many tissues (see e.g. references 9, 12, 27), and
pinocytosis can result in a somewhat selective
absorption of material from the extracellular
environment. The pinocytosis vesicles might also
represent a phase in the circulation of membrane
between the plasma membrane and intracellular
systems although at present, such roles may be
more appropriately sought in other systems (e.g.
gland cells, neurons [12, 14]) where there are
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FraUurEs 5-7 are all from the same preparation, exposed for 45 min to peroxidase but not incubated. After
fixation the material was stained en bloc with uranyl acetate. Subsequently, the thin sections were stained
with uranyl acetate and lead. This procedure was found to increase the electron opacity of extracellular
spaces and to provide good staining of membranes; these characteristics facilitate tracing of the channels.
M, mitochondria in the axons.

Ficure 5 A, the axon-Schwann cell space, E, the space outside the Schwann cell sheath; C, portions of
connective tissue cells. Broad channels (B) are present within the Schwann cell; arrows, points of con-
tinuity with the space outside the sheath. V, coated vesicle in the Schwann cell. X 40,000.

Figure 6 Arrowheads show connections and near connections between Schwann cell tubules and the
plasma membrane bordering a broad channel similar to the channels shown in Fig. 5. The tubules at T
probably are connected to the axon-Schwann cell space (4). X 52,000.

Figure 7 T, a portion of a Schwann cell tubule system showing connections to the axon-Schwann cell
space (arrows) and to a broad channel (B) of the type shown in Fig. 5 (B). The axon is seen at 4,
X 64,000,



Figure 8 Portions of Schwann cells from two preparations of peroxidase-soaked material incubated
(45 min) for demonstration of peroxidase activity. Reaction product is present in coated vesicles (V), in
the axon-Schwann cell space (arrow), and in the extracellular space outside the Schwann cell sheath (E).
MT indicates microtubules. The cell at the left was exposed to peroxidase for 30 min; the other (right)
was exposed for 45 min. The thin sections were stained lightly with lead. X 52,000.

Figure 9 Portion of a Schwann cell from a nerve soaked in peroxidase for 25 min before fixation and
then incubated (45 min) for peroxidase activity. T, tubules of an anastomosing network. The circular pro-
files at C presumably are cross-sections of the tubules. Some reaction product is seen in the tubules, but it
is more highly concentrated in a coated vesicle (V) attached to the tubule system. The space outside the
Schwann cell sheath is seen at E. The thin section was stained lightly with lead. X 57,000.

Figure 10 Portion of a fiber incubated (130 min) for butyrylcholinesterase activity. Reaction product
is seen in Schwann cell tubules (7). Some product also is present in other channels (N) within the
Schwann'cell sheath and in the axon-Schwann cell space (arrow). M, a mitochondrion in the axon; E, the
edge of the Schwann cell sheath. The thin section was lightly stained with lead. X 52,000.
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known phases of addition of membranes to the
plasma membrane (secretion, transmitter release).

Interpretation of the finding of butyrylcho-
linesterase activity in the networks must await
clarification of the role of acetylcholine and related
compounds in lobster nerves. We know of no
previous study of the cholinesterase activity of the
networks. However, from studies of other compart-
ments of lobster nerves (5) and from the extensive
work on vertebrate material (see e.g. 3, 21 for
discussion and further references), it appears that
one or another of the several types of cholinesterase
is generally present in the cells surrounding axons
and perikarya. The most obvious function the
enzymes might serve is in preventing leakage in or
out of agents with neurotransmitter-like properties.
Further work with inhibitors and with varied
fixation and incubation methods will be needed to
evaluate the apparent inactivity of the network
enzyme toward acetylcholine. For example, since
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